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ABSTRACT

In this study, the nature of the weekly stock price relationships of several Qatar energy companies, namely the weekly stock price of Qatar Fuel 
Company (QFLS), Qatar Gas Transport Company (QGTS), and Qatar Electricity and Water Company (QEWC), will be discussed. The duration of 
data weekly stock price is from January 2015 to April 2022. This study aimed to obtain the best model for the weekly stock price relationship of the 
three companies QFLS, QGTS, and QEWC. The multivariate time series analysis method will be used to evaluate the data. From the analysis using 
multivariate time series modeling, the best model is VAR(3)-GARCH)(1,1). Based on this best model, further analysis is carried out, namely Granger 
causality, impulse response function (IRF), and forecasting for the next 12 periods. The Granger causality test found that the QFLS has Granger 
causality on the QGTS (unidirectional), while the QGTS and QEWC variables have bidirectional Granger causality. The IRF analysis indicated that 
if there is a shock of 1 standard deviation in QFLS, then QFLS and QEWC will fluctuate for the first 6 weeks and move toward equilibrium from the 
7th week onwards, while the impact on QGTS can be ignored. Suppose there is a shock of 1 standard deviation in the QGTS. In that case, the QFLS and 
QEWC will respond by fluctuating for the first 6 weeks, and at the 7th week and move toward equilibrium, while the impact on QGTS can be ignored; 
and if there is a shock of 1 standard deviation in QEWC, then QFLS and QEWC will respond negatively and fluctuating for the first 6 weeks, and at 
the 7th week toward equilibrium, while the impact on QGTS is negligible. Forecasting for the next 12 periods shows that the farther the forecasting 
period, the larger the standard error. This indicates that the ffarther the period is, the more unstable it is.

Keywords: Multivariate Time Series, VAR(p)-GARC(r,s), Granger Causality, Impulse Response Function, Forecasting 
JEL Clasifications: C53, Q4, Q47

1. INTRODUCTION

Multivariate time series data modeling discusses the interrelationships 
between variables based on the concept of time lag (Lutkepohl, 
2005; 2020; Tsay, 2014; Basu et al., 2019; Hamzah et al., 2020). 
The application of statistics, modeling data multivariate time series, 

has made a lot of the development of the research in the field of 
economics and social sciences (Chamalwa and Bakari, 2016; Zhang 
et al., 2016; Keng et al., 2017; Bulteel, 2018; Dumitrescu et al., 
2019; Lutkepohl, 2020). One of the purposes of a multivariate time 
series data analysis is to find a model and to express a structured 
time relationship between some of the variables discussed and then 
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to be able to do forecasting of one or more variables. To analyze 
quantitatively analyze data in multivariate time series involving 
more than one variable, one can use the Vector Autoregressive 
(VAR) method, vector error correction model (VECM), or VAR 
Moving Average method. (Chamalwa and Bakari, 2016; Warsono, 
et al., 2019a; 2019b; 2020; Sekanabo, et al., 2022; Areghan et al., 
2022). The development of the application of time series analysis, 
especially multivariate time series, has been widely used in studies 
in various fields of science. One of the multivariate time series 
models is the Vector Autoregression (VAR) model, which is one of 
the most successful in its application. It is a natural progression from 
a univariate time series model to a multivariate time series model. 
VAR models have proven particularly useful for describing dynamic 
behavior in economics, finance, and social sciences.

VAR model is widely used in many studies, especially in the fields 
of economics, energy, finance, and business. Many researchers 
have conducted the VAR model applications on macroeconomic 
variables (Robertson and Tallman, 1999; Wei, 2006; Tsay, 2010). 
The VAR model plays an important role as one of the data analysis 
methods, especially in the fields of economics and finance 
(Hamilton, 1994; Kirchgassner and Wolters, 2007; Tsay, 2010; 
2014; Wei, 2019). If the variables discussed had an autoregressive 
conditional heteroscedasticity (ARCH) effect, then the modeling 
data can be used in the VAR-GARCH or VARMA-GARCH models 
(Abounoori et al., 2016; Virginia et al., 2018; Lin et al., 2020). 
Sims (1980) introduced the VAR model as an alternative in 
macroeconomic analysis. The VAR model has a simpler model 
structure with a minimal number of variables where all the 
variables are endogenous, with the independent variables being 
the lag of the variables involved in the modeling. VAR models are 
often used to describe the behavior of variables over time. This 
model often assumes that the present value is a function of previous 
values and random error (Fuller, 1985). This model is easy to 
analyze from multivariate time series data, flexible, easy to 
estimate, and usually fits very well with the data (Fuller, 1985; 
Lutkepohl, 2005; Juselius, 2006). VAR models based on the normal 
distribution are usually popular for describing the behavior of time 
series macroeconomic data (Juselius, 2006). In the p-order VAR 
model, VAR(p), each component of the Zt  vector depends linearly 
on its own lag up to the p-th period as well as on the lag of the 
other variables up to the p-th lag (Lutkepohl, 2005; Wei, 2006; 
Kirchgassner and Wolters, 2007). VAR models are very useful for 
describing and explaining the behavior of multivariate time series 
data and also for prediction or forecasting (Lutkepohl, 2005; Wei, 
2006). Forecasting is the main goal in multivariate time series 
data analysis. Forecasting by using the VAR model is simple 
because it can be conditional on future conditions in the model. 
Furthermore, the VAR model can also be used for structural 
analysis. In the structural analysis, certain assumptions on the 
causal structural data under investigation are applied and the results 
due to the causal effect of an unexpected shock or innovation on 
a specific variable are examined. These causal effects are usually 
inferred in Granger causality and IRFs (Hamilton, 1994; 
Lutkepohl, 2005; Wei, 2006; Tsay, 2010).

The VAR model is designed for stationary data that do not contain 
trends. The stochastic trend in the data indicates that there are 

long-run (long-term) and short-run (short-term) components in 
multivariate time series data. Research on stochastic trends in 
economic variables continues to grow, so in 1981, Granger 
developed the concept of cointegration (Granger, 1981). Johansen 
and Juselius (1990) developed the concept of VECM). VECM 
offers an easy working procedure to separate the long-term and 
short-term components of the data generation process. We can ask 
the question of how to build the possible relationship for 
multivariate time series data. That is how a possible approach to 
building a data modeling of two or more multivariate time series 
data. In such a system where each variable will depend on one 
another, the univariate modeling form will no longer be 
appropriate. Sims (1980) developed the VAR System (𝑉𝐴𝑅) 
approach as an alternative to the simultaneous equation approach 
(Basu et al., 2019; Kilian and Lutkepohl, 2019; Wei, 2019). 
Starting from a stationary autoregressive form, all the variables 
involved are assumed jointly endogenous. So in a VAR model of 
order p (𝑉(𝑝)), each component of the Zt  vector depends linearly 
on its own lag up to the lag value of the p-th period (Kirchgassner 
and Wolters, 2007; Hamilton, 1994; Brockwell and Davis, 2002; 
Wilms et al., 2017a; 2017b; Dias and Kapetanios, 2018; Wei, 
2019).

In this study, data on weekly stock prices of QFLS, QGTS, and 
QEWC over the year January 2015 to April 2022 will be discussed. 
This study aims to find the best multivariate time series modeling 
that fits the data weekly stock price of QFLS, QGTS, and QEWC. 
Once the best model is found, then further analysis such as Granger 
causality, IRF, and forecasting for the next 12 periods (weeks) 
will be conducted.

2. STATISTICAL MODELING

In this study, a modeling analysis of the weekly stock price of three 
Qatari energy companies, namely QFLS, qatar transport company 
(QGTS), and QEWC, will be discussed. The data QFLS, QGTS, 
and QEWC are taken from January 2015 to April 2022. In the 
current study, we analyzed the data QFLS, QGTS, and QEWC as 
a set of vector time series observations: and let
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t

t
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 is a vector observation at time t. (1)

This type of vector time series observation will be analyzed using 
the multivariate time series method. Before modeling the data, 
the assumptions of the multivariate time series analysis will be 
checked. In the time series modeling analysis, it is assumed that 
the data are stationary. Therefore, before a model is constructed, 
it is necessary to check whether the data meet the stationary 
assumption. In addition, it is necessary to check whether the 
data have an autocorrelation and have an ARCH effect. There 
are two approaches to checking the stationary data that are used: 
the first is by plotting the data, and subsequently analyzing 
the behavior of the plot of the data; the second is by using the 
Augmented Dickey-Fuller (ADF) test with the null hypothesis 
that the data are nonstationary (Tsay, 2010; Virginia et al.,2018; 
Warsono et al., 2019a; 2020). If the data are nonstationary, then 
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the data are transformed using a process of differentiation, such 
that the data become stationary (Wei, 2006; Montgomery et al., 
2008). The Portmanteau Q test and Lagrange multiplier test (LM 
test) were used to check the existence of ARCH effect. If ARCH 
effects exist in the data, then the GARCH model will be used to 
model the residuals of vector observation Zt. Many time series in 
practice that involve more than one variable are best considered 
components of some vector-valued multivariate time series, {Zt} 
whose specification includes not only the serial dependence of 
each component {Zit}, but also interdependence between different 
components {Zit} and {Zjt}[ Brockwell and Davis, 2002]. VAR 
process provides a very useful class of models in multivariate time 
series for describing the dynamics of an individual time series. 
The pth order VAR, VAR(p), is formulated as follows:

Z Z Z Zt o t t p t p t� � � � � �� � �� � � �1 1 2 2 ... � , (2)

where Zt  is a vector observation at time t as given in (1), Φo  is 
a 3 × 3 constant matrix, Φ Φ Φ1 2, ,..., p  are the 3x3 coefficient 
parameters for Zt−1,  Zt−2 , …, Zt p− , respectively, and is the 
vector white noise.

2.1. (ADF) Test
The ADF test checks the stationary data with the null hypothesis 
that the data are nonstationary (Fuller, 1985; Wei, 2006; Warsono 
et al., 2020). The ADF test with lag-p is formulated as follows 
(Zivot and Wang, 2006; Tsay, 2010):

Z c Z Zit it it i
j

p

it j it� � � ��
�

�

��� � �1
1

1

� , (3)

where cit is a constant function at time t, ΔZit = Zit−Zit−1 is the 
difference of a series of Zit, and εit is the white noise. The ADF 
test (or tau test) statistic is formulated as follows:

τ-test = 
ˆ 1

ˆ( )std
−


 (4)

Reject the null hypothesis if the P < 0.05 (Tsay, 2010; Brockwell 
and Davis, 2002).

2.2. Information Criterion AICC
The AICC is a criterion for selecting the best model. AICC is 
an estimate of the quality of the statistical model; by comparing 
several proposed models, the model with the smallest AICC 
value is selected as the best model among the models offered. 
The calculation process is as follows: let a linear model with k 
coefficient of parameters and let 2ˆkσ  be the likelihood estimator 
of variance, and calculated as follows:

2ˆ k
k

RSS
T

σ =
,
 (5)

where RSSk = ( )X Xt
t

k

�
� �
1

2  is the residuals sum of squares under 

the model with k coefficient parameters. The AICC is defined as 
follows:

2ˆln
2k

T kAICC
T k

σ +
= +

− −
 (6)

where T is the sample size (Shumway and Stoffer, 2006).

2.3. Testing for White Noise
To check whether errors (residuals) are white noise, Q-statistic (or 
Box–Pierce test) or Ljung–Box test will be used (Ljung and Box, 
1978). The Q-statistic (QBP) tests the null hypothesis that the errors 
(residuals) are white noise. The Q-statistic is calculated as follows:

2

1

ˆ
k

BP j
j

Q T ρ
=

= ∑ , (7)

where ˆ jρ  is the autocorrelation estimate at lag j, and T is the sample 
size. Under the null hypothesis, the QBP statistic is asymptotically 
the Chi-squares distribution with k degrees of freedom, χ2(k).

2.4. Testing Zero Cross Correlations
The basic idea in multivariate time series analysis modeling is to 
test the existence of linear dynamic dependence in the data. The 
null hypothesis to be tested is Ho: � � �1 2 0� � � �... m  against 
the alternative hypothesis Ha: �i �0  for some i, 1 ≤ i ≤ m, where 
m is a positive integer. The test statistic is the multivariate Ljung-
Box test statistics and defined as follows:

Q m T
T s

trk s s o
s

m

( ) ( ' )�
�

� �

�
�2 0

1 1

1

1
� � � �  (8)

Where tr(A) is the trace of matrix A and T is the sample size. Under 
the null hypothesis that Γs =0 for s > 0 and the condition that Zs 
is normally distributed, Q mk ( ) is asymptotically distributed chi-
square with mk2 degrees of freedom (Tsay, 2014).

2.5. Test for Normality Distribution
Some methods are available to check the normality of the errors 
(residuals). Some methods are commonly used to check whether the 
errors (residuals) are normally distributed: (1) check the histogram of 
the residuals; (2) check the Q–Q plot of the data or error (residuals); 
and (3) use the statistical test, the Jarque–Bera (JB) test, with the 
null hypothesis that the data are normally distributed (Brockwell 
and Davis, 2002; Tsay, 2010). The JB test is calculated as follows:

JB
T
S

K
� �

��

�
�
�

�

�
�
�6

3

4

2
2

( ) , (9)

where T is the sample size, S is the expected skewness, and K is 
the expected excess kurtosis.

2.6. Testing for ARCH Effect
The GARCH model is developed based on the assumption that 
the variances are heteroscedastic. The concept of ARCH was first 
introduced by Engle (1982), and later, the GARCH model was 
developed by Bollerslev (1986). Before we apply the ARCH or 
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GARCH model for the QFLS, QGTS, and QEWC data, first, we 
test the ARCH effects in the residuals (error). If there is ARCH 
effect, we use the ARCH or GARCH model for vector observation 
{Zt} data. To test the ARCH effects, we used the LM test with the 
null hypothesis that there is no ARCH effect. The null hypothesis 
is rejected if the P-value is <0.05. To perform the LM test, the 
residuals model is first built as follows:

� � � � � �t o t p t p tu
2

1
2
1

2� � � � �� �... . (10)

From model (10), we estimate the R-square (R2) value and then 
calculate the LM test. The LM test is defined as follows:

LM = T. R2, (11)

where T is the sample size, and R2 is the R-square computed 
from the model (10). Under the null hypothesis, the LM test 
approximately has a Chi-squares distribution with p degrees of 
freedom, χ2(p) (Zivot and Wang, 2006).

2.7. Constant Conditional Correlation-GARCH Model
One of the approaches of the multivariate GARCH model is the 
Constant Conditional Correlation (CCC)-GARCH model. CCC-
GARCH model was introduced by Bolerslev (1990), who proposed 
a representation where the conditional correlation matrix is 
assumed to be constant. Under this assumption, the conditional 
covariance matrix Ht  is defined as follows:

H D RDt t t= ,

Where
D diagt t t t� ( , , )., ,

/
, ,
/

, ,
/� � �11

1 2
2 2
1 2

3 3
1 2

R �
�
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�
�� �

� �

� �
1 2 1 2 3
1 3

1

2 3

1 2

1

1 3

, ,
, ,

, ,

,

and ρi j,  is the CCC between εit  and ε jt . The representation is 

known as the CCC- model. Thus,

h iji j t i it j j t, , , , ,. .� � � �

And σ i i t, , can be modeled independently as the case of univariate 

GARCH model, for example, like the simple GARCH(1,1) model,

� � � � �i i t i i i t i i tci i, , , , , , , , .� � � �� �1 1
2

1 2 3  (12)

2.8. Test for Granger Causality
In this section, the question to be investigated is whether the value 
of a variable can help forecast another value of a variable Z jt . If 
it cannot, then we say that Zit is not Granger causality Z jt . To 
test that Zit is Granger causality Z jt , we construct the following 
steps:

Z Z Z Zjt jt jt p jt p� � � � �� � �� � � �0 1 1 2 2 ...

� � � � �� � �� � �1 1 2 2Z Z Z uit it p it p t...  (13)

By Ordinary Least Squares we conduct an F-test of the null 
hypothesis,

Ho: � � �1 2 0� � � �... .p

We calculate the Sum of Square Residuals (RSS) of (13),

RSS ut
t

T

1
2

1

�
�
� .

Under the null hypothesis, model (13) can be written as:

Z Z Z Z ajt jt jt p jt p t� � � � � �� � �� � � �0 1 1 2 2 ...  (14)

We calculate the Sum of Square Residuals (RSS) of (14),

RSS at
t

T

0
2

1

�
�
� .

The test statistic is given by:

S = 
T RSS RSS

RSS
( )0 1

1

−
. (15)

S asymptotically has chi-square distribution with p degrees of 
freedom. We reject the null hypothesis if P < 0.05. (Hamilton, 
1994).

2.9. Impulse Response Function
There is an approach to exploring the relationship between 
variables in studying the structure of a VAR(p) model. We are 
often interested in the effect of changes in one variable on another 
variable in a multivariate time series model. VAR(p) model can 
be written in the vector MA(∞) as follows (Hamilton, 1994; Tsay, 
2014; Wei, 2019):

Zt t t t� � � � �� �� � � �� �1 1 2 2 ...

The matrix Ψs , has the interpretation

�

�
��Zt s

t
s� '
.�  (16)

That is the row i, column j element of Ψs  indicates the effect of 
one unit standard deviation increase in the jth variable innovation 
at date t ( ε jt ) for the value of the ith variable at time t+s ( Zit s+ ), 
holding all other innovations constant. The plot of the row i, 
column j element of Ψs ,

�
�

�Zit s
jt�

,  (17)

as a function of s is called Impulse Response Function (IRF) 
(Hamilton, 1994, Tsay, 2010; 2014; Wei, 2019).

2.10. Forecasting
Forecasting will be performed after obtaining the best model for 
data vector-valued multivariate time series {Zt}. By using the best 
model that fits the data, forecasting is carried out directly for the 
next 12 periods (weeks).
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3. RESULTS AND DISCUSSION

The data used in this study is weekly stock price data for several 
energy companies in Qatar, namely QFLS, QGTS, and QEWC 
data, from January 2015 to April 2022. Figure 1 shows the plot 
of QFLS, QGTS, and QEWC data. The graph shows that the 
weekly data on the stock prices of QFLS, QGTS, and QEWC 
is not stationary; this is also shown in (Figure 2a and b), and 
(Figure 2c) where the data graph is not stationary and fluctuates. 
(Figure 2a and b) and (Figure 2c) also show the results of the 
Autocorrelation Function (ACF) graph where the three data 
show that ACF decays very slowly, indicating that the data 
are nonstationary. The ADF test also shows that the data is not 
stationary. Therefore, to fulfill the assumption of stationary data, 
a differencing process will be carried out. Data Table 1 shows that 
the data, after being differentiated, meet the stationary assumption.

After differencing and the data fulfills the stationary assumption, 
we check the autocorrelation (Table 2), and the results of the 
Portmanteau test it shows that there is autocorrelation in the 
residuals up to lag 24, this shows partially in modeling for each 
QFLS, QGTS, and QEWC data that requires modeling that 
involves the concept autoregressive. Based on the multivariate 
time series modeling from the Portmanteau test regarding the 
cross-correlation from Tables 3 and 4, the test is significant up 
to lag 3. Thus, multivariate time series modeling will involve 
autoregressive vector modeling (VAR) up to lag 3.

Table 5 shows that the three variables QFLS, QGTS, and QEWC 
indicate that all three have ARCH effects. LM test up to order 6 
is very significant, with P < 0.0001 for the three variables QFLS, 
QGTS, and QEWC. Based on the ARCH affect test results, the 
modeling to be built will not only involve modeling with the 
autoregressive (VAR) model but will also involve GARCH 
modeling for the residuals (Table 6).

Based on Table 4, schematic representation of cross-correlation, 
suggested that the model should involve lag 3. From the results of 
analysis by using eq.(6), AICC, we will compare models which involve 
lag 3 are VAR(3)-GARCH(1,1), VARMA(3,1)-GARCH(1,1), and 
VARMA(1,3)-GARCH(1,1). The AICC values from these three 
model are given in Table 7. From Table 7, the minimum AICC value 
is the AICC value of model VAR(3)-GARCH(1,1).Therefore, we 
will use model VAR(3)-GARCH(1,1) for further study.

3.1. VAR(3)- GARCH(1,1) Model
From the results of the analysis, the estimated model of VAR(3)-
GARCH(1,1) is as follows:

Figure 1: Plot of data QFLS, QGTS, and QEWC from January 2014 to 
April 2022

Table 1: Dickey‑Fuller unit roots test before and after differencing (d=1)
Variable Type Before differencing After differencing (d=1)

Rho P-value Tau P-value Rho P-value Tau P-value
QFLS Zero mean –0.14 0.6496 –0.25 0.5957 –362.29 0.0001 –13.44 <0.0001

Single mean –3.76 0.5651 –1.36 0.6053 –362.29 0.0001 –13.42 <0.0001
Trend –8.10 0.5729 –2.33 0.4145 –364.62 0.0001 –13.45 <0.0001

QGTS Zero mean 0.40 0.7798 0.72 0.8695 –433.08 0.0001 –14.67 <0.0001
Single mean –0.98 0.8876 –0.40 0.9056 –435.61 0.0001 –14.69 <0.0001
Trend –4.50 0.8542 –1.51 0.8258 –443.76 0.0001 –14.80 <0.0001

QEWC Zero mean –0.18 0.6426 –0.38 0.5459 –487.96 0.0001 –15.60 <0.0001
Single mean –7.90 0.2207 –1.97 0.3015 –488.09 0.0001 –15.58 <0.0001
Trend –19.58 0.0724 –3.18 0.0909 –488.09 0.0001 –15.56 <0.0001

Figure 2: Trend and correlation analysis for (a) QFLS, (b) QGTS, and (c) QEWC

cba
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and the estimate of CCC-GARCH(1,1) is as follows:

� � �1
2

1 1
2

1 1
2

0 0125 0 1940 0 7663t t t� � �� �. . . ,
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2

2 1
2

2 1
2

0 0040 0 0 2794 0 1356t t t� � �� �. . . . , and (19)

� � �3
2

3 1
2

3 1
2

0 0142 0 1965 0 7600t t t� � �� �. . .

Figure 3 and Table 8 show that QFLSt was affected significantly 
by QGTSt−3 and QEWCt−3. QGTSt is affected significantly by 
QFLSt−1, and QEWCt is affected significantly by QGTSt−1, 
QGTSt−3, QEWCt−1, and QEWCt−2. Table 8 shows that the effect of 
QEWCt−3 to QFLSt is negative with the estimated parameter 
of −0.1168, which means that the value of QFLSt will decrease as 
big as −0.1168 for every increment of one unit of QEWCt−3, with 
the assumption that all other values hold constant. The effect of 
QFLSt−3, QGTSt−3 to QFLSt are positive. The estimated value of 
parameter QFLSt−3 is 0.1099 this means that the value of QFLSt 
will increase as big as 0.1099 for every increment of one unit of 
QFLSt−3, with the assumption that all other values hold constant. 
The estimated value of parameter QGTSt−3 is 0.7375 this means 
that the value QFLSt will increase as big as 0.7375 for every 
increment one unit of QGTSt−3, assuming that all other values 
hold constant. Table 8 shows that the effect of QFLSt−1 to QGTSt 
is positive, with the estimated value of the parameter is 0.0298 
this means that the value of QGTSt will increase as big as 00298 
for every incremental unit of QFLSt−1, with the assumption that 

Table 2: Autocorrelation for white noise
Variable To lag Chi-square DF P-value Autocorrelations
QFLS 6 2098.70 6 <0.0001 0.989 0.978 0.966 0.953 0.939 0.926

12 3906.31 12 <0.0001 0.913 0.901 0.889 0.876 0.864 0.852
18 5435.17 18 <0.0001 0.838 0.825 0.812 0.798 0.784 0.771
24 6665.32 24 <0.0001 0.756 0.740 0.726 0.708 0.690 0.672

QGTS 6 2081.17 6 <0.0001 0.987 0.973 0.961 0.949 0.935 0.921
12 3839.31 12 <0.0001 0.906 0.892 0.877 0.862 0.848 0.836
18 5323.84 18 <0.0001 0.822 0.810 0.797 0.786 0.776 0.768
24 6628.13 24 <0.0001 0.760 0.751 0.742 0.733 0.724 0.713

QEWC 6 1965.84 6 <0.0001 0.973 0.953 0.936 0.917 0.902 0.884
12 3587.31 12 <0.0001 0.870 0.855 0.839 0.827 0.816 0.807
18 4970.98 18 <0.0001 0.797 0.783 0.771 0.760 0.746 0.737
24 6146.01 24 <0.0001 0.729 0.719 0.709 0.695 0.681 0.664

Table 3: Cross correlations of dependent series by variable up to lag 6
Variable QFLS Variable QGTS Variable QEWC
Lag QFLS QGTS QEWC Lag QFLS QGTS QEWC Lag QFLS QGTS QEWC
0 1.000 0.238 0.345 0 0.238 1.000 0.277 0 0.345 0.277 1.000
1 0.027 0.176 –0.032 1 0.044 –0.021 0.075 1 0.036 0.117 –0.110
2 0.001 0.004 0.035 2 0.033 –0.068 –0.058 2 0.031 –0.011 –0.072
3 0.120 –0.055 0.001 3 0.081 –0.013 0.097 3 –0.021 –0.068 0.028
4 –0.010 0.077 –0.038 4 0.009 0.041 –0.099 4 –0.080 –0.011 –0.048
5 0.018 0.018 –0.002 5 0.026 0.062 0.009 5 0.030 –0.016 0.042
6 –0.025 0.035 –0.025 6 –0.070 –0.028 0.007 6 –0.016 0.043 –0.067

Table 4: Schematic representation of cross-correlation
Variable/lag 0 1 2 3 4 5 6
QFLS + + + • + • • • • + • • • • • • • • • • •
QGTS + + + • • • • • • • • • • • • • • • • • •
QEWC + + + • +  ̶ • • • • • • • • • • • • • • •
+ is > 2*std error, ̶ is <  ̶  2*std error, • is between

Table 5: Test for ARCH effect
Variable Order Q P-value LM P-value
QFLS 1 353.0531 <0.0001 347.2733 <0.0001

2 680.3122 <0.0001 347.4005 <0.0001
3 976.9750 <0.0001 347.9990 <0.0001
4 1241.6570 <0.0001 348.1778 <0.0001
5 1478.1629 <0.0001 348.1979 <0.0001
6 1693.5621 <0.0001 348.8624 <0.0001

QGTS 1 338.6083 <0.0001 333.8252 <0.0001
2 648.7727 <0.0001 334.1128 <0.0001
3 928.9561 <0.0001 334.2653 <0.0001
4 1179.7573 <0.0001 334.4350 <0.0001
5 1402.6310 <0.0001 334.4529 <0.0001
6 1596.2300 <0.0001 334.6787 <0.0001

QEWC 1 269.5211 <0.0001 266.3434 <0.0001
2 465.2711 <0.0001 266.3639 <0.0001
3 613.0733 <0.0001 266.6047 <0.0001
4 717.6193 <0.0001 266.9586 <0.0001
5 801.8029 <0.0001 268.0056 <0.0001
6 859.0418 <0.0001 269.5999 <0.0001
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all other values hold constant. Table 8 shows that the effect of 
QEWCt−1 and QEWCt−2 to QEWCt are negative, with the estimated 
values of the parameters are −0.1456 and −0.1094 for QEWCt−1, 
and QEWCt−2, respectively. So the effect of QEWCt−1 to QEWCt 
is negative with the estimated parameter value of −0.1456 this 
means that the value of QEWCt will decrease as big as −0.1456 
for every increment of one unit of QEWCt−1, with the assumption 
that all other values held constant; and the effects of QEWCt−2 
to QEWCt is negative with the estimated value of the parameter 
is −0.1094 this means that the value of QEWCt will decrease as 
big as −0.1094 for every increment one unit of QEWCt−2, with the 
assumption that all other values hold constant. Table 6 shows that 
the effect of QGTSt−1 and QGTSt−3 to QEWCt are positive, with the 
estimated parameters of 0.7554 and 0.9624 for QGTSt−1 and QGTSt−3, 
respectively. So the effect of QGTSt−1 to QEWCt is positive, with 
the estimated value of the parameter is 0.7554 this means that the 
value of QEWCt will increase as big as 0.7554 for every increment 
of one unit of QGTSt−1, with the assumption that all other values 
held constant; and the effect of QGTSt−3 to QEWCt is positive with 
the estimated value of the parameter is 0.9624 this means that the 
value of QEWCt will increase as big as 0.9624 for every increment 
one unit of QGTSt−3, with the assumption that all other values hold 
constant. Table 9 shows the parameter estimate of GARCH(1,1) by 
using CCC, most of the parameters are significant. The estimation 
of conditional variance for each variable is given in Equation (19).

3.2. Diagnostic Model
Table 10 shows that up to lag 4, the Portmanteau test is significant 
with the value of Chi-Square=20.22 and P-value=0.0166, while 
the subsequent lags are not significant. This shows that the 
use of the VAR(3)-GARCH(1,1) model is appropriate (Wei, 

2019). Table 11 shows that the univariate models for QGTS and 
QEWC are significant, with P-values being 0.0170 and 0.0256, 
respectively. Table 12 shows that the normality test using the 
JB-test with the null hypothesis that the residuals are normally 
distributed, was rejected for QFLS, QGTS, and QEWC data. 
Still, Figure 4 shows that the distribution of residuals is close to 
the normal distribution for QFLS errors (Figure 4a), closed to the 
normal distribution for the QGTS error (Figure 4b), and closed to 
the normal distribution for the QEWC error (Figure 4c). Table 12 
also shows an ARCH effect for the QGTS and QEWC variables 
with P-values <0.0001 and 0.0058, respectively. So involving the 
GARCH model for residuals is appropriate (Wei, 2019). Table 13 
shows that the modulus values for both roots VAR and roots 
GARCH characteristic polynomial are less than 1, indicating that 
the model is stable (Hamilton, 1994; Lutkepohl, 2005).

3.3. Granger Causality Wald Test
Table 14 shows the results of the Wald test or Granger causality 
test. Test 3, Test 4, and Test 6 are significant. So the null hypothesis 
for test 3, Test 4, and Test 6 are rejected. The nature of Granger 
causality from Table 14 can be simplified by Figure 5. Figure 5 
explains that the variable QGST not only influenced by itself but 
also influenced by QFLS (Test 3), variable QGST is not only 
influenced by itself but also influenced by QEWC (Test 4), and 
variable QEWC is not only influenced by itself but also influenced 
by QGTS (Test 6). Figure 5 shows unidirectional Granger causality 
between QFLS and QGTS, and bidirectional Granger causality 
between variables QGTS and QEWC.

3.4. Impulse Response Function
Figure 6 shows that if there is a shock of 1 standard deviation 
in QFLS, then the stock prices of QFLS, QGTS, and QEWC 
will respond. (Figure 6a) shows the mean response of QFLS to 
a shock 1 standard deviation of QFLS. (Figure 6a) shows that 
there were quite large price fluctuations until the 5th week, the 
5th to 7th week, the fluctuations decreased, and after the 7th week, 
the price was stable. In the 1st week, there was a change in the 
QFLS price with an average change of 0.0747 with a standard 
deviation of 0.0541. In the 2nd week, there was a change in price 
with an average change of 0.0089 and with standard deviation 
is 0.0574. In the 3rd week, there was a change in price with an 
average change of 0.1207 and standard deviation is 0.0575. In 
the 4th week, there was a change in price with an average change 
of 0.0334 and standard deviation of 0.0185. In the 5th week, there 

Table 6: Minimum information criterion based on AICC
Lag MA 0 MA 1 MA 2 MA 3 MA 4 MA 5
AR 0 –8.423137 –8.473188 –8.456536 –8.494014 –8.492097 –8.457456
AR 1 –8.459455 –8.449881 –8.440389 –8.474537 –8.447535 –8.412081
AR 2 –8.442628 –8.446048 –8.436864 –8.452341 –8.409439 –8.380424
AR 3 –8.429065 –8.471784 –8.456168 –8.416343 –8.3752 –8.340514
AR 4 –8.406429 –8.45258 –8.414111 –8.374472 –8.342551 –8.313291
AR 5 –8.391898 –8.422344 –8.385843 –8.352417 –8.315632 –8.26821

Table 7: The comparison AICC of model VAR (3)-GARCH (1,1), VARMA (3,1)-GARCH (1,1), and VARMA (1,3)-GARCH (1,1)
Information criterion Model

VAR (3)-GARCH (1,1) VARMA (3,1)-GARCH (1,1) VARMA (1,3)-GARCH (1,1)
AICC –8.4040 –8.3446 –8.3833

Figure 3: The variables that have significant effect on QFLSt, QGTSt, 
dan QEWCt based on the results of test of the parameters given in 

Table 8 with P < 0.05
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was a change in price with an average change of −0.0024, and a 
standard deviation of 0.0162. In the 6th week, there was a price 
change with an average change of 0.0118 and standard deviation is 
0.0164. From the 7th week onwards, the price goes to equilibrium. 
(Figure 6b) shows the response of QGTS if there is a shock of 1 
standard deviation in QFLS, Figure shows that the stock price of 
QGTS is only slightly affected until the 3rd week, and the effect 
is negligible. (Figure 6c) shows the mean response of QFLS to a 
shock 1 standard deviation of QEWC. (Figure 6c) shows that there 
were quite large price fluctuations until the 5th week, the fifth to 
7th week the fluctuations decreased and after the 7th week, the price 
was stable. In the 1st week, there was a change in the QEWC price 
with an average change of 0.0594 and with standard deviation is 
0.0508. In the 2nd week, there was a change in the QEWC price 
with an average change of 0.0779 and with standard deviation is 
0.0492. In the 3rd week, there was a change in the QEWC price 
with an average change of −0.0113 and with standard deviation 
is 0.0508. In the 4th week, there was a change in the QEWC price 
with an average change of 0.0216, and a standard deviation of 
0.0156. In the 5th week, there was a change in the QEWC price 
with an average change of 0.0109 and with standard deviation is 
0.0110. In the 6th week, there was a change in the QEWC price 

Table 8: Model parameter estimates and test VAR (3)
Equation Parameter Estimate Standard error t-value P-value Variable
QFLS CONST1 0.00375 0.02270 0.17 0.8690 1

AR1_1_1 0.07469 0.05418 1.38 0.1689 QFLS (t-1)
AR1_1_2 0.21753 0.36612 0.59 0.5528 QGTS (t-1)
AR1_1_3 –0.01928 0.05366 –0.36 0.7196 QEWC (t-1)
AR2_1_1 –0.00193 0.05863 –0.03 0.9738 QFLS (t-2)
AR2_1_2 0.35160 0.38256 0.92 0.3587 QGTS (t-2)
AR2_1_3 –0.00329 0.05684 –0.06 0.9539 QEWC (t-2)
AR3_1_1 0.1099 0.05696 1.93 0.0543 QFLS (t-3)
AR3_1_2 0.7375 0.3755 1.96 0.0503 QGTS (t-3)
AR3_1_3 –0.1168 0.0541 –2.16 0.0315 QEWC (t-3)

QGTS CONST2 0.00004 0.00307 0.01 0.9897 1
AR1_2_1 0.0298 0.00566 5.27 0.0001 QFLS (t-1)
AR1_2_2 –0.08648 0.05967 –1.45 0.1481 QGTS (t-1)
AR1_2_3 0.00971 0.00701 1.38 0.1671 QEWC (t-1)
AR2_2_1 0.00652 0.00738 0.88 0.3771 QFLS (t-2)
AR2_2_2 –0.06617 0.05835 –1.13 0.2575 QGTS (t-2)
AR2_2_3 0.00001 0.00685 0.00 0.9983 QEWC (t-2)
AR3_2_1 –0.00431 0.00798 –0.54 0.5892 QFLS (t-3)
AR3_2_2 0.01176 0.05256 0.22 0.8231 QGTS (t-3)
AR3_2_3 –0.00158 0.00664 –0.24 0.8118 QEWC (t-3)

QEWC CONST3 0.00663 0.02165 0.31 0.7594 1
AR1_3_1 0.05945 0.05088 1.17 0.2434 QFLS (t-1)
AR1_3_2 0.7554 0.36100 2.09 0.0371 QGTS (t-1)
AR1_3_3 –0.1456 0.05308 –2.74 0.0064 QEWC (t-1)
AR2_3_1 0.05964 0.04968 1.20 0.2306 QFLS (t-2)
AR2_3_2 0.06371 0.33087 0.19 0.8474 QGTS (t-2)
AR2_3_3 –0.1094 0.05238 –2.09 0.0374 QEWC (t-2)
AR3_3_1 –0.00548 0.05039 –0.11 0.9134 QFLS (t-3)
AR3_3_2 0.9624 0.33541 2.87 0.0043 QGTS (t-3)
AR3_3_3 –0.06562 0.04711 –1.39 0.1645 QEWC (t-3)

Table 9: CCC-GARCH (1,1) Model parameter estimates
Parameter Estimate Standard error t-value P-value
GCHC1_1 0.01254 0.00561 2.23 0.0261
GCHC2_2 0.00403 0.00081 4.98 0.0001
GCHC3_3 0.01425 0.00821 1.74 0.0835
ACH1_1_1 0.19405 0.05701 3.40 0.0007
ACH1_2_2 0.27938 0.08579 3.26 0.0012
ACH1_3_3 0.19652 0.06084 3.23 0.0013
GCH1_1_1 0.76633 0.05493 13.95 0.0001
GCH1_2_2 –0.13566 0.14788 -0.92 0.3595
GCH1_3_3 0.76000 0.07411 10.26 0.0001

Table 10: Portmanteau test for cross-correlation of 
residuals
Up to lag DF Chi-square P-value
4 9 20.22 0.0166
5 18 23.66 0.1666
6 27 28.58 0.3813
7 36 32.72 0.6252
8 45 39.12 0.7184
9 54 45.61 0.7847
10 63 49.74 0.8880
11 72 59.46 0.8546
12 81 67.10 0.8661

Table 11: Univariate model ANOVA diagnostics
Variable R-square Standard deviation F-value P-value
QFLS 0.0235 0.46906 0.97 0.4676
QGTS 0.0538 0.06868 2.28 0.0170
QEWC 0.0507 0.48601 2.14 0.0256

Table 12: Univariate model white noise diagnostics
Variable Durbin 

watson
Normality ARCH

Chi-square P-value F-value P-value
QFLS 2.11381 175.52 <0.0001 0.09 0.7654
QGTS 2.00726 67.27 <0.0001 29.04 <0.0001
QEWC 2.00379 89.39 <0.0001 7.69 0.0058
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with an average change of −0.0055 and with standard deviation is 
0.0103. From the 7th week onwards, the price goes to equilibrium.

Figure 7 shows that if there is a shock of 1 standard deviation 
in QGTS, then the stock prices of QFLS, QGTS, and QEWC 
will respond. (Figure 7a) shows the mean response of QFLS to a 
shock 1 standard deviation of QGTS. (Figure 7a) shows a fairly 
large QFLS price fluctuation due to the shock on QGTS until the 
6th week, the 7th week, the fluctuation decreased and led to a price 
balance. In the 1st week, there was a change in the QFLS price 
with an average change of 0.2175 and the standard deviation is 
0.3661, there was a change in price with an average change of 
0.3345 with a standard deviation of 0.3796. In the 3rd week, there 
was a change in price with an average change of 0.7213 and with 
standard deviation is 0.3697. In the 4th week, there was a change in 
price with an average change of −0.1005 and a standard deviation 
of 0.0892. In the 4th week, there was a change in price with an 
average change of 0.0242 and a standard deviation of 0.0766. In 

the 6th week, there was a change in price with an average change 
of 0.0115 and with standard deviation of 0.0730. From the 7th week 
onwards, the price goes to equilibrium. (Figure 7b) shows the 
response of QGTS if there is a shock of 1 standard deviation 
on QFLS. (Figure 7b) shows that the QGTS stock price is only 
slightly affected until the 3rd week and its effect is small and can be 
negligible. In the 1st week, there was a change in the QGTS price 
with an average change of −0.0865 with a standard deviation of 
0.0597. In the 2nd week, there was a change in the QGTS price with 
an average change of −0.0449 with a standard deviation of 0.0577. 
In the 3rd week, there was a change in price with an average change 
of 0.0318, and a standard deviation of 0.0524. From the 4th week 
onwards, the effect weakens and the price goes to equilibrium. 
(Figure 7c) shows the mean response of QEWC to the shock 1 
standard deviation of QGTS. (Figure 7c) shows that QEWC price 
fluctuations were quite large until the 6th week, the 7th week the 
fluctuations decreased and after the 7th week the prices were stable. 
In the 1st week, there was a change in the QEWC price with an 

Table 13: Roots of AR and roots of GARCH characteristic polynomial
Roots of AR characteristic polynomial Roots of GARCH characteristic polynomial

Index Real Imaginary Modulus Radian Degree Index Real Imaginary Modulus Radian Degree
1 0.5056 0.0000 0.5056 0.0000 0.000 1 0.9697 0.0000 0.9697 0.0000 0.000
2 0.2209 0.1668 0.2769 0.6470 37.068 2 0.4125 0.0000 0.4125 0.0000 0.000
3 0.2209 –0.1668 0.2769 –0.6470 –37.068 3 0.0703 0.0000 0.0703 0.0000 0.000
4 0.0227 0.4989 0.4994 1.5252 87.388 4 –0.0372 0.0470 0.0600 2.2412 128.408
5 0.0227 –0.4989 0.4994 –1.5252 –87.388 5 –0.0372 –0.0470 0.0600 –2.2412 –128.408
6 –0.2104 0.4654 0.5108 1.9954 114.329 6 –0.1160 0.2218 0.2504 2.0526 117.608
7 –0.2104 –0.4654 0.5108 –1.9954 –114.329 7 –0.1160 –0.2218 0.2504 –2.0526 –117.608
8 –0.3647 0.0938 0.3766 2.8899 165.577 8 –0.1572 0.2603 0.3041 2.1142 121.133
9 –0.3647 –0.0938 0.3766 –2.8899 –165.577 9 –0.1572 –0.2603 0.3041 –2.1142 –121.133

Table 14: Granger causality wald test
Test Variable Null hypothesis granger causality DF Chi-square P-value
Test 1 Group 1 variables: QFLS

Group 2 variables: QGTS
QFLS is influenced only by itself, and not by QGTS. 3 2.00 0.5734

Test 2 Group 1 variables: QFLS
Group 2 variables: QEWC

QFLS is influenced only by itself, and not by QEWC. 3 2.31 0.5115

Test 3 Group 1 variables: QGTS
Group 2 variables: QFLS

QGTS is influenced only by itself, and not by QFLS. 3 14.68 0.0021

Test 4 Group 1 variables: QGTS
Group 2 variables: QEWC

QGTS is influenced only by itself, and not by QEWC. 3 7.90 0.0480

Test 5 Group 1 variables: QEWC
Group 2 variables: QFLS

QEWC is influenced only by itself, and not by QFLS. 3 1.61 0.6580

Test 6 Group 1 variables: QEWC
Group 2 variables: QGTS

QEWC is influenced only by itself, and not by QGTS. 3 10.55 0.0144

Figure 4: Prediction error normality for data (a) QFLS, (b) QGTS, and (c) QEWC

cba
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average change of 0.7554 and a standard deviation of 0.3610. 
In the 2nd week, there was a change in the QEWC price with an 
average change of −0.0986 and a standard deviation of 0.3258. 
In the 3rd week, there was a change in the QEWC price with an 
average change of 0.8876, and a standard deviation of 0.3322. 
In the 4th week, there was a change in the QEWC price with an 
average change of −0.1684 and a standard deviation is 0.1244. 
In the 5th week, there was a change in the QEWC price with an 
average change of −0.0498 and a standard deviation of 0.0808. 
In the 6th week, there was a change in the QEWC price with an 
average change of −0.0134, and the standard deviation is 0.0549; 
and from the 7th week onwards the price goes to equilibrium.

Figure 8 shows that if there is a shock of 1 standard deviation 
in QEWC, the stock prices of QFLS, QGTS, and QEWC will 
respond. (Figure 8a) shows the mean response of QFLS to a 
shock of 1 standard deviation from QEWC. (Figure 8a) shows 
a fairly large QFLS price fluctuation due to the shock in QEWC 
until the 6th week, the 7th week, the fluctuation decreased and goes 
to equilibrium. In the 1st week, there was a change in the QFLS 
price with an average change of −0.0193 and a standard deviation 
of 0.0536. In the 2nd week, there was a change in price with an 
average change of 0.0001 and a standard deviation of 0.0563. In 
the 3rd week, there was a change in price with an average change 
of −0.1119, and a standard deviation of 0.0535. In the 4th week, 
there was a price change with an average change of 0.0131, and a 
standard deviation of 0.0134. In the 5th week, there was a change in 
price, with an average change of 0.0067, and a standard deviation 
of 0.0103. In the 6th week, there was a change in price with an 
average change of −0.0101, and a standard deviation of 0.0099; 
and from the 7th week onwards, the price goes to equilibrium. 
(Figure 8b) shows the response of QGTS if there is a shock of 1 
standard deviation in QEWC, (Figure 8b) shows that the stock 
price of QGTS is only slightly affected and the effect can be 
ignored. (Figure 8c) shows the mean response of QEWC to the 
shock 1 standard deviation of QEWC. (Figure 8c) shows a fairly 

Figure 5: The granger causality Wald test

Figure 6: Response of (a)QFLS, (b)QGTS and (c)QEWC to impulse in QFLS with two standard errors

cba

Figure 7: Response of (a) QFLS, (b) QGTS and (c) QEWC to impulse in QGTS with two standard errors

cba
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large QEWC price fluctuation until the 5th week. In the 6th week, 
the fluctuation decreases and after the 7th week, the price is stable. 
In the 1st week, there was a change in the QEWC price with an 
average change of −0.1456 and a standard deviation of 0.0531. 
In the 2nd week, there was a change in the QEWC price with an 
average change of −0.0820 and a standard deviation of 0.0509. 
In the 3rd week, there was a change in the QEWC price with an 
average change of −0.0404 and a standard deviation of 0.0464. 
In the 4th week, there was a change in the QEWC price with an 
average change of 0.0248 and a standard deviation of 0.0177. In the 
5th week, there was a change in the QEWC price with an average 
change of −0.0047 and a standard deviation of 0.0100; from the 
6th week onwards, the price goes to equilibrium.

3.5. Forecasting
The VAR(3)-GARCH(1,1) model is the best model and fits to the 
data of QFLS, QGTS, and QEWC. (Figure 9a) shows that the 

QFLS model shows that the predicted value and the real data value 
are very close to each other. This indicates that the model obtained 
is reliable and can be used for further analysis, especially for 
forecasting QFLS. (Figure 10a) shows that the QGTS model shows 
that the predicted value and the real data value are very close to 
each other. This indicates that the model obtained is reliable and 
can be used for further analysis, especially for forecasting QGTS. 
(Figure 11a) shows that the QEWC model shows that the predicted 
value and the real data value are very close to each other. This 
shows that the QEWC model obtained is reliable and can be used 
for further analysis, especially for forecasting QEWC. The 
forecasting value for QFLS for the next 12 weeks from Tabled 15 
and 16 and (Figure 9b) shows the forecasting value is relatively 
constant at around 18.30. The further away the forecasting is, the 
greater the standard error value (Table 16), and the farther the 
forecasting, the greater the confidence interval (Figure 9b). From 
Table 15, the proportion and prediction error covariances for QFLS 

Figure 8: Response of (a)QFLS, (b)QGTS and (c)QEWC to impulse in QEWC with two standard errors

cba

Figure 9: (a) Model for QFLS, and (b) Forecasting for QFLS for the next 12 weeks

ba

Figure 10: (a) Model for QGTS, and (b) Forecasting for QGTS for the next 12 weeks

ba
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Table 15: Proportions of prediction error covariances by variable
Variable Lead QFLS QGTS QEWC Variable Lead QFLS QGTS QEWC Variable Lead QFLS QGTS QEWC
QFLS 1 1.0000 0.0000 0.0000 QGTS 1 0.0610 0.9390 0.0000 QEWC 1 0.1277 0.0500 0.8221

2 0.9989 0.0006 0.0003 2 0.0987 0.8976 0.0036 2 0.1258 0.0538 0.8203
3 0.9967 0.0029 0.0003 3 0.0991 0.8968 0.0039 3 0.1265 0.0543 0.8190
4 0.9805 0.0084 0.0109 4 0.1001 0.8955 0.0043 4 0.1249 0.0657 0.8093
5 0.9803 0.0085 0.0111 5 0.1005 0.8948 0.0046 5 0.1252 0.0659 0.8087
6 0.9802 0.0086 0.0111 6 0.1006 0.8946 0.0046 6 0.1253 0.0660 0.8086
7 0.9801 0.0086 0.0112 7 0.1006 0.8946 0.0046 7 0.1253 0.0660 0.8086
8 0.9801 0.0086 0.0112 8 0.1006 0.8946 0.0046 8 0.1253 0.0660 0.8086
9 0.9801 0.0086 0.0112 9 0.1006 0.8946 0.0046 9 0.1253 0.0660 0.8086
10 0.9801 0.0086 0.0112 10 0.1006 0.8946 0.0046 10 0.1253 0.0660 0.8086
11 0.9801 0.0086 0.0112 11 0.1006 0.8946 0.0046 11 0.1253 0.0660 0.8086
12 0.9801 0.0086 0.0112 12 0.1006 0.8946 0.0046 12 0.1253 0.0660 0.8086

Table 16: Forecast for the next 12 weeks of QFLS, QGTS, 
and QEWC
Variable Obs Forecast Standard 

error
95% Confidence limit

QFLS 376 18.31609 0.44935 17.43539 19.19680
377 18.33199 0.91979 16.52924 20.13473
378 18.28423 1.29942 15.73741 20.83105
379 18.27913 1.85359 14.64616 21.91210
380 18.28268 2.32455 13.72664 22.83872
381 18.28727 2.93600 12.53281 24.04173
382 18.28888 3.23457 11.94924 24.62852
383 18.29218 3.80337 10.83771 25.74666
384 18.29595 3.95181 10.55054 26.04136
385 18.29988 4.58045 9.32236 27.27741
386 18.30373 4.74444 9.00479 27.60267
387 18.30758 5.86649 6.80948 29.80568

QGTS 376 3.44080 0.06879 3.30598 3.57562
377 3.44330 0.45958 2.54255 4.34406
378 3.44585 0.49399 2.47764 4.41406
379 3.44374 0.65772 2.15464 4.73284
380 3.44324 0.76665 1.94065 4.94584
381 3.44391 1.20137 1.08927 5.79854
382 3.44418 1.74374 0.02651 6.86185
383 3.44423 2.49807 –1.45191 8.34036
384 3.44437 3.71314 –3.83325 10.72199
385 3.44458 5.50796 –7.35082 14.23997
386 3.44477 8.38744 –12.99431 19.88385
387 3.44495 12.51007 –21.07433 27.96422

QEWC 376 17.50203 0.44654 16.62683 18.37722
377 17.53680 0.47810 16.59974 18.47385
378 17.49462 0.62883 16.26215 18.72710
379 17.49553 0.74011 16.04494 18.94612
380 17.50211 1.15204 15.24414 19.76007
381 17.51256 1.66508 14.24907 20.77605
382 17.51584 2.36897 12.87274 22.15894
383 17.52054 3.53499 10.59209 24.44900
384 17.52641 5.24659 7.24329 27.80953
385 17.53225 7.98712 1.87778 33.18671
386 17.53773 11.90312 –5.79195 40.86741
387 17.54328 17.88814 –17.51684 52.60340

data, it appears that the forecasting value for the next 3 weeks is 
only influenced by itself (QFLS), namely 100%, 99.9%, and 99.7% 
for the 1st week, 2nd week, and 3rd week of forecasting, respectively. 
For the fourth to the 12th week, the effect of QFLS on itself is 98%, 
the effect of QGTS on QFLS is 1%, and the effect of QEWC on 
QFLS is 1%. This is consistent with the results in Figure 3, which 
has a significant effect QFLSt . The forecasting value for QGTS 
for the next 12 weeks in Table 16 and (Figure 10b) show the 
forecasting value is relatively constant at around 3.44. The further 
away the forecasting is, the greater the standard error value 
(Table 16), and the farther the forecasting, the greater the 
confidence interval (Figure 10b). From Table 15, the proportion 
and prediction error covariances for QGTS data, it appears that 
the forecasting value of QGTS In the 1st week, is influenced by 
itself (QGTS) by 93.9% and influenced by QFLS by 6.1%. The 
QGTS forecasting value in the 2nd week was by itself by 89.76% 
and by QFLS by 9.87%; The QGTS forecasting value in the 
3rd week is influenced by QGTS itself by 89.68% and influenced 
by QFLS by 9.91%. For the fourth to the 12th week, the effect of 
QGTS on itself is 89.48%, the effect of QFLS on QGTS is 10.06%. 
This is consistent with the results given in Figure 3, which has a 
significant effect QGTSt . The forecasting value for QEWC for 
the next 12 weeks from Table 16 and (Figure 11b) show the 
forecasting value is relatively constant at around 17.50. The further 
away the forecasting is, the greater the standard error value 
(Table 16), and the farther the forecasting, the greater the 
confidence interval (Figure 11b). From Table 15, the proportion 
and prediction error covariances for QEWC data, it appears that 
the forecasting value of QEWC In the 1st week, is influenced by 
itself (QEWC) by 82.03%, influenced by QFLS by 12.58%, and 
influenced by QGTS by 5.38%; QEWC forecasting value in the 
2nd week is influenced by itself (QEWC) by 82.21%, influenced 

Figure 11: (a) Model for QEWC, and (b) forecasting for QEWC for the next 12 weeks

ba



Usman, et al.: Analysis of Some Variable Energy Companies by Using VAR(p)-GARCH(r,s) Model: Study From Energy Companies of Qatar over the Years 2015–2022

International Journal of Energy Economics and Policy | Vol 12 • Issue 5 • 2022190

by QFLS by 12.77%, and influenced by QGTS by 5%; QEWC 
forecasting value in the 3rd week is influenced by itself (QEWC) 
by 81.90%, influenced by QFLS by 12.65%, and influenced by 
QGTS by 5.43%; For the fourth to the 12th week, the effect of QEWC 
on itself is 80.93%, the effect of QFLS on QEWC is 12.49%, and 
the effect of QGTS on QEWC is 6.57%. This is in accordance with 
the results in Figure 3, where QGTS QGTS QEWCt t t− − −1 3 1, , and 
QEWCt−2  have a significant effect on.QEWCt.

4. CONCLUSION

In this study, the weekly stock price of QFLS, QGTS, and QEWC 
of Qatar over the years January 2015 to April 2022. The data 
come from the Qatar Stock Market. The data are studied by using 
multivariate time series analysis modeling. From the preliminary 
study, the data exhibit nonstationary cross-correlation and ARCH 
effects. After the process of differentiating, the data are stationary. 
Based on the preliminary study, the model VAR(p)-GARCH(r,s) is 
applied to the data. For GARCH(r,s) model, the estimation of the 
parameters used CCC-GARCH(r,s) model is applied to the data. 
The best model and fit to the data vector observation Zt =(QFLSt, 
QGTSt, QEWC)’ are VAR(3)-GARCH(1,1) model. The model is 
reliable and sound based on the diagnostic analysis of the model. 
The Granger causality analysis showed that QFLS has Granger 
causality on QGTS (unidirectional), while QGTS and QEWC have 
bidirectional Granger causality to each other, namely, QGTS has 
Granger causality to QEWC and QEWC has Granger causality 
to QGTS. From the analysis of IRF it was found that: If there is 
a shock 1 standard deviation on QFLS, QFLS itself and QEWC 
give a response fluctuate with the mean positive within the first 
6 weeks and start from week 7th and on the impact is weaken 
toward a balanced. But the shock 1 standard deviation of QFLS, 
the impact on QGTS is small and can be negligible. If there is 
a shock 1 standard deviation on QGTS, then QFLS and QEWC 
give a response fluctuate with the mean positive within the first 
6 weeks and start from week 7th and on the impact is weaken 
toward a balanced. But the shock 1 standard deviation of QGTS, 
the impact on QGTS itself is small and can be negligible; and If 
there is a shock 1 standard deviation on QEWC, QFLS and QEWC 
itself give a response fluctuate with the mean negative within the 
first 6 weeks and start from week 7th and on the impact is weaken 
toward a balanced. But the shock 1 standard deviation of QEWC, 
the impact on QGTS is small and can be negligible. From the 
forecasting results for the next 12 periods, the closing price for 
QFLS, QGTS, and QEWC is almost constant, around 18.30, 3.44, 
and 17.50, respectively. but The farther away the forecasting period 
is, the greater the standard error. This indicates that the farther 
away the forecasting period is, the more unstable it is.
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