PAPER NAMEAUTHOREnumerate the Number of Vertices LabelMuslim Ansoried Connected Graph of Order Seven Contining No Parallel Edges

WORD COUNTCHARACTER COUNT5019 Words21912 CharactersPAGE COUNTFILE SIZE8 Pages727.3KBSUBMISSION DATEREPORT DATEAug 19, 2022 9:52 PM GMT+7Aug 19, 2022 9:53 PM GMT+7

• 7% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

- 2% Internet database
- Crossref database
- 2% Submitted Works database

• Excluded from Similarity Report

- Bibliographic material
- Cited material
- Manually excluded sources

- 5% Publications database
- Crossref Posted Content database
- Quoted material
- Small Matches (Less then 10 words)
- Manually excluded text blocks

Research Paper

Science & Technology Indonesia

Check for updates

Enumerate the Number of Vertices Labeled Connected Graph of Order Seven Containing No Parallel Edges

Muslim Ansori¹, Wamiliana^{1*}, Fitriani¹, Yudi Antoni¹, Desiana Putri¹

¹Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Lampung, Bandarlampung, 35145, Indonesia *Corresponding author: wamiliana.1963@fmipa.unila.ac.id

Abstract

A graph that is connected G(V,E) is a graph in which there is at least one path connecting every two vertices in G; otherwise, it is called a disconnected graph. Labels or values can be assigned to the vertices or edges of a graph. A vertex-labeled graph is one in which only the vertices are labeled, and an edges-labeled graph is one in which only edges are assigned values or labels. If both vertices and edges are labeled, the graph is referred to as total labeling. If given *n* vertices and m edges, numerous graphs can be made, either connected or disconnected. This study will be discussed are number of disconnected vertices labeled graphs of order seven containing no parallel edges and may contain loops. The results show that umber of vertices labeled connected graph of order seven with no parallel edges is $N(G_{7,m,g})_l = 6.727 \times C_6^m$; while for $7 \le g \le 21$, $N(G_{7,m,g})_l = k_g C_{g-1}^{(m-(g-6))}$, where $k_7 = 30,160$, $k_8 = 30,765$, $k_9 = 21,000$, $k_{10} = 28,364$, $k_{11} = 26,880$, $k_{12} = 26,460$, $k_{13} = 20,790$, $k_{14} = 10,290$, $k_{15} = 8,022$, $k_{16} = 2,940$, $k_{17} = 4,417$, $k_{18} = 2,835$, $k_{19} = 210$, $k_{20} = 21$, $k_{21} = 1$.

Keywords

Vertex Labeled, Connected Graph, Order Seven, Loops

Received: 5 April 2022, Accepted: 13 July 2022 https://doi.org/10.26554/sti.2022.7.3.392-399

1. INTRODUCTION

Without any doubt, one of the most widely used fields of mathematics is graph theory, especially to represent a real-life problem because of the flexibility of drawing a graph. The date of birth of graph theory began with the publication of Euler's solution regarding the Konigsberg problem in 1736, one of the mathematical fields with specific birth date is graph $V = \{v_1, v_2, \dots, v_n\}$ theory (Vasudev, 2006). Given a set V={ v_1, v_2, \cdots vertices/nodes, V $\neq \emptyset$, and a set of edges E={e_{ii}|i, j ϵ V}, a graph G(V,E) is a structure that consists of ordered pair of V and E. In real-life problems, the cities, buildings, airports, and others can be portrayed by vertices, while the roads that connect the cities, the pipes that connect the buildings, the flight paths that connect the airports, and others can be portrayed by edges. In order to represent real-life problems, on the edges, we can assign nonstructural information such as distance, time, flow, cost, and others by setting a non-negative number $c_{ij} \ge 0$.

There is a lot of application of graph theory in real-life problems, such as in computer science, chemistry, biology, sociology, agriculture, and others. In computer science, the graph structure plays an important role, for example, in designing a database, software engineering, and network system (Singh, 2014). The database is used for interconnecting analysis, as a

storage system with index-free adjacency, as a tool for graphlike-query, and for other purposes. In network design, graphbased representation makes the problem easier to visualize and provides a more accurate definition. In agriculture, the dynamic closures of the accounting structure are represented by a directed graph (Alvarez and Ehnts, 2015). The structure of graphs, together with discrete mathematics, are applied in chemistry to model the biological and physical properties of chemical compounds (Burch, 2019). The theoretical graph concept also was used by Gramatica et al. (2014) to represent or describe the possible modes of action of a given pharmacological compound. In biology, a phylogenetic tree was represented by a leaf-labeled tree (Huson and Bryant, 2006; Brandes and Cornelsen, 2009), while Mathur and Adlakha (2016) represented DNA using a combined tree. Hsu and Lin (2008) presented many graph theoretical concepts in engineering and computer science, and Al Etaiwi (2014) used the concepts of a complete graph, cycle graph, and minimum spanning tree to generate a complex cipher text. Privadarsini (2015) explored the use of graph theory concepts, expander, and extremal graphs, in the design of some ciphers, whereas Ni et al. (2021) created ciphers using corona and bipartite graphs. In agriculture, graph theory concepts were used to

group agricultural workers performing manual tasks (Kawakura and Shibasaki, 2018), while the concept of graph coloring to optimize a farmer's goal was used by Kannimuthu et al. (2020). The relationship and unification of graph theory and physicalchemical measures (such as boiling and melting point, covalent and ionic potentials, and electronic density) make molecular topology can describe molecular structure comprehensively. A weighted directed graph, connectivity matrix, and Dijkstra's algorithm were used by Holmes et al. (2021) in plasma chemical reaction engineering. The basic structure of a directed graph is mostly used for the visualization of the reactions. Moreover, they use Gelphi, an open-source graph software for visualization.

In 1874, Cayley counted the number of hydrocarbon isomers C_nH_{2n+2} (Cayley, 1874), and this process is similar to enumerating the number of a binary tree. Bona (2007) discussed the method of enumerating trees and forests. Redfield and Pólya are two other mathematicians that worked independently with graphical enumeration, especially in graph coloring (Bogart, 2004), and in graph enumeration, a comprehensive explanation of Pólya's counting theorem is one of the most powerful tools.

The number of graphs that can be formed for labeled and unlabeled graphs is different if we are given n vertices and m edges. For example, given *n*= 3 and *m*= 2, the number of simple connected unlabeled graphs that can be constructed is only one, while if every vertex is assigned labeled, The maximum number of graphs that can be created is three. The higher the order of the graph, the more labeled graph are formed. Agnarsson and Greenlaw (2006) gave the formula to enumerate graphs. However, no formula for enumerating graphs with special properties such as planarity or connectivity was provided.

There are some studies that have been done concerning the enumeration of the vertex-labeled graph with connectivity properties. In 2017, Amanto et al. (2017) proposed the formula to count disconnected vertices labeled graphs of order maximal four. For order five, the number of labeled vertices in connected graphs with no loops and may contain maximal five parallel edges had been proposed by Wamiliana et al. (2019). Amanto et al. (2021) studied the relationship between the formula for the number of connected vertex labels with no loops in graphs of order five and order six. Wamiliana et al. (2020) also discussed the number of vertices labeled connected graphs of order six with no parallel edges and a maximum of ten loops, while Puri et al. (2021) gave the formula to compute the number of vertices labeled connected graphs of order six without loops, while Ansori et al. (2021) proposed the number of vertices labeled connected graphs of order seven with no loops.

The article is organized as follows: Section I provides information about graphs, graph applications in various fields, and previous research related to this topic. Section II discusses Observation and Investigation, while Section III discusses Results and Discussion. Section IV contains the conclusion.

2. OBSERVATION AND INVESTIGATION

Suppose that we are given the number of vertices n = 7, and the number of edges m. We will construct connected graphs G(V,E) of order n. Since the graph must be connected, then $m \ge 6$. Moreover, every vertex is labeled. Let g as the number of non-loop edges, $g \ge n-1$.

We start firstly by constructing all basic patterns of connected graphs of order seven. Note that the basic patterns contain no loops. The basic pattern starts with m= 6, and with n= 7, m= 6, and constructs all possible patterns. After all possible patterns for m= 6 are already constructed, then we continue with m= 7, and so on until m= 21. When m= 21, only one pattern can be constructed because parallel edges are not allowed. Figure 1 shows some examples of patterns for m= 6, Figure 2 shows some patterns that are isomorphic with the first graph in the second row of the graphs in Figure 1, and Figure 3 shows when m= 21.

Figure 1. Some Basic Patterns for n = 7 and m = 6

Note that all isomorphic graphs will be counted in the pattern. However, we do not need to construct isomorphic graphs. Figure 2 shows the patterns of isomorphic graphs of the pattern of the first graph in the second row of Figure 1.

Figure 2. Some Patterns are Isomorphic with the First Graph in the Second Row in Figure 1

Figure 3. The Basic Pattern for n = 7 and m = 21

Table 1. The Pattern for n=7, m=6, and g=6

Figure 4. The Procedure

After constructing the basic pattern, the enumeration step begins. It begins from the first pattern of n=7 dan m=6 by adding one loop so that m=7, calculating the number of graphs that are able to be formed, and then continuing with this pattern by increasing the number of loops (m=9), and so on. Continue with this similar manner until the last pattern. The procedure can be put in the following diagram:

3. RESULTS AND DISCUSSION

The first step, as given in Figure 4 is constructing all possible patterns. Because there are many patterns obtained and due to limitation of space, here $\frac{4}{2}$, e give some patterns and also the number of all possible graphs formed according to the patterns. The obtained graphs are grouped by *m* and *g*, for example, for n=6, m=6, and g=6, the patterns are:

The results for all patterns are shown in Table 1 below:

Please note that in the table the dash sign (–) means there is impossible to construct the graph, while the empty space on the table means that we are not calculate more because g is fixed in each column, adding more edges simply adds more loops, and the constructed graph already constitute a sequence of numbers. The number in each column is able to be written as multiplication of a fix number and a sequence of number so that Table 2 can be rewritten in Table 3 as follow:

From Table 3 we can see that for every $g = 6, 7, \dots, 21$, the number of graphs obtained are bigger as *m* increases, and the number of graphs obtained are multiplication of a fix number. For example, for g = 6, the fix number is 6,727, and the number of graphs increases follows a certain pattens of sequence which is 1, 7, 28, 84, 210, 462, 924, 1,716, 3,003, 5,005.

1	7	28	84	210	462	92 4	17	16 3	3003	5005
	6	21	56	126	252	462	792	128	87 2	002
		15	35	70	126	210	330	495	715	

C	2C	22	The A	Aut	hors.
---	----	----	-------	-----	-------

The patterns	The number of
	isomorphic graphs
Vı	
$v_2 \bullet v_3$	
$v_4 \bullet / \bullet v_5$	
$v_6 \bullet v_7$	$C_1^7.C_6^6 = 7$
V ₂	1 0
V2 V3	
v ₄ v ₅	
v ₆ v ₇	$\frac{7!}{2} = 2.520$
vı	2 2,020
V4 • V5	
v ₆ v ₇	$C^7 C^6 C^3 = 490$
V.	$C_1.C_3.C_2 - 420$
V4 V5	
v ₆ • v ₇	$C^{7} C^{6} C^{4} 1$ 400
	$C_1 \cdot C_2 \cdot C_3 \cdot 1 = 420$
v ₆ v ₇	$c^7 c^6 a$
	$C_1 \cdot C_3 \cdot 3! = 840$
V6 • V7	C^{7} Cf C5 C3 400
,●	$C_1'.C_1'.C_2'.C_3' = 420$
v ₂ • v ₃	
• v5	
V6 • V7	
	$C_1'.C_1^0.C_1^3.C_4^4 = 210$
V ₁	
$v_2 \bullet v_3$	
V5	·
v ₀ v ₇	$C_2^7.C_1^5.C_2^4.2!=1,260$
V ₁	
$v_2 - v_3$	
V4 • V5	
v ₆ • v ₇	$C_2^7.C_1^5.C_2^4.C_2^2 = 630$
Total	6,727

	he number of vertices labeled connected order seven graphs with no parallel edges											
т		6		7		8	g	9	10	11		
6		6,727		_		_		_	_	_		
7	4	17,089	30	,160		_		_	_	_		
8	1	88,356	21	1,120	3	0,765		_	-	_		
9	5	65,068	844	4,480	21	15,355		21,000	_	-		
10	1,4	412,670	2,58	33,440	86	51,420]	47,000	28,364	_		
11	3,	107,874	6,38	3,600	2,5	84,260	Ę	588,000	198,548	26,880		
12	6,9	215,748	13,9	33,920	6,4	60,650	1,	764,000	794,192	188,160		
13	11,	543,532	27,8	67,840	14,	213,430	4	410,000	2,382,576	752,640		
14	20,	201,181	51,7	54,560	28,4	426,860	9	702,000	5,956,440	2,257,920		
15	33,	668,635	90,5	70,480	52,	792,740	19	,404,000	13,104,168	5,644,800		
16		_	150,9	50,800	92,	387,295	36	,036,000	26,208,336	12,418,560		
17		_		_	153	,978,825	63	,063,000	48,672,624	24,837,120		
18		_		_		_	10	5,105,000	85,177,092	46,126,080		
19					_		_	141,961,820	80,720,640			
20		-		-		-		-	_	134,534,400		
	the number of vertices labeled connected order seven graphs with no parallel adves											
	m		DEI OI	vertices la	aDeleu	Connected	a ore	iei seven gra	ipiis with no pa	faller euges		
	т	12		13		14	8	15	1	6		
-	19	96.46	n									
	12	185.29	20	20 79	0	_		_	_	_		
	14	740.88	10 10	145.58	80	10 290)	_	-	_		
	15	2 222 6	40	582.19	20	72.030)	8 0 2 2	-	_		
	16	5 556 6	00	1 746 3	60	288.12	, 0	56 1 54	2 0	940		
	17	12 224	520	4 365 9	00	864.36	0	224 616	2,0	580		
	18	24 449 ()40	9 604 9	80	2 160 90	00	673 848	20, 82	320		
	19	45.405.8	360	19.209.9	960	4.753.98	80	1.684.620	246	.960		
	20	79.459.8	380	35.675.6	540	9.507.9	60	3.706.164	-10	400		
	$\frac{-}{21}$	132.432.	300	62.432.8	370	17.657.6	640	7.412.328	1.358	8.280		
	22		000	104.053.	950	30.900.8	70	13.765.75	2 2.716	5, <u>5</u> 60		
	23	_		-	000	51.501.4	50	24.090.06	6 5.04	5.040		
	$\frac{-3}{24}$	_		_		-	00	40.150.11	0 8.828	8.820		
	$\frac{1}{25}$	_		_		_		_	14,71	4,700		
-		1 he num	her of	vertices	heled	connected	lord	er seven are	nhe with no pa	rallel edges		
	m	a ne num		vertices la	isereu	connected	σ	er seven gla	pus with no pa	and cuges		
	111	12		13		14	5	15	16			
-	17	4 4 1 7		_		_		_	_			

Table 24 he Number of Vertices Labeled Connected Graph of Order Seven Containing No Parallel Edges

		Of vertices labe	ieu connectet	a ofuer sever	i graphs with no parallel euges
m				g	
	12	13	14	15	16
17	4,417	_	_	_	_
18	30,919	2,835	-	_	_
19	123,676	19,845	210	-	_
20	371,028	79,380	1,470	21	_
21	927,570	238,140	5,880	147	1
22	2,040,654	595,350	17,640	588	7
23	4,081,308	1,309,770	44,100	1,764	28
24	7,579,572	2,619,540	97,020	4,410	84
25	13,264,251	4,864,860	194,040	97,02	210
26	22,107,085	8,513,505	360,360	19,404	462
27	_	14,189,175	630,630	36,036	924
28	_	_	1,051,050	63,063	1,716
29	—	_	—	105,105	3,003
30	_	_	_	-	5,005

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		The number of vertices labeled connected order seven graphs with no parallel edges										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	т	(6	7	,	8	3	g g)	1	0	11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	1x6	797	_		_	_	_	_		_	_
$ \frac{1}{2} 1$	7	7x6	,727 727	1x30 160		_	_	_	_	_	_	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	8	28xf	, <i>121</i> 6 727	7 1x30,100 7 7x30,160		1x30	765	_	_	_	_	_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	84x6	5.727	28x3().160	7x30	.765	1x21.000		_		_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	210x	6.727	84x30).160	28x3().765	7x21	.000	1x28	3.364	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	462x	6.727	210x3	0.160	84x30).765	28x2	1.000	7x28	3.364	1x26.880
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	924x	6,727	462x3	0,160	210x3	0,765	84x2	1,000	28x2	8,364	7x26,880
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	1,716	x6,727	924x3	0,160	462x3	0,765	210x2	1,000	84x2	8,364	28x26,880
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	3,003	x6,727	1,716x	30,160	924x3	0,765	462x2	1,000	210x2	28,364	84x26,880
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	5,005	x6,727	3,003x	30,160	1,716x	30,765	924x2	1,000	462x2	28,364	210x26,880
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	· -	_	5,005x	30,160	3,003x	30,765	1,716x	21,000	924x2	28,364	462x26,880
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	-	_	-	-	5,005x	30,765	3,003x	21,000	1,716x	28,364	924x26,880
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	-	_	-	-	-	-	5,005x	21,000	3,003x	28,364	1,716x26,880
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	19			-	-	-	_		5,005x28,364		3,003x26,880	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	20			-	-	-	-	-	-	-	5,005x26,880	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		The number of vertices labeled connected order seven graphs with no parallel edges										
$\frac{12}{12} \frac{13}{13} \frac{14}{15} \frac{15}{16}$ $\frac{12}{12} \frac{1x26,460}{1x20,790}$		m		under of	vertices	labelea e	onnecte	g	even sraj	5115 1111	no paran	ler euges
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1	2	1	3		14	1	5	1	6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		12	1x26	6.460		_		_	-	_	-	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		13	7x26	6,460	1x20),790		_	-	-	-	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		14	28x2	6,460	7x20),790	1x1	0,290	-	-	-	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		15	84x2	6,460	28x2	0,790	7x1	0,290	1x8	022	-	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		16	210x2	26,460	84x2	0,790	18x1	0,290	7x8,	022	1x2	,940
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		17	462x2	26,460	210x2	20,790	84x1	0,290	28x8	,022	7x2	,940
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		18	924x2	26,460	462x2	20,790	210x	10,290	84x8	,022	28x2	2,940
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		19	1,716x	26,460	924x2	20,790	462x	10,290	210x8	3,022	84x2	2,940
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		20	3,003x	26,460	1,716x	20,790	924x	10,290	462x8	3,022	210x	2,940
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		21	5,005x	26,460	3,003x	20,790	1,716	x10,290	924x8	3,022	462x	2,940
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		22	-	_	5,005x	20,790	3,0032	x10,290	1,716	8,022	924x	2,940
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		23	-	_		_	5,005	x10,290	3,0033	8,022	1,716	x2,940
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		24	-	_		_		_	5,0055	8,022	3,003:	x2,940
The number of vertices labeled connected order seven graphs with no parallel edgesmg1213141516171x4,417		25	-		· · · · · ·					-	5,005	x2,940
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1 he nu	mber of	vertices	labeled c	onnecte	d order se	even grap	hs with	no parall	el edges
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		m						g				
17 1x4,417 – – – – –			12	2	13		14	1	5		16	
		17	1x4,4	417	-		_	-	_		-	

Table 3.1. Iternative form of Table 2

	The number o	or vertices labele	a connected of	rder seven gra	aphs with no parallel edges
m			g		
	12	13	14	15	16
17	1x4,417	_	_	_	-
18	7x4,417	1x2,835	-	-	-
19	28x4,417	7x2,835	1x210	_	-
20	84x4,417	28x2,835	7x210	1x21	-
21	210x4,417	84x2,835	28x210	7x21	1x1
22	462x4,417	210x2,835	84x210	28x21	7x1
23	924x4,417	462x2,835	210x210	84x21	28x1
24	1,716x4,417	924x2,835	462x210	210x21	84x1
25	3,003x4,417	1,716x2,835	924x210	462x21	210x1
26	5,005x4,417	3,003x2,835	1,716x210	924x21	462x1
27	_	5,005x2,835	3,003x210	1,716x21	924x1
28	_	-	5,005x210	3,003x21	1,716x1
29	_	-	-	5,005x21	3,003x1
30	-	-	-	-	5,005x1

Notate $(G_{7,m,g})_l$ as the number of vertices labeled connected graphs of order seven containing no parallel edges (loops are allowable) with the number of edges is *m* and the number of non loop edges is *g*.

Result 1: Given $m \ge 6$, g= 6, the total number of vertices labeled connected graphs of order seven with no parallel edges is $N(G_{7,m,g})_l = 6,727 \times C_6^m$ Proof:

Consider the above sequence of numbers.

That sequence of numbers is able to be represented by polynomial of order six because the fixed

$$Q_{5}m = \alpha_{6}m^{6} + \alpha_{5}m^{5} + \alpha_{4}m^{4} + \alpha_{3}m^{3} + \alpha_{2}m^{2} + \alpha_{1}m + \alpha_{0}$$

The following system of equations is obtained by substituting m= 6, 7, 8, 9, 10, 11, 12 to $Q_5(m)$.

$6,727 = 46,656\alpha_6 + 7,776\alpha_5 + 1,296\alpha_4 + 216\alpha_3 + 36\alpha_2 + 6\alpha_1 + \alpha_0$	(1)
$47,089 = 117,649\alpha_6 + 16,807\alpha_5 + 2,401\alpha_4 + 343\alpha_3 + 49\alpha_2 + 7\alpha_1 + \alpha_0$	(2)
$188,356=262,144\alpha_6+32,768\alpha_5+4,096\alpha_4+512\alpha_3+64\alpha_2+8\alpha_1+\alpha_0$	(8)
$565,068 = 531,441\alpha_6 + 59,049\alpha_5 + 6,561\alpha_4 + 729\alpha_3 + 81\alpha_2 + 9\alpha_1 + \alpha_0$	(4)
$1,412,670=1,000,000\alpha_{6}+100,000\alpha_{5}+10,000\alpha_{4}+1,000\alpha_{3}+100\alpha_{2}+10\alpha_{1}+\alpha_{0}$	(5)
$3,107,874=1,771,561\alpha_6+161,051\alpha_5+14,641\alpha_4+1,331\alpha_3+121\alpha_2+11\alpha_1+\alpha_0$	(6)
$6, 215, 748 = 2, 985, 984\alpha_6 + 248, 832\alpha_5 + 20, 736\alpha_4 + 1, 728\alpha_3 + 144\alpha_2 + 12\alpha_1 + \alpha_0$	(7)

These equations form a system of equations that can be transformed into a matrix Ax = b as follow:

	[46,656	7,776	1,296	216	36	6	1]	α_6	1 [6,727	
	117,649	16,807	2,401	343	49	7	1	α_5		47,089	
	262, 144	32,768	4,096	512	64	8	1	α_A		188, 356	
	531,441	59,049	6,561	729	81	9	1	α_3^{-1}	=	565,068	
	1,000,000	100,000	10,000	1,000	100	10	1	a9	11	1,412,670	
	1,771,561	161,051	14,641	1,331	121	11	1	α_1^2		3, 107, 874	
	2, 985, 984	248,832	20,736	1,728	144	12	1	. α ¹	11	6, 215, 748	
									707		
B ₁₇	olving th	ic exetor	mofor	mation	20 100	, mot	· 0/-	_ 6,7	(27	or	

By solving this system of equations we get:
$$\alpha_6 - \frac{100,905}{720}$$
, $\alpha_4 = \frac{57,175}{720}$, $\alpha_3 = -\frac{151,575}{720}$, $\alpha_2 = \frac{1,843,198}{720}$, $\alpha_1 = -\frac{807,240}{720}$, $\alpha_0 = 0$.

Thus

$$Q_5(m) = \alpha_6 m^6 + \alpha_5 m^5 + \alpha_4 m^4 + \alpha_3 m^3 + \alpha_2 m^2 + \alpha_1 m^+ \alpha_0$$

$$= \frac{6,727}{720}m^6 - \frac{100,905}{720}m^5 + \frac{57,175}{720}m^4 - \frac{151,575}{720}m^3 + \frac{1,843,198}{720}m^2 - \frac{807,240}{720}m$$
$$= \frac{6,727}{720}(m^6 - 15m^5 + 85m^4 - 225m^3 + 274m^2 - 120m)$$
$$= \frac{6,72!(3) - 1(m-2)(m-3)(m-4)(m-5)(m-6)!}{6.5.4.3.2.1(m-6)!}$$
$$= 6,727 \times C_6^m$$

Please note that for every g (every column, the sequence of numbers is the same, except the multiplier). Thus, the

© 2022 The Authors.

polynomial related to the sequence of numbers is the same. However, because the multipliers are different, it will cause different formulas.

Result 2: Given $m \ge 7$, g = 7, the total number of vertices labeled connected graphs of order seven with no parallel edges is $N(G_{7,m,g})_l = 30,160 \times C_6^{(m-1)}$ Proof:

The polynomial that represents the sequence is the same which is

 $Q_5m = \alpha_6m^6 + \alpha_5m^5 + \alpha_4m^4 + \alpha_3m^3 + \alpha_2m^2 + \alpha_1m + \alpha_0$

However, for m=7, the numbers of graphs are different. The following system of equations is obtained by substituting m=7, 8, 9, 10, 11, 12, 13 to the equation.

$30,160=117,649\alpha_6+16,807\alpha_5+2,401\alpha_4+343\alpha_3+49\alpha_2+7\alpha_1+\alpha_0$	(8)
$211,120=262,144\alpha_6+32,768\alpha_5+4,096\alpha_4+512\alpha_3+64\alpha_2+8\alpha_1+\alpha_0$	(9)
$844,480=531,441\alpha_{6}+59,049\alpha_{5}+6,561\alpha_{4}+729\alpha_{3}+81\alpha_{2}+9\alpha_{1}+\alpha_{0}$	(10)
$2,533,440=1,000,000\alpha_{6}+100,000\alpha_{5}+10,000\alpha_{4}+1,000\alpha_{3}+100\alpha_{2}+10\alpha_{1}+\alpha_{0}$	(11)
$6, 333, 600 = 1, 771, 561\alpha_6 + 161, 051\alpha_5 + 14, 641\alpha_4 + 1, 331\alpha_3 + 121\alpha_2 + 11\alpha_1 + \alpha_0$	(12)
$13, 933, 920 = 2, 985, 984\alpha_6 + 248, 832\alpha_5 + 20, 736\alpha_4 + 1, 728\alpha_3 + 144\alpha_2 + 12\alpha_1 + \alpha_0$	(13)
$27,867,840 = 4,826,809\alpha_6 + 371,293\alpha_5 + 28,561\alpha_4 + 2,197\alpha_3 + 169\alpha_2 + 13\alpha_1 + \alpha_0$	(14)

These equations form a system of equations that can be transformed into a matrix Ax = b as follow:

	[117,649	16,80	2401	343	49	7	1	$1 \int \alpha_6$	1 F	30,160
	262, 144	32,768	4096	512	64	8	1	α5		211, 120
	531,441	59,049	6561	729	81	9	1	α_A	+ +	844,480
	1,000,000	100,000	10,000	1000	100	10	1	α3	=	2,533,440
	1,771,561	161,051	14,641	1331	121	11	1	α9		6, 333, 600
	2,985,984	248,832	20,736	1728	144	12	1	$ \alpha_1^2$		13, 933, 920
	4,826,809	371,293	28,561	2197	169	13	1	$\left \alpha_{0}^{1} \right $	ΙL	27, 867, 840
By solving this system of equations we get: $\alpha_6 = \frac{30,160}{790}$, $\alpha_5 =$										
633.360 $5.278.000$ $22.167.600$ $48.979.840$										
	$\frac{1}{720}$, α_4	$=$ $\frac{720}{720}$	$-, \alpha_3$		720	,	α_2	=	$\frac{20}{20}$	—,

$$\alpha_1 = -\frac{53,202,240}{720}$$
, and $\alpha_0 = \frac{21,715,200}{720}$

Thus

$$\begin{split} Q_5(m) &= \alpha_6 m^6 + \alpha_5 m^5 + \alpha_4 m^4 + \alpha_3 m^3 + \alpha_2 m^2 + \alpha_1 m^+ \alpha_0 \\ &= \frac{30,160}{720} m^6 - \frac{633,360}{720} m^5 + \frac{5,278,000}{720} m^4 - \frac{22,167,600}{720} m^3 \\ &+ \frac{48,979,840}{720} m^2 - \frac{53,202,240}{720} m + \frac{21,715,200}{720} \\ &= \frac{30,160}{720} (m^6 - 21m^5 + 175m^4 - 735m^3 + 624m^2 - 1764m + 720) \\ &= \frac{30,160}{720} - 1) (m - 2) (m - 3) (m - 4) (m - 5) (m - 6) \\ &= \frac{30,160}{3} - 1) (m - 2) (m - 3) (m - 4) (m - 5) (m - 6) (m - 7)! \\ &= 30,160 \times C_6^{(m-1)} \end{split}$$

The following results are obtained by doing the similar manner: For $m \ge 8$, g=8, is $N(G_{7,m,g})_l = 30,765 \times C_7^{(m-2)}$ For $m \ge 9$, g=9, is $N(G_{7,m,g})_l = 21,000 \times C_8^{(m-3)}$ For $m \ge 10$, g=10, is $N(G_{7,m,g})_l = 28,364 \times C_9^{(m-4)}$ For $m \ge 11$, g=11, is $N(G_{7,m,g})_l = 26,880 \times C_{10}^{(m-5)}$ For $m \ge 12$, g=12, is $N(G_{7,m,g})_l = 26,460 \times C_{11}^{(m-6)}$ For $m \ge 13$, g=13, is $N(G_{7,m,g})_l = 20,790 \times C_{12}^{(m-7)}$ For $m \ge 14$, g=14, is $N(G_{7,m,g})_l = 10,290 \times C_{13}^{(m-8)}$ For $m \ge 15$, g=15, is $N(G_{7,m,g})_l = 8,022 \times C_{14}^{(m-9)}$ For $m \ge 16$, g=16, is $N(G_{7,m,g})_l = 2,940 \times C_{15}^{(m-10)}$ For $m \ge 17$, g=17, is $N(G_{7,m,g})_l = 4,417 \times C_{16}^{(m-11)}$ For $m \ge 18$, g=18, is $N(G_{7,m,g})_l = 2,835 \times C_{17}^{(m-12)}$ For $m \ge 19$, g=19, is $N(G_{7,m,g})_l = 210 \times C_{18}^{(m-13)}$ For $m \ge 20$, g=20, is $N(G_{7,m,g})_l = 21 \times C_{19}^{(m-14)}$ For $m \ge 21$, g=21, is $N(G_{7,m,g})_l = C_{20}^{(m-15)}$

Note that the multiplier for g=6 is the same as the multiplier of t=6 in Ansori et al. (2021), as well as g=7 with t=7, and so on until g=21 with t=21. However, the formulas are different because in Ansori et al. (2021) the formula are for connected vertex labeled graph without loops while in this study is for connected vertices labeled graph without parallel edges. For example, for g=8, $N(G_{7,m,g})_l = 30,765 \times C_7^{(m-2)}$, while in Ansori et al. (2021), for t=8, $N(G_{7,m,8}) = 30,765 \times C_7^{(m-1)}$.

4. CONCLUSIONS

Based on the above reasoning, we may conclude that the number of vertices in a labeled connected graph of order seven with no parallel edges is $N(G_{7,m,g})_l = 6,727 \times C_6^m$ for g = 6, while for $7 \le g \le 21$, $N(G_{7,m,g})_l = k_g C_{g-1}^{(m-(g-6))}$, where $k_7 = 30,160$, $k_8 = 30,765$, $k_9 = 21,000$, $k_{10} = 28,364$, $k_{11} = 26,880$, $k_{12} = 26,460$, $k_{13} = 20,790$, $k_{14} = 10,290$, $k_{15} = 8,022$, $k_{16} = 2,940$, $k_{17} = 4,417$, $k_{18} = 2,835$, $k_{19} = 210$, $k_{20} = 21$, $k_{21} = 1$.

5. ACKNOWLEDGMENT

The Research Center Universitas Lampung funded this study under Postgraduate research grant project No. 815/UN26. 21/PN/2022, and the authors gratefully acknowledge the funding.

REFERENCES

- Agnarsson, G. and R. Greenlaw (2006). *Graph Theory: Modeling, Applications, and Algorithms.* Prentice-Hall, Inc.
- Al Etaiwi, W. M. (2014). Encryption Algorithm Using Graph Theory. Journal of Scientific Research and Reports, 3(19); 2519– 2527
- Álvarez, M. C. and D. Ehnts (2015). The Roads Not Taken: Graph Theory and Macroeconomic Regimes in Stock-Flow Consistent Modeling. Working Paper
- Amanto, A., N. Notiragayu, L. Zakaria, and W. Wamiliana (2021). The Relationship of the Formulas for the Number of Connected Vertices Labeled Graphs with Order Five and Order Six without Loops. *Desimal: Jurnal Matematika*, 4(3); 357–364
- Amanto, A., W. Wamiliana, M. Usman, and R. Permatasari (2017). Counting the Number of Disconnected Vertex Labelled Graphs with Order Maximal Four. *Science International Lahore*, **29**(6); 1181–1186
- Ansori, M., W. Wamiliana, and F. Puri (2021). Determining the Number of Connected Vertex Labeled Graphs of Order

Seven without Loops by Observing the Patterns of Formula for Lower Order Graphs with Similar Property. *Science and Technology Indonesia*, **6**(4); 328–336

- Bogart, K. P. (2004). Combinatorics Through Guided Discovery. LibreText
- Bona, M. (2007). *Introduction to Enumerative Combinatorics*. McGraw-Hill Science/Engineering/Math
- Brandes, U. and S. Cornelsen (2009). Phylogenetic Graph Models Beyond Trees. *Discrete Applied Mathematics*, **157**(10); 2361–2369
- Burch, K. J. (2019). Chemical Applications of Graph Theory. In *Mathematical Physics in Theoretical Chemistry*. Elsevier, pages 261–294
- Cayley, P. (1874). LVII. On the Mathematical Theory of Isomers. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 47(314); 444–447
- Gramatica, R., T. Di Matteo, S. Giorgetti, M. Barbiani, D. Bevec, and T. Aste (2014). Graph Theory Enables Drug Repurposing–How a Mathematical Model Can Drive the Discovery of Hidden Mechanisms of Action. *PloS One*, **9**(1); e84912
- Holmes, T. D., R. H. Rothman, and W. B. Zimmerman (2021). Graph Theory Applied to Plasma Chemical Reaction Engineering. *Plasma Chemistry and Plasma Processing*, 41(2); 531–557
- Hsu, L. H. and C. K. Lin (2008). Graph Theory and Interconnection Networks. CRC Press
- Huson, D. H. and D. Bryant (2006). Application of Phylogenetic Networks in Evolutionary Studies. *Molecular Biology* and Evolution, 23(2); 254–267
- Kannimuthu, S., D. Bhanu, and K. Bhuvaneshwari (2020). A Novel Approach for Agricultural Decision Making Using Graph Coloring. SN Applied Sciences, 2(1); 1–6
- Kawakura, S. and R. Shibasaki (2018). Grouping Method Using Graph Theory for Agricultural Workers Engaging in Manual Tasks. *Journal of Advanced Agricultural Technologies*, 5(3); 173–181
- Mathur, R. and N. Adlakha (2016). A Graph Theoretic Model for Prediction of Reticulation Events and Phylogenetic Networks for DNA Sequences. *Egyptian journal of Basic and Applied Sciences*, **3**(3); 263–271
- Ni, B., R. Qazi, S. U. Rehman, and G. Farid (2021). Some Graph-Based Encryption Schemes. *Journal of Mathematics*, **2021**; 1–8
- Priyadarsini, P. (2015). A Survey on Some Applications of Graph Theory in Cryptography. *Journal of Discrete Mathematical Sciences and Cryptography*, 18(3); 209–217
- Puri, F., M. Usman, M. Ansori, and Y. Antoni (2021). The Formula to Count the Number of Vertices Labeled Order Six Connected Graphs with Maximum Thirty Edges without Loops. *Journal of Physics: Conference Series*, **1751**(1); 012023
- Singh, R. P. (2014). Application of Graph Theory in Computer Science and Engineering. *International Journal of Computer Applications*, **104**(1)
- Vasudev, C. (2006). Graph Theory with Applications. New Age

International

- Wamiliana, W., A. Amanto, M. Usman, M. Ansori, and F. C. Puri (2020). Enumerating the Number of Connected Vertices Labeled Graph of Order Six with Maximum Ten Loops and Containing No Parallel Edges. *Science and Technology Indonesia*, 5(4); 131–135
- Wamiliana, W., A. Nuryaman, A. Sutrisno, and N. Prayoga (2019). Determining the Number of Connected Vertices Labelled Graph of Order Five with Maximum Number of Parallel Edges is Five and Containing No Loops. *Journal of Physics: Conference Series*, **1338**; 012043

• 7% Overall Similarity

Top sources found in the following databases:

- 2% Internet database
- Crossref database

- 5% Publications database
- Crossref Posted Content database
- 2% Submitted Works database

TOP SOURCES

The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

1	F C Puri, Wamiliana, M Usman, Amanto, M Ansori, Y Antoni. "The For Crossref	2%
2	Sriwijaya University on 2022-03-01 Submitted works	2%
3	Amanto, Notiragayu, F C Puri, Y Antoni, Wamiliana. "Counting the num Crossref	1%
4	repository.lppm.unila.ac.id	<1%
5	Mohammed J. Zaki. "Predicting Protein Folding Pathways", Advanced I	<1%
6	discovery.researcher.life Internet	<1%
7	RMIT University on 2021-09-18 Submitted works	<1%
8	ejournal.radenintan.ac.id Internet	<1%

Excluded from Similarity Report		
 Bibliographic material Cited material 	 Quoted material Small Matches (Less then 10 words) 	
Manually excluded sources	 Manually excluded text blocks 	
EXCLUDED SOURCES		
sciencetechindonesia.com		54%
Internet		5470
doaj.org		11%
Internet		
sciencetechindonesia.com Internet		4%
EXCLUDED TEXT BLOCKS		

Science and Technology Indonesiae-ISSN:2580-4391 p-ISSN:2580-4405Vol

www.coursehero.com

of Mathematics, Faculty of Mathematics and Natural Science, Universitas Lampung

Wamiliana, A Nuryaman, Amanto, A Sutrisno, N A Prayoga. "Determining the Number of Connected Vertices...