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Abstract 

We introduce and study the notion of a sub-exact sequence. 

1. Introduction 

Let R be a ring and let CBA
gf
→→  be an exact sequence of R-modules, 

i.e., 

( ( )).01−== ggKerfIm  

Davvaz and Parnian-Garamaleky [1] introduced the concept of quasi-exact 
sequences by replacing the submodule 0 by a submodule .CU ⊆  A sequence 
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of R-modules and R-homomorphisms CBA
gf
→→  is quasi-exact at B or     

U-exact at B if there exists a submodule U in C such that ( ).1 UgfIm =  

Anvariyeh and Davvaz [2] proved further results about quasi-exact 
sequences and introduced a generalization of Schanuel lemma. Moreover, 
they obtained some relationships between quasi-exact sequences and 
superfluous (or essential) submodules. 

Furthermore, Davvaz and Shabani-Solt [3] introduced a generalization of 
some notions in the homological algebra. They gave a generalization of the 
Lambek lemma, Snake lemma, connecting homomorphism and exact triangle 
and they established new basic properties of the U-homological algebra. In 
[4], Anvariyeh and Davvaz studied U-split sequences and established several 
connections between U-split sequences and projective modules. 

In this paper, we introduce a new notion of an exact sequence which is 
called a sub-exact sequence. A sub-exact sequence is a generalization of an 
exact sequence. Let K, L, M be R-modules and X be a submodule of L. The 
triple ( )MLK ,,  is said to be X-sub-exact at L if there is a homomorphism 

making MXK →→  exact at X. We collect all submodules X of L       
such that the triple ( )MLK ,,  is X-sub-exact at L, which we denote by 

( ).,, MLKσ  In this paper, we investigate whether ( )MLK ,,σ  is closed 

under submodules, products and extensions. Moreover, we provide necessary 
condition for ( )MLK ,,σ  so that it has a maximal element. 

2. Main Result 

Definition. Let K, L, M be R-modules and X be a submodule of L.          
Then the triple ( )MLK ,,  is said to be X-sub-exact at L if there exist                

R-homomorphisms f and g such that the sequence of R-modules and                 
R-homomorphisms 

MXK
gf
→→  

is exact. 
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Example 2.1. Let ,4Z=K  Z=L  and ZZ 4=M  be Z -modules. 

Then the triple ( )ZZZZ 4,,4  is Z4 -sub-exact at Z  since there are the 

identity ZZ 44: →i  and canonical homomorphism (projection) Z4:π  

ZZ 4→  such that the sequence ZZZZ 444
π
→→

i
 is exact at .4Z  

Now, we give an example where the sequence MLK →→  is not 
exact, but the triple ( )MLK ,,  is X-sub-exact, for some submodule X of L. 

Example 2.2. Let ,2Z=K  32 ZZ ⊕=L  and 0=M  be Z -modules. 

Then the triple ( )0,, 322 ZZZ ⊕  is 2Z -sub-exact at 32 ZZ ⊕  since for the 

homomorphism ,: 322 ZZZ ⊕→i  given by ( ) ( ),0,aai =  for every ,2Z∈a  

the sequence 

0322 →⊕→ ZZZ
i

 

is sub-exact at .32 ZZ ⊕  

But, we cannot define an epimorphism p from 2Z  to .32 ZZ ⊕   

Remark 2.3. Since the sequence { } MK →→ 0  is exact, the triple 

( )MLK ,,  is { }0 -sub-exact for any R-modules K, L, M. 

Remark 2.4. Let K be an R-module. 

(a) Since there are the identity KKi →:  and zero homomorphism 

KK →θ :  such that the sequence KKK
i θ

→→  is exact at K, the triple 

( )KKK ,,  is K-sub-exact at K. 

(b) Since the identity KKi →:  is surjective, the sequence 0
θ
→→ KK

i
 

is exact at K. So, the triple ( )0,, KK  is K-sub-exact at K. 

(c) Let V be a direct summand of K. We can define an epimorphism 

VVVKp →′⊕=:  such that the sequence 0→→ VK
p

 is exact at V. 

Hence, the triple ( )0,, KK  is V-sub-exact at K. 
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(d) Let U be a submodule of K. Then the triple ( )UKKU ,,  is K-sub-

exact and U-sub-exact at K. 

(e) The triples ( )KK ,0,  and ( )K,0,0  are 0-sub-exact at 0. 

(f) The triple ( )K,0,0  is V-sub-exact at K, for every submodule V of K 

since there is the inclusion KVi →:  such that the sequence KV
i
→→0  

is exact at V. 

Let K, L, M be R-modules. We define 

( ) { ( ) }.atexact-sub-,,,, LXMLKLXMLK |≤=σ  

Then ( ) ∅≠σ MLK ,,  since ( ).,,0 MLKσ∈  

Proposition 2.5. Let ,iK  ,iL  ,iM  2,1=i  be families of R-modules. If 

( )1111 ,, MLKX σ∈  and ( ),,, 2222 MLKX σ∈  then ( ×σ∈× 121 KXX  

).,, 21212 MMLLK ××  

Proof. Since ( )1111 ,, MLKX σ∈  and ( ),,, 2222 MLKX σ∈  there are 

R-homomorphisms ,1f  ,1g  2f  and 2g  such that the sequences 11
1

XK
f
→  

1
1

M
g
→  and 222

22
MXK

gf
→→  are exact. We define: 

,: 2121 XXKKf ×→×  

where ( )( ) ( ) ( )( ),,, 221121 kfkfkkf =  for every ( ) 2121, KKkk ×∈  and 

,: 2121 MMXXg ×→×  

where ( )( ) ( ) ( )( ),,, 221121 xgxgxxg =  for every ( ) ., 2121 XXxx ×∈  So, the 

sequence 

212121 MMXXKK
gf

×→×→×  

is exact. Therefore, ( ).,, 21212121 MMLLKKXX ×××σ∈×   

1
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As a corollary, for any index set Λ, we obtain: 

Corollary 2.6. Let ,λK  ,λL  λM  be families of R-modules and λX  be a 

submodule of ,λL  for every .Λ∈λ  If ( ),,, λλλλ σ∈ MLKX  for every 

,Λ∈λ  then ( ).,, λΛ∈λλΛ∈λλΛ∈λλΛ∈λ ΠΠΠσ∈Π MLKX  

Proof. We define 

λΛ∈λλΛ∈λλΛ∈λ Π→ΠΠ= XKff :  

and 

.: λΛ∈λλΛ∈λλΛ∈λ Π→ΠΠ= MXgg  

Hence, the sequence λΛ∈λλΛ∈λλΛ∈λ Π→Π→Π MLK
gf

 is exact. 

Therefore, ( ).,, λΛ∈λλΛ∈λλΛ∈λλΛ∈λ ΠΠΠσ∈Π MLKX   

In case ,0=K  we have the following properties: 

Proposition 2.7. Let L, M be two R-modules and 21, XX  be submodules 

of L. If ( ),,,0, 21 MLXX σ∈  then ( ).,,021 MLXX σ∈∩  

Proof. Since ( ),,,0, 21 MLXX σ∈  there are R-homomorphisms 1f  

and 2f  such that the sequences: MX
f1

10 →→  and MX
f2

20 →→  are 

exact. So, 1f  and 2f  are monomorphisms. We define .211 XXff ∩|=  

Hence, f is a monomorphism. So, the sequence MXX
f
→→ 210 ∩  is exact. 

Therefore, ( ).,,021 MLXX σ∈∩   

As a corollary, we obtain: 

Corollary 2.8. Let L, M be two R-modules and λX  be a submodule of L, 

for every .Λ∈λ  If ( ),,,0 MLX ∈λ  for every ,Λ∈λ  then ∩ Λ∈λ λ ∈X  

( ).,,0 MLσ  

4

4
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Proof. We define ∩ Λ∈λ λ → ,: MXf  where ∩ Λ∈λ λ
|= μ ,Xff  for 

some .λ∈μ  Hence, by Proposition 2.7, the sequence 

∩
Λ∈λ

λ →→ MX
f

0  

is exact. Therefore, ( )∩ Λ∈λ λ σ∈ .,,0 MLX   

Following example shows that if ( )MLKX ,,1 σ∈  and ,12 XX ⊂  then 

2X  does not necessarily belong to ( ).,, MLKσ   

Example 2.9. Let Q  be a Z -module. Since there is the identity Q:i  

,Q→  where ( ) ,aai =  for every ,Q∈a  the sequence 0→→ QQ
i

 is 

exact. Hence, ( ).0,, QQQ σ∈  But, we already know that the only Z -

module homomorphism from Q  to Z  is zero homomorphism, then there is 

no homomorphism f such that the sequence .0→→ ZQ
f

 Hence, ∉Z  

( ).0,, QQσ  

Proposition 2.10. Let K, L, M be R-modules and 21, XX  be submodules 

of L, where .12 XX ⊂  If ( )MLKX ,,1 σ∈  and 2X  is a direct summand of 

,1X  then ( ).,,2 MLKX σ∈  

Proof. Since ( ),,,1 MLKX σ∈  there are R-homomorphisms 1f  and 1g  

such that the sequence 

MXK
gf 11

1 →→  

is exact. 

Since 2X  is a direct summand of ,1X  there exists 3X  a submodule of 

1X  such that .321 XXX ⊕=  Hence, for every ,11 Xx ∈  ,321 xxx +=  for 

some 22 Xx ∈  and .33 Xx ∈  Then we define R-homomorphism 

1
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,: 2321 XXXXp →⊕=  

where ( ) ( ) .22321 Xxxxpxp ∈=+=  

So, we construct a homomorphism ,: 2XKf →  where .1fpf D=  

We can see this in the following commutative diagram: 

 

Now, let .21 Xgg |=  We will show that .fImgKer =  

(a) Let .2XgKerx ⊆∈  Then ( ) ( ) .01 == xgxg  Hence, .1gKerx ∈  

Since ,11 gKerfIm =  there is Kk ∈  such that ( ) .1 xkf =  Then ( ) =kf  

( ) ( ) ( )( ) ( ) .11 xxpkfpkfp ===D  This implies, .fImgKer ⊆  

(b) Let .2XfImx ⊆∈  We have Kk ∈  such that ( ) .xkf =  Then =x  

( ) ( )( ) ( ).11 kfkfpkf == D  Hence, .11 gKerfImx =∈  Therefore, ( ) .01 =xg  

Since ,2Xx ∈  ( ) ( ) .01 == xgxg  So that .gKerx ∈  Hence, .gKerfIm ⊆  

We conclude that .gKerfIm =  So, the sequence MXK
gf
→→ 2  is 

exact. Therefore, ( ).,,2 MLKX σ∈   

As a corollary of Proposition 2.10, we obtain: 

Corollary 2.11. Let K, L, M be R-modules and L be a semisimple R-
module. If ( ),,, MLKL σ∈  then ( ),,, MLKX σ∈  for any submodule X     

of L. 
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Proof. Let X be any submodule of L. Since L is a semisimple module, X 
is complemented. Hence, there is a submodule X ′  of L such that XX ′⊕  

.~ L−  Since ( ),,, MLKL σ∈  by Proposition 2.10, ( ).,, MLKX σ∈   

Proposition 2.12. If there are R-homomorphisms f and g such that       

the sequence MLK
gf
→→  is exact, then L is the maximal element in 

( ),,, MLKσ  i.e., for every ( ),,, MLKC σ∈  if ,CH ⊆  then .CH =  

Proof. It is obvious.   

This example illustrates Proposition 2.12. 

Example 2.13. Let ,8Z  Z  be Z -modules. We define ,8: ZZ →f  

where ( ) ,8 aaf =  for every ,88 Z∈a  and 0: →Zg  is zero homomorphism. 

We have the exact sequence .08
gf
→→ ZZ  Hence, ( ).0,,8 ZZZ σ∈  So, Z  

is the maximal element of ( ).0,,8 ZZσ  

This proposition shows the relation between maximal submodule of L 
and maximal element of ( ).,, MLKσ  

Proposition 2.14. Let K, L, M be R-modules. We assume that ∉L  
( ).,, MLKσ  Consider the following assertions: 

(1) There exists a maximal submodule LH ⊂  such that ∈H  
( ).,, MLKσ  

(2) There exists ( )MLKH ,,σ∈  such that H is the maximal element in 

( )MLK ,,σ  (i.e., for every ( ),,, MLKC σ∈  if ,CH ⊆  then .)CH =  

Then (1) ⇒ (2). 

Proof. Let H be a maximal submodule of L. Assume that ∈H  
( ).,, MLKσ  Since H is a maximal submodule of L, for every ∈C  

( ),,, MLKσ  if ,CH ⊆  then .CH =  Hence, H is the maximal element in 

( ).,, MLKσ   

1

2

13



On Sub-exact Sequences 1063 

But, the converse is not always true. For example, let 0== MK  and 

6Z=L  be Z -modules. We get ( ) { }.00,,0 6 =σ Z  So, 60 Z⊂  is the 

maximal element in ( ).0,,0 6Zσ  But, 0 is not a maximal submodule of .6Z  

The properties of Noetherian module are in [5]. M is Noetherian if and 
only if every non-empty set of (finitely generated) submodules of M has a 
maximal element. 

Proposition 2.15. Let K, L, M be R-modules and L be Noetherian. If 
( ),,, MLKU σ∈  then there is a maximal element W in ( )MLK ,,σ  which 

contains U. 

Proof. Let ( ).,, MLKU σ∈  If U is a maximal element in ( ),,, MLkσ  

then it is clear. 

If not, let 

"⊂′′⊂′⊂ UUU  

be an ascending chain of submodules of a module L in ( ).,, MLKσ  Since       

L is Noetherian, there is a maximal element ( )MLKW ,,σ∈  which contains 

U.  

Let M be an R-module. A finite chain of submodules 

 N∈=⊂⊂⊂= kMMMM k ,0 10 "  (1) 

is called a normal series of M. A normal series (1) is a composition series of 
M if all factors 1−ii MM  are simple modules. The number k is said to be the 

length of the normal series and the factor modules ,1−ii MM  ki ≤≤1  are 

called its factors [5]. So, any finitely generated semisimple module has a 
finite length or equivalently, it is Noetherian. As a corollary of Proposition 
2.15, we obtain: 

Corollary 2.16. Let K, L, M be R-modules and L be a finitely generated 
semisimple module. If ( ),,, MLKU σ∈  then there is a maximal element W 

in ( )MLK ,,σ  which contains U. 

2

3
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Proof. Let K, L, M be R-modules and L be a finitely generated 
semisimple module. Since any finitely generated semisimple module is 
Noetherian, by Proposition 2.15, if ( ),,, MLKU σ∈  then there is a 

maximal element W in ( )MLK ,,σ  which contains U.  

However, ( )MLK ,,σ  may have more than one maximal element. 

Example 2.17. Let { } { }4,2,02 6 =∈|= ZaaA  and { }63 Z∈|= aaB  

{ }3,0=  be Z -modules. If we take ,0=K  6Z=L  and BAM ×=  as      

Z -modules, then ( ) { } { }{ }.3,0,4,2,0,0,, =σ MLK  Since we cannot define 

a monomorphism from 6Z  to M, ( ).,,6 MLKσ∉Z  So, the maximal 

elements of ( )MLK ,,σ  are { }4,2,0  and { }.3,0  Furthermore, { }4,2,0  is 

not isomorphic to { }.3,0  So, we can conclude that two elements of 

( )MLK ,,σ  are not necessarily unique up to isomorphism. 

3. Conclusion 

Let K, L, M be R-modules. The collection of all submodules X of L such 
that the triple ( )MLK ,,  is X-sub-exact denoted by ( )( )MLKL ,,σ  is not 

closed under submodules. But, if a submodule of L is a direct summand of 
any element of ( ),,, MLKσ  then this submodule is contained in ( ).,, MLKσ  

Therefore, if L is semisimple and ( ),,, MLKL σ∈  then any submodule of L 

is contained in ( ).,, MLKσ  Moreover, ( )MLK ,,σ  is not closed under 

extensions. 

If there are R-module homomorphisms f and g such that the sequence 

MLK
gf
→→  is exact, then ( )MLK ,,σ  has a maximal element. If not, then 

the set ( )MLK ,,σ  has a maximal element if L is Noetherian. Furthermore, 

( )MLK ,,σ  may have more than one maximal element. But, any two 

elements of ( )MLK ,,σ  are not necessarily unique up to isomorphism. 

1
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