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Abstract  

 

For a sequence of independent non-identically distributed random variables with positive means, rates of 

convergence of the maximum of their sums are established.  These rates are exact and are obtained under the 

same moment conditions as those used for partial sums. 
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1. Introduction  

Let {𝑋𝑛} be a sequence of independent random variables not necessarily identically distributed such that 𝑋𝑛 has a 

distribution function 𝐹𝑛 with 𝐸𝑋𝑛 = 𝜇𝑛 ≥ 𝑎 > 0 and 𝑉(𝑋𝑛) = 𝜎𝑛
2 < ∞, 𝑛 ≥ 1.  Set 𝑆𝑛 = ∑ 𝑋𝑖 ,

𝑛
𝑖=1  𝐴𝑛 = ∑ 𝜇𝑖

𝑛
𝑖=1  and 

𝑉𝑛
2 = ∑ 𝜎𝑖

2.𝑛
𝑖=1   Also define 𝛽𝑛

2+𝛿 = 𝐸|𝑋𝑛 − 𝜇𝑛|2+𝛿 and set 𝐵𝑛
2+𝛿 = ∑ 𝛽𝑖

2+𝛿𝑛
𝑖=1  for 0 < 𝛿 ≤ 1.  Further define the 

sequence of maximum partial sums 𝑆𝑛
∗ = max

1≤𝑖≤𝑛
𝑆𝑖 .  Set 

   𝛥𝑛 = sup
𝑥

|𝑃(𝑆𝑛 − 𝐴𝑛 ≤ 𝑥𝑉𝑛) − Ф(𝑥)|, 𝑛 ≥ 1,   (1.1) 

   𝛥𝑛
∗ = sup

𝑥

|𝑃(𝑆𝑛
∗ − 𝐴𝑛 ≤ 𝑥𝑉𝑛) − Ф(𝑥)|, 𝑛 ≥ 1.   (1.2) 

The rate at which 𝛥𝑛 converges to zero was first considered by Berry (1941) and was followed independently by 

Esseen (1945).  They showed that when the sample is identically distributed with 𝛿 = 1, then 𝛥𝑛 = 𝑂 (𝑛− 
1

2).  Katz 

(1963) showed that for any 0 < 𝛿 ≤ 1, then 𝛥𝑛 = 𝑂 (𝑛− 
𝛿

2).  

On the other hand, Heyde (1967) had shown that ∑ 𝑛−1+
𝛿

2∞
𝑛=1  𝛥𝑛 < ∞ for all 0 < 𝛿 < 1 and that when 𝛿 = 0 then 

∑ 𝑛−1∞
𝑛=1  𝛥𝑛 < ∞. 

When the observation 𝑋𝑖
′ s are non-identically distributed Petrov (1995) showed that 𝛥𝑛 = 𝑂 (𝑛− 

𝛿

2) for any 0 <

𝛿 ≤ 1, while Serova (1979) showed that ∑ 𝑛−1 + 
𝛿

2∞
𝑛=1  𝛥𝑛 < ∞, for all 0 < 𝛿 < 1 and when 𝛿 = 0, ∑ 𝑛−1∞

𝑛=1  𝛥𝑛 <
∞.  For latest development see DasGupta (2008) and Senatov (1998). 

As for  Δn
∗ , Ahmad (1979) showed that in the identically distributed random variables Δn

∗ = 𝑂 (𝑛− 
𝛿

2) when 0 < 𝛿 ≤

1 and that ∑ 𝑛−1 + 
𝛿

2∞
𝑛=1  Δn

∗ < ∞ for all 0 < 𝛿 < 1 and that ∑ 𝑛−1∞
𝑛=1  Δn

∗ < ∞.  Hence we present analogous results 

for non-identical case.  The results of Δn
∗  presented here are the main tools in deriving the asymptotic normality rates 

of the first time passage of random variables.  The first passage time is defined by: 𝑈(𝑡) = 𝑖𝑛𝑓{𝑛 = ∑ 𝑋𝑖 > 𝑡𝑛
𝑖=1 }.  

Pakistan Journal of Statistics and Operation Research 
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Thus, 𝑃[𝑈(𝑡) ≤ 𝑚] = 𝑃[𝑆 ∗≥ 𝑡].  Central limit theorem of 𝑈(𝑡) was given by Siegmund (1968) among others and 

its rate of convergence are being developed by the authors at the moment where we will use the results there in 

approximating the rate of convergence of 𝑈(𝑡). 

 

2. Rates of Convergence of 𝜟𝒏
∗  

The following two theorems give basic rate of convergence results for 𝛥𝑛
∗ . 

Theorem 2.1.  Let 𝛽𝑛
2+𝛿 = 𝐸|𝑋𝑛 − 𝜇𝑛|2+𝛿 ≤ 𝑀 < ∞ for some constant 𝑀 > 0 for all 𝑛 ≥ 1 and set 𝐵𝑛

2+𝛿 =
∑ 𝛽𝑖

2+𝛿𝑛
𝑖=1 .  Then 

   𝛥𝑛
∗ = 𝑂(𝐵𝑛

2+𝛿 𝑉𝑛
2+𝛿⁄ ), 0 < 𝛿 ≤ 1.     (2.1) 

Theorem 2.2.  Let there exist a random variable 𝑋 such that 𝑉(𝑋) < ∞ and let 𝛾 > 0 and 𝑥0 > 0 be constants for 

which the following condition hold, 

   ∑ 𝑃[|𝑋𝑖| ≥ 𝑥] ≤ 𝛾𝑉𝑛
2𝑃[|𝑋| ≥ 𝑥]𝑛

𝑖=1 ,    (2.2) 

for all 𝑥 > 𝑥0.  Assume that 𝐸𝑋2ln (1 + |𝑋|) < ∞ if 𝛿 = 0 and that 𝐸|𝑋|2+𝛿 < ∞ if 0 < 𝛿 < 1.  Then 

   ∑
𝜎𝑛

2

𝑉𝑛
2+𝛿

∞
𝑛=1 𝛥𝑛

∗ < ∞.      (2.3) 

In what follows, C is used for positive generic constants not necessarily equal. 

Proof of Theorem 2.1.  It follows from a result of  Petrov (1995) that under the assumption of the theorem 𝛥𝑛 ≤
𝐶 𝐵𝑛

2+𝛿 𝑉𝑛
2+𝛿⁄  for all 𝑛 ≥ 1 and some 𝐶 > 0.  Thus we need to establish that for all 𝑥, 

  𝛾𝑛 = 𝑃[𝑆𝑛 ≤ 𝑥] − 𝑃[𝑆𝑛
∗ ≤ 𝑥] = 𝑂(𝐵𝑛

2+𝛿 𝑉𝑛
2+𝛿⁄ ). 

But 

  𝛾𝑛 ≤ max
1≤𝑖≤[𝑛/2]

𝑃[𝑆𝑛 − 𝑆𝑖 < 0] ∑ 𝑃[𝑆0 ≤ 𝑥, … , 𝑆𝑖−1 ≤ 𝑥, 𝑆𝑖 > 𝑥][𝑛/2]
𝑖=0    

   + ∑ 𝑃[𝑆0 ≤ 𝑥, … , 𝑆𝑖−1 ≤ 𝑥, 𝑆𝑖 > 𝑥]𝑃[𝑆𝑛 − 𝑆𝑖 < 0]𝑛−1
𝑖=[𝑛/2]+1  

 = 𝐼1𝑛 + 𝐼2𝑛, say,       (2.4) 

where [𝑥] denotes the largest integer less than equal to 𝑥.   Now,  

 𝐼1𝑛 ≤ max
1≤𝑖≤[𝑛/2]

𝑃[𝑆𝑛 − 𝑆𝑖 < 0] = max
1≤𝑖≤[𝑛/2]

𝑃[𝑆𝑛 − 𝑆𝑖 − (𝐴𝑛 − 𝐴𝑖) < −(𝐴𝑛 − 𝐴𝑖)] 

 ≤ [ max
1≤𝑖≤[𝑛/2]

𝑉(𝑆𝑛−𝑆𝑖)

(𝐴𝑛−𝐴𝑖)2

𝑉𝑛
2+𝛿

𝐵𝑛
2+𝛿] [

𝐵𝑛
2+𝛿

𝑉𝑛
2+𝛿] 

 = [ max
1≤𝑖≤[𝑛/2]

∑ 𝜎𝑙
2𝑛

𝑙=𝑖+1

(∑ 𝜇𝑙
𝑛
𝑙=𝑖+1 )2

𝑉𝑛
2+𝛿

𝐵𝑛
2+𝛿] [

𝐵𝑛
2+𝛿

𝑉𝑛
2+𝛿] ≤ [ max

1≤𝑖≤[𝑛/2]

(𝑛−𝑖)𝑀

(𝑛−𝑖)2𝑎
] [

𝐵𝑛
2+𝛿

𝑉𝑛
2+𝛿] 

 ≤ 𝐶𝑛−1 [
𝐵𝑛

2+𝛿

𝑉𝑛
2+𝛿].        (2.5) 

Next, 

 𝐼2𝑛 ≤ max
[𝑛/2]+1≤𝑖≤𝑛−1

𝑃[𝑆𝑛−1
∗ ≤ 𝑥, 𝑆𝑛 > 𝑥 ] ∑ 𝑃[𝑆𝑛 − 𝑆𝑖 < 0]𝑛−1

𝑖=[𝑛/2]+1  

 ≤ max
[𝑛/2]+1≤𝑖≤𝑛−1

𝑃[𝑆𝑖−1 ≤ 𝑥, 𝑆𝑖 > 𝑥 ] ∑ 𝑃[𝑆𝑛 − 𝑆𝑖 < 0]𝑛−1
𝑖=[𝑛/2]+1  

 = 𝐽1𝑛 .  𝐽2𝑛, say.        (2.6) 
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But 

 𝐽1𝑛 = max
[𝑛/2]+1≤𝑖≤𝑛−1

∫ {𝑃[𝑆𝑖−1 ≤ 𝑥 ] − 𝐵[𝑆𝑖−1 ≤ 𝑥 − 𝑦]}𝑑𝐹𝑖(𝑦)
∞

0
 

 ≤ max
[𝑛/2]+1≤𝑖≤𝑛−1

{2𝐶 (
𝐵𝑖−1

2+𝛿

𝑉𝑖−1
2+𝛿) + ∫ |Ф (

𝑥−𝐴𝑖−1

𝑉𝑖−1
) − Ф (

𝑥−𝑦−𝐴𝑖−1

𝑉𝑖−1
)| 𝑑𝐹𝑖(𝑦)

∞

0
} 

 ≤ max
[𝑛/2]+1≤𝑖≤𝑛−1

{2𝐶 (
𝐵𝑖−1

2+𝛿

𝑉𝑖−1
2+𝛿) +

𝛽𝑖
1 3⁄

+𝐶

√2𝜋𝑉𝑖−1
} 

 ≤ max
[𝑛 2⁄ ]+1≤𝑖≤𝑛−1

{𝐶 (
𝐵𝑖−1

2+𝛿

𝑉𝑖−1
2+𝛿) ≤ 𝐶

𝐵[𝑛 2⁄ ]
2+𝛿

𝑉[𝑛 2⁄ ]
2+𝛿 },      (2.7) 

since |Ф(𝑥) − Ф(𝑥 + є)| ≤
|є|

√2𝜋
 and 

𝐵𝑛
2+𝛿

𝑉𝑛
2+𝛿 will eventually decrease to zero. Next, 

   𝐽2𝑛 ≤ ∑ 𝑃[𝑆𝑛 − 𝑆𝑖 ≤ 0].𝑛−1
𝑖=[𝑛/2]+1       (2.8) 

But using the theorem of  Petrov (1995), cf  (by Ahmad & Lin, 1977), we get: 

 𝑃[𝑆𝑛 − 𝑆𝑖 < 0] = Ф (−
𝐴𝑛−𝐴𝑖

(∑ 𝜎𝑙
2𝑛

𝑙=𝑖+1 )
1/2) + 𝐶

∑ 𝛽𝑙
2+𝛿𝑛

𝑙=𝑖+1

(∑ 𝜎𝑙
2𝑛

𝑙=𝑖+1 )
1+𝛿/2  ·

(∑ 𝜎𝑙
2𝑛

𝑙=𝑖+1 )
1+𝛿/2

(∑ 𝜇𝑙
𝑛
𝑙=𝑖+1 )

2+𝛿  

 ≤ 𝐶 {
(∑ 𝜎𝑙

2𝑛
𝑙=𝑖+1 )

3/2

(∑ 𝜇2
𝑛
𝑙=𝑖+1 )

3 +
∑ 𝛽𝑙

2+𝛿𝑛
𝑙=𝑖+1

(∑ 𝜇𝑙
𝑛
𝑙=𝑖+1 )

2+𝛿} 

 ≤ 𝐶 {
(∑ (𝛽𝑙

2+𝛿)
2/(2+𝛿)

𝑛
𝑙=𝑖+1 )

3/2

(∑ 𝜇𝑙
𝑛
𝑙=𝑖+1 )

3 +
∑ 𝛽𝑙

2+𝛿𝑛
𝑙=𝑖+1

(∑ 𝜇𝑙
𝑛
𝑙=𝑖+1 )

2+𝛿} 

 ≤ 𝐶{(𝑛 − 𝑖)−3 2⁄ + (𝑛 − 𝑖)−1−𝛿},     (2.9) 

where in the first inequality we used the fact that for any 𝑥 > 0, Ф(−𝑥) = 𝑂(𝑥−3), and in the second inequality, we 

used the facts that 𝜇𝑛 ≥ 𝑎, 𝜎𝑛
2 ≤ (𝛽𝑛

2+𝛿)
2/(2+𝛿)

, and 𝛽𝑛 ≤ 𝑀 for all 𝑛.  Hence 

∑ 𝑃[𝑆𝑛 − 𝑆𝑖 < 0]𝑛−1
𝑖=[𝑛/2]+1 ≤ 𝐶 {∑ (𝑛 − 𝑖)−

3

2 + ∑ (𝑛 − 𝑖)−1−𝛿∞
𝑖=[𝑛/2]+1

∞
𝑖=[𝑛/2]+1 } ≤ 𝐶.   (2.10) 

Hence 𝐼2𝑛 = 𝑂(𝐵𝑛
2+𝛿 𝑉𝑛

2+𝛿⁄ ) as 𝑛 → ∞ and the theorem is now proved.  ‖⃦ 

Proof of Theorem 2.2. The structure of the proof is two stages.  First we show that ∑
𝜎𝑛

2

𝑉𝑛
2−𝛿

∞
𝑛=2 𝛥𝑛 < ∞ and then we 

show that for any real 𝑥, ∑
𝜎𝑛

2

𝑉𝑛
2−𝛿

∞
𝑛=2 {𝑃[𝑆𝑛 ≤ 𝑥] − 𝑃[𝑆𝑛

∗ ≤ 𝑥]} < ∞ .  The first assertion follows from the work of 

Serova (1979).  Thus we need to establish the second assertion.  Recall that in (2.5) we have 𝐼1𝑛 ≤ 𝐶𝑛−1 [
𝐵𝑛

2+𝛿

𝑉𝑛
2+𝛿], then 

we have 

   ∑
𝜎𝑛

2

𝑉𝑛
2+𝛿 𝐼1𝑛

∞
𝑛=2 ≤ 𝐶 ∑

𝜎𝑛
2𝐵𝑛

2+𝛿

𝑛𝑉𝑛
4 <∞

𝑛=2 ∞,    (2.11) 

where the convergence is assured since this behaves like ∑ 𝑛−2+𝛿 < ∞.  Next it is sufficient to show that 

∑
𝜎𝑛

2

𝑉𝑛
2−𝛿 𝐼2𝑛 < ∞.∞

𝑛=2   But as in Theorem 2.1 we can easily see that: 

5
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∑
𝜎𝑛

2

𝑉𝑛
2−𝛿

𝐼2𝑛 ≤ 𝐶 ∑
𝜎𝑛

2

𝑉𝑛
2−𝛿

∞

𝑛=2

∞

𝑛=1

max
[𝑛/2]+1≤𝑖≤𝑛−1

∫ {|𝑃 [
𝑆𝑖−1 − 𝐴𝑖−1

𝑉𝑖−1

≤
𝑥 − 𝐴𝑖−1

𝑉𝑖−1

] − Ф (
𝑥 − 𝐴𝑖−1

𝑉𝑖−1

)|

+ |𝑃 [
𝑆𝑖−1 − 𝐴𝑖−1

𝑉𝑖−1

≤
𝑥 − 𝑦 − 𝐴𝑖−1

𝑉𝑖−1

] − Ф (
𝑥 − 𝑦 − 𝐴𝑖−1

𝑉𝑖−1

)|

+ |Ф (
𝑥 − 𝐴𝑖−1

𝑉𝑖−1

) − Ф (
𝑥 − 𝑦 − 𝐴𝑖−1

𝑉𝑖−1

)|} 𝑑𝐹𝑖(𝑥) 

≤ 𝐶(𝐽1 + 𝐽2 + 𝐽3), say.      (2.12) 

Let us evaluate each term separately, 

𝐽1 ≤ ∑
𝜎𝑛

2

𝑉𝑛
2−𝛿

∞

𝑛=2

max
[𝑛/2]+1≤𝑖≤𝑛−1

∫ |𝑃 [
𝑆𝑖−1 − 𝐴𝑖−1

𝑉𝑖−1

≤
𝑥 − 𝐴𝑖−1

𝑉𝑖−1

] − Ф (
𝑥 − 𝐴𝑖−1

𝑉𝑖−1

)| 𝑑𝐹𝑖(𝑥)

∞

−∞

 

 ≤ ∑
𝜎𝑛

2

𝑉𝑛
2−𝛿

∞
𝑛=2 max

[𝑛/2]+1≤𝑖≤𝑛−1
𝛥𝑖 ≤ ∑

𝜎𝑛
2

𝑉𝑛
2−𝛿

𝑁0
𝑛=2 max

[𝑛/2]+1≤𝑖≤𝑛−1
𝛥𝑖 + ∑

𝜎𝑛
2

𝑉𝑛
2−𝛿

∞
𝑛=𝑁0+1 𝛥[𝑛/2]+1 

 ≤ 𝐿1𝑛 + ∑
𝜎𝑛

2

𝑉𝑛
2−𝛿

∞
𝑛=2 𝛥𝑛 < ∞, 

since for 𝑛 < 𝑁0, 𝛥𝑛 decrease to 0.  Similarly we can show that 𝐽2 < ∞.  Finally, 

𝐽3 ≤ 𝐶 ∑
𝜎𝑛

2

𝑉𝑛
2−𝛿

∞

𝑛=2

max
[𝑛/2]+1≤𝑖≤𝑛−1

1

𝑉𝑖 − 1
∫ |𝑦|𝑑𝐹𝑖(𝑦)

∞

−∞

 

 ≤ 𝐶 ∑
𝜎𝑛

2

𝑉𝑛
3−𝛿

∞
𝑛=2 < ∞. 

Hence the second assertion is proved and so is the theorem.  . ⃦ 
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