PAPER NAME Genetic and phenotypic diversity, heritabi lity, and correlation between the quantita tive characters

AUTHOR

Siti Nurdjanah

WORD COUNT 6171 Words	CHARACTER COUNT 30131 Characters
PAGE COUNT 7 Pages	FILE SIZE 420.7KB
SUBMISSION DATE Jul 26, 2022 9:45 PM GMT+7	REPORT DATE Jul 26, 2022 9:46 PM GMT+7

19% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

- 13% Publications database
- Crossref Posted Content database
- Crossref database
- 13% Submitted Works database

Excluded from Similarity Report

Internet database

• Bibliographic material

IODIVERSITAS Volume 20, Number 2, February 2019 Pages: 380-386

Genetic and phenotypic diversity, heritability, and correlation between the quantitative characters on 30 sweet potato germplasms in Lampung, Indonesia

RATNA DF 1^{1,2,•}, SETYO DWI UTOMO^{3, •}, M. KAMAL³, PAUL B. TIMOTIWU³, SITI NURDJANAH³ ¹Department of Agronomy, Politeknik Negeri Lampung. Jl. Soekarno Hatta No. 10, Rajabasa, Bandar Lampung 35144, Lampung, Indonesia.

Tel.: +62-721-703995, Fax.: +62-721-787309, *email: ratna.dewi@polinela.ac.id

²Program of Agricultural Science, Graduates School, Universitas Lampung, Jl. Sumantri Brojonegoro No. 1, Bandar Lampung 35145, Lampung, Indonesia ²Faculty of Agriculture, Universitas Lampung. Jl. Sumantri Brojonegoro No. 1 Bandar Lampung 35145, Lampung, Indonesia. Tel.: +62-721-701609. Fax.: +62-721-702767, **email: setyo.dwiutomo@fp.unila.ac.id

Manuscript received: 8 September 2018. Revision accepted: 16 January 2019.

bstract. Dewi R, Utomo SD, Kamal M, Timotiwu PB, Nurdjanah S. 2019. Genetic and phenotypic diversity, heritability, and orrelation between the quantitative characters on 30 sweet potato germplasms in Lampung, Indonesia. Biodiversitas 20: 380-386. Local food commodities such as sweet potato is an alternative rice substitute food which has high nutritional content. Estimating the value of genetic diversity, heritability and correlation between quantitative charging error with the weight of large storage root per plant, is needed in the selection program for the development of quality sweet potato-varieties. The purpose of this study was to find out information about genetic diversity, heritability, and correlation between quantitative characters with the weight of large storage root in 30 local Lampung sweet potato germplasm, introduction and national superior genotypes. The study was carried out in the Politeknik Negeri Laspung experimental garden from September 2017 to January 2018. Using 30 genotypes of sweet potato germplasm. The study was arranged in a randomized block design (RBD) with two replications. The results showed that all characters (weight of large orage root, number of large storage root, storage root length, storage root diameter, vines length, segment length, vines diameter, and weight of vines) had a value of genetic diversity, whereas wide phenotypic diversity and has a high value of heritability. Genetic factors more influence all characters in this study compared to environmental factors. The results of the correlation analysis show that the characters of the weight of large torage root, storage root length, and storage root diameter were positively correlated with the weight of the storage root. Whereas, the length of vines is negatively correlated with the weight of large storage. The character of the segment length, vines diameter and weight of vines did not correlate with the weight of large storage root. The character of the segment length, stines diameter and weight of vines did not correlate with the weight of large storage root. Cluster analysis results from 30 sweet potato hotypes were grouped into 13 clusters. Based on similarity of character and provenance. The germplasm of 30 Sweet potato genotypes found in Politeknik Negeri Lampung can be selected and crossed to create the desired superior characters.

Keywords: Correlation, diversity, heritability, sweet potato

INTRODUCTION

weet potato (Ipomoea batatas L.) is an important food commodity after wheat, rice, corn, potatoes, barley, and cassava (FAOSTAT. 2012; Were et al. 2014) is an important local food for food sovereignty in Indonesia (Rahajeng and Rahayuningsih . 2017). The content of the glycemic index found in sweet potatoes is low (Burri, 2011), and a source of vitamin such as vitamin A, Zn, Fe, Ca, and K as well as antioxidants (Aywa et al. 2013; Pradhan et al. 2015).

Sweet potatoes have a very high diversity $\frac{26}{12}$ aurie et al. 2013). High level of genetic diversity is needed by plant breeders in assembling and creating new varieties. The more diverse breeding materials, the more diverse genes can be selected and the higher the possibility of obtaining he desired genes. Agro-morphological characteristics are In important first step in the assessment of genetic diversity in plants, including sweet potato plants (Ahiakpa et al. 2013; Amoatey et al. 2015). Genetic and phenotypic diversity are very important information during the

selection of the desired character. In addition to diversity, the estimated value of heritability is also very important in knowing inheritance and the selection method used for the character to be developed (Bello 2012). Heritability is geeded to assess whether certain morphological/agronomic haracter is influenced by genetic factors or environmental factors (Ayalrah et al. 2012). If such characters are predominantly influenced by genetic factors, heritability value will be high. Extensive genetic diversity and high heritability is an indication of the high chance of success in assembling new superior sweet potato varieties that have better potential in guality and quantity. Information about genetic diversity, heritability and character relationships between quantitative characters and crop yields are very important in crop improvement (Ritonga et al. 2018).

Lampung region has variety of local sweet potatoes spread across the capital city and sub-district districts in Lampung province. Dewi and Nurman (2015) have identified several characters these local sweet potatoes, but no information on genetic diversity and its related traits.

The purpose of this study was to assess genetic

diversity, heritability, and the correlation between quantitative characters with weight of large storage root in 36 genotypes of Lampung sweet potatoes.

MATERIALS AND METHODS

The study was carried out in an experimental garden of the Politeknik Negeri Lampung, Bandar Lampung, Indonesia from September 2017 to January 2018. This study used 30 genotypes of sweet potatoes from the germplasm collections of the Politeknik Negeri Lampung (Table 1 and Figure 1).

Procedures

This study used 30 sweet potato genotypes, consisted of 24 clones, ong introduced clones and fives national's superior clones rable 1). Each genotype was planted in a mound with a size of 1m x 3 m, one cutting per planting hole. The planting diagnee was 100 cm x 25 cm, so that one roll had 12 plants. The experimental design used was a randomized block design (RBD) with 2 replications. The application of manure was carried out above the mounds at the time before planting, with a dose of 2 tons per ha. Plants were fertilized with 300 kg of NPK. One-third part was given at planting, and 2/2 of it was given at 1.5 months after planting. Weed control was carried out at 4, 7 and 10 weeks after planting (MST).

Figure 1. Study site and location of origin of Lampung's local sweet potato. 1. West Lampung, 2. Tanggamus, 3. Bandar Lampung, 4. South Lampung, 5. East Lampung, 6. Central Lampung

³⁹able 1. List of sweet potato genotypes used in this study

Genotype	Explanation	Place of origin
LPG -01	Lampung's local	East Lampung
LPG-02	Lampung's local	Tanggamus
LPG-03	Lampung's local	Central Lampung
LPG-04	Lampung's local	South Lampung
LPG-05	Lampung's local	West Lampung
LPG-06	Lampung's local	West Lampung
LPG-07	Lampung's local	Bandar Lampung
LPG-09	Lampung's local	Bandar Lampung
LPG-10	Lampung's local	Bandar Lampung
LPG-11	Lampung's local	Bandar Lampung
LPG-12	Lampung's local	South Lampung
LPG-13	Lampung's local	South Lampung
LPG-14	Lampung's local	Bandar Lampung
LPG-15	Lampung's local	Bandar Lampung
LPG-16	Lampung's local	Bandar Lampung
LPG-17	Lampung's local	South Lampung
LPG-18	Lampung's local	South ampung
LPG-19	Lampung's local	South Lampung
LPG-20	Lampung's local	West Lampung
LPG-21	Lampung's local	West Lampung
RD-01	Lampung's local	Bandar Lampung
RD-03	Lampung's local	Bandar Lampung
RD-04	Lampung's local	Bandar Lampung
RD-07	Lampung's local	Bandar Lampung
Aya-	Introduced	Jepang
murasaki	6	
Sari	Nasional Superiority, K Mentan	Balitkabi Malang
	525/Kpts/TP.240/10/2201	
Cilembu	Nasional Superiority, JK Mentan	West Jawa
	124/Kpts/TP.240/2/2221	
Beta-1	Nasional Superiority, K Mentan	Balitkabi Malang
	2217/Kpts/SR.120/5/2009	
Beta-2	Nasional Superiority, K Mentan	Balitkabi Malang
	2216/Kpts/SR.120/5/2009	
Jago	Nasional Superiority, K Mentan	Balitkabi Malang
	530/Kpts/TP 240/10/2001	

est and disease control was carried out at 1 and 2 months after planting. Irrigation was carried at according to conditions in the field. Harvesting was done with a age of 3 months after planting. Observations were made at the age of 3 months after planting (at harvest). The characters observed were vines length, segment length, vines diameter, weight of vines, number of large storage root, weight of large storage root, storage root length, and storage root diameter.

³⁶ata analysis

Data obtained from this study were analyzed using variance analysiz and the Tukey test following Gomez and Gomez (1984). Analysis of variance and the Tukey test were used to determine the effect and differences in each quantitative character between the 30 observed sweet potato genotypes. To genetic variability ($\sigma^2 g$) and phenotypic variety ($\sigma^2 f$) among the genotypes was estimated by using the method of Burton and DeVane (1953). The phenotypic diversity criteria were stated broadly if the phenotypic values are equal to or greater than twice the standard deviation value. The phenotypes ($\sigma^2 f \ge$ $2\sigma\sigma^2 f$) and the phenotypic variance were narrow if the

phenotypic values were equal to or less than twice of the standard deviation value of the phenotype ($\sigma^2 f \le 2\sigma\sigma^2 f$) (Let ari et al. 2006).

the standard deviation of genetic variance and phenotype was calculated by using the formulas of Anderson and Bancroft (1952). The heritability (H) was estimated by using Petersen formula (1994). Sweet potato heritability was calculated to determine whether the characters found in sweet potatoes were influenced by genetic factors or influenced by environmental factors. The broad mean heritability was calculated by using the formula of H = $(\sigma^2 g / \sigma^2 p) \times 100\%$. Heritability criteria were grouped by following (Petersen, 1994), .e.: low heritability if $H = \langle 20\% \rangle$; moderate heritability if H = 20% -50%; high heritability if 50% <H 100%. The correlation between quantitative characters with weight of large storage root per plant was using correlation analysis (Gomez and Gomez, 1984). A cluster analysis was performed by using Minitab software version 17 to classify the level of closeness and similarity based on observed quantitative characters.

RESULTS AND DISCUSSIONS

Variety analysis and Tukey Test

the results of the variance analysis (Table 2) showed that genotypes have a very significant effect on all observed characters (vines length, segment angth, vines diameter, weight of vines, number of large storage root, weight of large storage root, storage root length, and storage root diameter). The average character of vines length has a range from 55.00 cm to 292.00 cm (average 124.67 cm), segment lengths from 2.25 cm to 4.75 cm (average 3.18 cm), vines diameter from 3.25 cm to 6.25 cm (average 4.89 cm), weight of vines from 425 g to 1,625.00 g (average 940.42), the number of large storage root is greater than 0.5 storage root up to 4.5 storage root (an average of 2.17 tubers), the weight of large storage root from 40 g to 1,010.00 g (average 328.54 g), storage root length from 12.375 cm to 23.625 cm (average 16.80 cm), storage root diameter from 2.375 cm to 8.00 cm (average 5.14) (Table 3).

There is a difference between 30 sweet potato genotypes in each observed character (Tabael 3). The longest vines are found in the LPG 09 genotype (292.00

cm) and the shortest vines are found in the LPG 03 genotype (55.00 cm), the longest segment length is in the LPG 09 genotype and 07 LPG (4.75 cm) and the shortest segment is found in genotypes of LPG 01 and Jago (2.25 cm), the largest vines diameter were found in genotype LPG 12, LPG 14 and LPG 16 (6.25 mm) and the smallest vines diameter were found in the Sari genotype (3.25 mm), the heaviest weight of vines found in genotype LPG 06 (1,625.00 g) and the lightest weight of vines found in RD 07 genotype (425.00 g), the highest number of large storage root was found in LPG 03 genotype (4,50 storage root) and the smallest number of large storage root was found in genotype of LPG 14 (0.5 storage root), the heaviest weight of large storage root is found in the genotype LPG 03 (1,010.00 g) and the highest is found in the 14 LPG genotype (40.00 g), the longest storage root is in the Beta-1 genotype (23.625 cm) and the shortest was found in the 12 LPG genotype (13.25 cm), the largest storage root diameter was found in the 11 LPG (8,00 cm) genotype and the smallest found in 14 LPG genotypes (2.375 cm). This situation shows that there is significant diversity among the 30 sweet potato genotypes observed, which can be seen from the differences $\frac{1}{26}$ each character. This supports the statement of Ahiakpa al. (2013) and Amoatey et al. (2515) which states that agro morphological characters are the first step in the assessment of diversity in plants, including sweet potato plants.

Estimated genetic variability, phenotypic variability and heritability

The results showed that all the characters observed (vines length, segment length, vines diameter, weight of vines, number of large storage root, weight of large storage root, storage root length and storage root diameter) had extensive genetic diversity and phenotypes diversity, where the values of $\sigma^2 g \ge 2\sigma\sigma^2 g$ for genetic variability and $\sigma^2 f \le 2\sigma\sigma^2 f$ values for various phenotypes (Table 4). The results of previous studies on sweet potatoes also revealed wide variety of genes in the character of vines length, storage root number, storage root weight, storage root length, storage root number, vines length, storage root length, storage root diameter (Fajriani 2 t al. 2012; Solankey et al. 2015), weight of vines, storage root number, storage root weight, storage root length, storage root of length, storage root of length, storage root weight, storage root of length, storage root of length, storage root diameter (Rahajeng and Rahayuningsih. 2015).

Table 2. Summary of analysis of phenotypic characters of 30 sweet potato genotypes (as of Tabel 1)

Character	KT Genotype	KT Error	F- test	Coeff. of Variation
Vines length (cm)	5802.11	626.48	9.26**	20.07%
Segment length (cm)	0.94	0.26	3.61**	16.17%
Vines diameter (mm)	1.19	0.08	14.87**	5.81%
Weight of vines (g)	211372.50	58786.28	3.59**	25.78%
Sumber of large storage root (bulbs)	1.71	0.72	2.37**	39.19%
Weight of large storage root (g)	116113.80	12804.67	9.07**	34.44%
Storage root large (cm)	17.91	4.49	3.98**	12.62%
Storage root diameter (cm)	2.85	0.61	4.67**	15.23%

Note: ** Very significant effect at 1% level; KT = center square

Table 3. Average value of phenotypic measurements

Genotype	VL (cm)	SL (cm)	VD (mm)	WV (g)	NLS (bulbs)	WLS (g)	SL (cm)	SD (cm)
LPG-01	75.00 de	2.25 c	5.25 a-c	875.00 a-c	4.25 ab	996.30 a	18.125 a-d	7.025 ab
LPG-02	95.00 de	3.75 a-c	4.50 b-e	1.025.00 a-c	2.25 а-с	435.00 b-е	17.625 a-d	5.875 a-c
LPG-03	55.00 e	2.50 b-c	3.75 d-f	825.00 a-c	4.50 a	1.010.00 a	21.000 a-d	5.875 a-c
LPG-04	77.50 de	2.75 a-c	5.25 a-c	925.00 a-c	1.75 a-c	487.50 b-e	22.500 ab	5.875 a-c
LPG-05	120.00 b-e	3.10 a-c	5.25 a-c	1.050.00 a-c	1.25 a-c	112.50 e	14.500 b-d	3.750 cd
LPG-06	87.50 de	3.25 a-c	5.25 a-c	1.625.00 a	1.25 a-c	137.50 с-е	16.750 a-d	5.250 a-d
LPG-07	205.00 ab	4.75 a	3.50 ef	775.00 a-c	2.25 a-c	317.50 b-е	16.750 a-d	4.875 a-d
LPG-09	292.00 a	4.75 a	5.00 bc	1.200.00 a-c	2.00 a-c	232.50 с-е	13.500 cd	5.375 a-d
LPG-10	80.00 de	2.60 bc	5.50 ab	575.00 bc	4.00 a-c	702.50 ab	18.250 a-d	6.125 a-c
LPG-11	100.00 с-е	4.25 a-c	5.50 ab	675.00 a-c	2.75 a-c	582.50 a-d	16.750 a-d	8.000 a
LPG-12	105.00 b-e	2.75 a-c	6.25 a	1.325.00 a-c	1.75 a-c	95.00 e	13.250 cd	3.625 cd
LPG-13	110.00 b-e	3.25 a-c	5.25 a-c	1.050.00 a-c	2.50 a-c	242.50 b-e	14.500 b-d	5.125 a-d
LPG-14	200.00 а-с	3.25 a-c	6.25 a	1.075.00 a-c	0.50 c	40.00 e	13.500 cd	2.375 d
LPG-15	115.00 b-e	3.50 a-c	5.25 a-c	650.00 a-c	2.25 а-с	597.50 a-c	21.500 a-c	6.625 a-c
LPG-16	57.50 e	2.50 bc	6.25 a	900.00 a-c	2.25 а-с	340.00 b-е	15.250 a-d	4.500 b-d
LPG-17	64.00 e	2.60 bc	5.25 a-c	975.00 a-c	3.00 a-c	242.50 b-е	17.375 a-d	3.625 cd
LPG-18	134.50 b-e	2.75 a-c	4.75 b-d	475.00 c	2.50 a-c	287.50 b-е	20.125 a-d	6.250 a-c
LPG-19	144.00 b-e	3.10 a-c	4.25 c-f	600.00 bc	0.75 bc	145.00 с-е	14.375 b-d	4.375 b-d
LPG-20	155.50 b-e	2.60 bc	4.50 b-e	1.550.00 ab	2.00 a-c	205.00 с-е	15.125 a-d	4.625 b-d
LPG-21	96.00 de	3.10 a-c	5.25 a-c	900.00 a-c	2.50 a-c	160.00 с-е	12.375 d	4.000 b-d
RD-01	132.00 b-e	2.75 a-c	5.25 a-c	475.00 c	1.50 a-c	197.50 с-е	20.375 a-d	3.625 cd
RD-03	109.50 b-e	2.75 a-c	4.20 c-f	950.00 a-c	1.75 a-c	117.50 de	16.125 a-d	4.125 b-d
RD-04	205.00 ab	3.50 a-c	3.75 d-f	475.00 c	2.75 a-c	250.00 b-е	14.000 b-d	6.000 a-c
RD-07	95.00 de	2.75 a-c	5.25 a-c	425.00 c	1.50 a-c	190.00 с-е	4.250 b-d	4.500 b-d
Ayamurasaki	205.00 ab	4.50 ab	4.50 b-e	800.00 a-c	2.00 a-c	300.00 b-е	15.125 a-d	5.375 a-d
Sari	170.00 b-d	3.75 a-c	3.25 f	825.00 a-c	1.00 a-c	140.00 с-е	15.625 a-d	6.000 a-c
Cilembu	101.00 с-е	3.50 a-c	4.50 b-e	1.175.00 a-c	2.25 а-с	402.50 b-е	20.625 a-d	5.625 a-c
Beta-1	150.50 b-e	3.10 a-c	5.50 ab	1.425.00 a-c	2.50 a-c	347.50 b-e	23.625 a	4.625 b-d
Beta-2	97.50 с-е	3.25 а-с	4.25 c-f	1.312.00 a-c	2.00 a-c	275.00 d-e	15.875 a-d	5.125 a-d
Jago	106.00 b-e	2.25 c	4.50 b-e	1.300.0°	1.50 a-c	267.50 b-e	15.375 a-d	6.125 a-c

Note: WLS = weight of large storage root; NLS = number of large storage root; SL = storage root length; SD = storage root diameter; VL = vines length; SL = segment length; VD = vines diameter; BT = weight of vines

This is an indication that the character of vines length, segment length, vines diameter, weight of vines, number of large storage root, weight of storage root, storage root length and storage root diameter in 30 genotypes used in this study, can be used for selection programme. Qosim et al. (2013) considered selection is an important step in the formation of the expected superior cultivars. The selection process will only succeed if a character has extensive genetic variability (Jalata et al. 2011). The improvement of crops is a function of diverse genetic material, the presence of diverse genetic material guarantees a higher probability of getting the desired gene in enhancing plants. Characters that have extensive genetic diversity will also have a wide variety of henotypes as well (Mohammed et al. 2015). Extensive genetic diversity will provide flexibility in process of selecting genotypes in the selection process, so that the selection process becomes effective (Allard 1960). This state on is supported by Sigrist et al. (2011) who stated that harrow genetic diversity can hinder the selection process, resulting in low selection ficiency, whereas Singh et al. (2012) stated that extensive genetic diversity in germplasm is a decisive factor in the development of superior crops.

The estimated heritability in 30 local Lampung sweet potato genotypes, showed high mean peritability values on all observed characters (Table 5). This shows that the influence of genetic factors is greater than the influence of the environment on the phenotypic appearance on the character of tendrils length, segment length, tendrils diameter, canopy weight, number of large tubers, bulb weight, tuber length and tuber diameter of sweet potato. In accordance with the research of Rahajeng and Rahayuningsih (2017 who reported that the character of tendrils length, crown weight, tuber length, tuber diameter and number of tubers have a broad value of heritability. The heritability of an important character is known to determine selection efficiency (Seyoum et al. 2012). The ease of inheritance can be seen from the value of heritability (Borojevic 1990). High heritability values indicate that these characters are more genetically influenced, so character selection will be effective in the early generations (Bernardo 2002; Afuape et al. 2015; Sutjahjo et al. 2015).

Table 4. Estimated values of genetic and phenotypic diversity of 30 sweet potato genotypes (as of Tabel 1)

Character	$\sigma^2 g$	$2\sigma\sigma^2 g$	Criteria	$\sigma^2 f$	2σσ²f	Criteria
Vines length (cm)	2587.82	1482.30	√ide	2901.06	1473.74	√ide
Segment length (cm)	0.34	0.23	Wide	0.47	0.24	Wide
Vines diameter (mm)	0.55	0.30	Wide	0.59	0.30	Wide
Weight of vines (g)	76293.10	5726.38	Wide	105686.24	8488.89	Wide
umber of large storage root (bulbs)	0.49	0.47	Wide	0.85	0.43	Wide
Veight of large storage root (g)	51654.57	29671.72	Wide	58056.91	29492.93	Wide
Storage root large (cm)	6.70	4.69	Wide	8.95	4.55	Wide
Storage root diameter (cm)	1.12	0.74	Wide	1.43	0.72	Wide

Note: $\sigma^2 g$ = genetic diversity, $\sigma^2 f$ = phenotypic diversity, $2\sigma\sigma^2 g$ = standard deviation of genetic diversity, $2\sigma\sigma^2 f$ = standard deviation of phenotypic diversity

Table 5. Estimated value of heritability in 30 sweet potatogenotypes (as of Tabel 1)

Character	Heritability	Criteria
Vines length (cm)	82.20	High
Segment length (cm)	72.00	High
Vines diameter (mm)	93.00	High
Veight of vines (g)	72.00	High
umber of large storage root (bulbs)	58. <mark>00</mark>	High
Veight of large storage root (g)	89.00	High
Storage root large (cm)	75.00	High
Storage root diameter (cm)	78.00	High

Cerelation analysis

The results of the correlatic analysis showed that the characters of number of large storage root, storage root length, and storage pot diameter were positively correlated to the character of weight of large storage root, while the character of weight of large storage root. Character of segment length, vines diameter and weight of vines did not correlate with weight of large storage root (Table 6). The characters that correlate and have an impact on the increase in storage root yield are the characters used for the selection of sweet potato genotypes in the program to increase sweet potato yield (Gurmu et al., 2017).

The results of similar studies were shown by previous researchers stating that the characters were positively correlated and very real with storage root yields were the number of storage root per plot, storage root weight, storage root diameter, and storage root length, while weight of vines was not correlated (Rahajeng and Rahayuningsih 2015; Gurmu et al., 2017). Kuswantoro (2017) reported that the correlation between characters is important in plant breeding programs, because it can predict an increase in a character through other characters.

Cluster analysis

The results of cluster analysis of 30 sweet potato genotypes showed that these genotypes were grouped into 13 clusters based on 80% quantitative character (Figure 2). Cluster I consists of 2 genotypes (LPG 1 and LPG 3) leading to similarity in character of the weight of large storage root, number of large storage root, storage root length, and weight of vines per plant; cluster II consists of 3 genotypes (10 LPG, LPG 11, LPG 15) leading to similaties in the character of vines diameter, weight of vines, storage root, storage root weight, and storage root diameter; cluster III consists of 3 genotypes (LPG 02, LPG 04, LP 16) leading to similarities in the character of vines length, weight of vines, storage root number, and storage root weight; cluster IV consists of 2 genotypes (LPG 07, Ayamurasaki) leading to similarities in the haracter of vines length, segment length, weight of vines, storage root number, storage root weight, storage root length, and storage root diameter; cluster V consists of 2 genotypes (LPG 05, LPG 14) leading to similarities in the character of segment length, weight of vines, and storage root weight; cluster VI consists of 2 genotypes (LPG 13, LPG 17) leading to similarities in the character of vines diameter, weight of vines, number of large storage root, and weight of large storage root; cluster VII consists of 3 genotypes (LPG 21, RD 03, Sari) leading to similarities in the character of segment length, weight of vines, and number of large storage root; cluster VIII consists of 5 genotypes (LPG 18, RD 04, RD 01, RD 07, LPG 19) leading to similarities in the character of segment length, weight of vines, and number of large storage root; cluster IX consists of 2 genotypes (LPG 06, LPC 20) leading to similarities in characters of weight of vines, number of large storage root, weight of large storage root, and storage root length; cluster X consists of 1 genotype (LPG 09); cluster XI consists of 1 genotype (Cilembu); cluster XII derived from 1 genotype (LPG 12); cluster XIII consisted of 3 genotypes (Beta-1, Beta-2, Jago) leading to similarities in characters of weight of vines and number of large storage root.

Table 6. Correlation coefficient of 50 sweet potato genotypes (as of Table 1)	Т	able 6	í. (Correlation	coefficient	of 30	sweet	potato	genoty	pes	(as of	Table	1)
--	---	--------	------	-------------	-------------	-------	-------	--------	--------	-----	--------	-------	----

Characters	WLS	NLS	SL	SD	VL	SL	VD	WV
NLS	0,83062 **	1						
SL	0,55466 **	0,36392 *	1					
SD	0,66703 **	0,49084 **	0,3519	1				
VL	-0,39733 *	-0,36046 *	-0,31715 ^{ns}	-0,12477 ^{ns}	1			
SL	-0,1609	-0,19520 ^{ns}	-0,17814 ^{ns}	0,18338 ^{ns}	0,68423	1		
VD	-0,06104	-0,04732 ^{ns}	-0,03954 ^{ns}	-0,29640 ns	-0,2671	-0,29428 ^{ns}	1	
WV	-0,23181 ns	-0,19741 ^{ns}	-0,08801 ^{ns}	-0,22036 ns	<mark>-0</mark> ,00446 ^{ns}	<mark>-0</mark> ,04681 ^{ns}	0,15105 ^{ns}	1

Note: ** = very real effect at 1% level $\frac{38}{24}$ = significant effect at the level of 5%; ns = non significant at 5% level; WLS = weight of large storage root; NLS = number of large storage root; SL = storage root length; SD = storage root diameter; VL = vines length; SL = segment length; VD = vines diameter; BT = weight of vines

Figure 2. Dendrograms of 30 sweet potato genotypes are based on similarity quantitative characters

Genotypes that have many similarities in character, heans having a close kinship relationship, while genotypes which have little or no similarity in character, means having a distant kinship relationship (Jan et al. 2012). In addition to the similarity of characters, kinship relationships can be caused due to the same place (Table 1) or close together. This can be seen from the results of research in cluster I, where LPG 01 and LPG 03 came from adjacent places (East Lampung and Central Lampung). Cluster II, where 10 LPG, 11 LPG, and 15 LPG come from one region (Bandar Lampung). Cluster V, where LPG 05 and LPG 14 come from one region (Bandar Lampung), Cluster VI, where LPG 13 and LPG 17 come from one region (South Lampung), Cluster IX, where LPG 06 and LPG 20 come from one region (West Lampung). Cluster XI, Cilembu originating from West Java has a far-reaching relationship with the local Lampung genotype, so in cluster XIII, where the Beta-1, Beta-2, and Jago genotypes come from one region (Malang, East Java) and have a distant kinship with local Lampung genotype. Genotypes which have far-reaching kinship and have superior character can be selected to be crossed in realizing the desired blend of superior characters.

It is concluded that all phenotypic characters (vines length, segment length, vines diameter, weight of vines, number of large storage root, weight of large porage root, storage root length, and storage root diameter) in 30 sweet potato genotypes found at the Politeknik Negeri Lampung have an extensive genetic and phenotypic diversity and high heritability. Genetic factors more influenced the characters found in 30 sweet potato genotypes observed in this study compared to environmental factors. These characters can be used in selecting sweet potato plants for better results in accordance with the desires of breeders. The results of the correlation alysis showed that the characters of number of large storage root, storage root lengths, and storage root diameters were positively correlated to the character of weight of large storage root, while the character of vines length is negatively correlated with the character of weight of large storage root. Character of segment length, vines diameter and weight of vines did not correlate with weight of large storage root. The results of cluster analysis of 30 sweet potato genotypes were grouped into 13 clusters in accordance to the similarity of character and place of origin. Germplasm of 30 sweet potato genotypes found in the Politeknik Negeri Lampung can be selected to be crossed to create the desired superior characters.

ACKNOWLEDGMENTS

The author would like to thank Politeknik Negeri Lampung, Bandar Lampung, Johnsia who has provided research land facilities and to the Indonesian Ministry of Research, Technology, and Higer Education who has given BPPDN scholarships to the authors.

REFERENCES

- Afuape SO, Nwankwo IIM, Omodamiro RA, Njoku JC, Ogbonna CL, Uzuegbu DC. 2015. Targeted breeding for sweet potato-based enterprises: Variability, genotype-by-environment interaction, heritability and correlation studies of important sweet potato root processing quality traits. Intl J Plant Breed Genet 9 (4): 206-217.
- Ahiakpa JK, Kaledzi PD, Adi EB, Peprah S, Dapaah HK. 2013. Genetic diversity, correlation and path analyses of okra (*Abelmoschus* spp L. Moench) germplasm collected in Ghana. Intl J Dev Sustain 2 (2): 1396-1415.
- Allard RW. 1960. Principles of Plant Breeding. John Wiley and Sons, London, UK.
- Amoatey HM, Klu GYP, Quartey EK, Doku HA, Sossah FL, Segbefia MM, Ahiakpa JK. 2015. Genetic Diversity Studies in 29 Accessions of Okra (*Abelmoschus* spp L.) Using 13 Quantitative Traits. Am J Exp Agric 5 (3): 217-225.
- Anderson RL, Bancroft TA. 1952. Statistical theory in research. Mc Graw Hill Book Company, New York USA.
- Ayalneh T, Habtamu Z, Amsalu A. 2012. Genetic variability, heritability and genetic advance in tef (*Eragrostis tef* Zucc Trotter) lines at Sinana and Adaba. Int J Plant Breed Genet 6 (1): 40-46.
- Aywa AK, Nawiri MP, Nyambaka HN. 2013. Nutrient variation in colored varieties of *Ipomoea batatas* grown in Vihiga County, Western Kenya. Intl Food Res J 20 (2): 819-825.
- Bello, OB. 2012. Heritability and genetic advance for grain yield and its related attributes in maize (*Zea mays* L.). J Instasci Micro Biotech 2 (1): 1-14.
- Bernardo R. 2002. Breeding for Quantitative Traits in Plants. Stemma Press, USA.
- Borojevic S. 1990. Principles and methods of plant breeding. In: Borojevic S (ed.) Development in Crop Science. Elsevier, Amsterdam.
- Burri BJ. 2011. Evaluating sweet potato as an intervention food to prevent vitamin A deficiency. Compr Rev Food Sci Food Saf 10: 118-130.
- Burton GW, De Vane EH. 1953. Estimating heritability in tall fescue (*Festuca arundinacea* L.) from replicated clonal material. Agron J 45 (10): 478-481.
- Dewi R, Nurman. 2015. Morphological characterization and content of sugar some sweet potato germplasm local Lampung. Proceedings of the national seminar on food self-sufficiency Politeknik Negeri Lampung, 29 April 2015 [Indonesian]
- Fajriani N, Boer D, Suliartini NWS, Sadimantara IGR, Suaib. 2012. Heritability of some important agronomic characters of several local sweet potato clones cultivated in Kendari suburb villages. Periodic agronomic research 1 (2): 156-163[Indonesian]

- FAOSTAT. 2012. Global Production and Consumption of Root and Root in FAO Corporate Document Repository. Report on the Inter-center Review of Root and Root Crops Research in the CGIAR.
- Gomez KA, Gomez AA. 1984. Statistical Procedures for Agricultural Research. 2nd ed., John Wiley and Sons Inc., New York.
- Gurmu F, Shimelis HA, Laing MD. 2018. Correlation and path coefficient analyses of root yield and related traits Among selected sweet potato genotypes. S A J Plant Soil 35: 179-186
- Jalata Z, Ayana A, Zeleke, H. 2011. Variability, heritability and genetic advance for some yield and yield-related traits in Ethiopian barley (*Hordeum vulgare* L.) landraces and crosses. Intl J Plant Breed Genet 5 (1): 44-52
- Jan HU, Rabbani MA, Shinwani ZK. 2012. Estimation of genetic variability in turmeric (*Curcuma longa* L.) germplasm using agromorphological traits. Pak J Bot 44: 231-238.
- Kuswantoro H. 2017. Genetic variability and heritability of acid-adaptive soybean promising lines. Biodiversitas 18 (1): 378-382.
- Laurie SM, Calitz FJ, Adebola PO, Lezar A. 2013. Characterization and evaluation of South African sweet potato (*Ipomoea batatas* (L.) Lam) landraces. S A J Bot 85: 10-16.
- Lestari AD, Dewi W, Qosim WA, Rahardja M, Rostini N, Setiamihardja R. 2006. Genetic variability and heritability of yield components and yield characters of fifteen red pepper genotypes. Zuriat 17 (1): 94-102 [Indonesian]
- Mohammed W, Ali S, Shimelis B, Burga S. 2015. Genetic diversity of local and introduced sweet potato (*Ipomoea batatas* (L.) Lam.) collections for agro-morphology and physicochemical attributes in Ethiopia. Sci Technol Arts Res J 4 (1): 09-19.
- Petersen, R.G. 1994. Agricultural Field Experiments. Marcel Dekker, Inc., New York.
- Pradhan DMP, Mukherjee A, George J, Chakrabarti SK, Vimala B, Naskar SK, Sahoo B K, Samal S. 2015. High starch, beta carotene, and anthocyanin rich sweet potato: ascent to future food and nutrition security in coastal and backward areas. Intl J Trop Agric 33 (2): 397400 (Part I).
- Qosim WA, Rachmadi M, Hamdani JS, Nuri I. 2013. Phenotypic performance, variability, and heritability of 32 high yielding red papper genotypes. J Agron Indonesian 41 (2): 140-146. [Indonesian]
- Rahajeng W, Rahayuningsih. 2015. The estimation of varian component, heritability, and correlation of high beta carotene sweet potato promising clones. Ilmu Pertanian 18 (1): 51-55 [Indonesian]
- Rahajeng W, Rahayuningsih. 2017. Agronomic performance, variance component, and diversity of sixty-two sweet potato accessions. Biodiversitas 18: 95-100.
- Ritonga AW, Chozin MA, Syukur M, Maharijaya A. 2018. Genetic variability, heritability, correlation, and path analysis in tomato (Solanum lycopersicum) under shading condition. Biodiversitas 19 (4): 1527-1531.
- Seyoum M, Alamerew S, Bantte K. 2012. Genetic variability, heritability, correlation coefficient, and path analysis for yield and yield-related traits in upland rice (*Oryza sativa* L.). J Plant Sci 7 (1): 13-22.
- Sigrist MS, Pinheiro JB. Filho AJA. Zucchi MI. 2011. Genetic diversity of turmeric (*Curcuma longa*; Zingiberaceae) identified by microsatellite markers. Genet Mol Res 10 (1): 419-428.
- Singh S, Panda MK. Nayak S. 2012. Evaluation of genetic diversity in Turmeric (*Curcuma longa*; Zingiberaceae) use RAPD and ISSR marker. Crops Prod 37: 284-291.
- Solankey SS, Singh PK, Singh RK. 2015. Genetic diversity and interrelationship of qualitative and quantitative traits in sweet potato. Intl J Veget Sci 21 (3): 236-248.
- Sutjahyo, Herison, Sulastrini, Marwiyah. 2015. The estimation of genetic variability of growth and yield traits on 30 local tomato genotypes. 25 (4): 304-310. [Indonesian]
- Wahyuni TS, Setiamihardja R, Hermiati N, Hendroatmodjo KH. 2004. Genetic variability, heritability and correlation between yield and some quantitative characters of 52 sweet potato genotypes in Kendalpayak, Malang. Zuriat 15 (2): 109-117 [Indonesian]
- Wera B, Yalu A, Ramakrishna A, Deros M. 2014. Genotypic variability estimates of agronomic traits for selection in a sweet potato poly cross population in Papua New Guinea. J Plant Breeding Genet 2 (3): 131-136.

• 19% Overall Similarity

Top sources found in the following databases:

• 13% Publications database

- Crossref database
- Crossref Posted Content database
- 13% Submitted Works database

TOP SOURCES

The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

Universitas Mahasaraswati Denpasar on 2022-01-07 Submitted works	2%
Hossain, Md Abu Shahadat. "Assessment of Sweetpotato Genotypes f Publication	2%
Joseph Adjebeng-Danquah, Vernon Edward Gracen, Samuel Kwame Of Crossref	1%
Tadesse Tesfaye, Bekele Atnafua, Tsegaye Engida, W. Michael Getach Crossref	<1%
H M Amoatey, F L Sossah, J K Ahiakpa, E K Quartey, A S Appiah, M M S Crossref	<1%
Universitas Brawijaya on 2018-07-11 Submitted works	<1%
National University of Public Service - Institue for Research and Develo Submitted works	<1%
Institut Pertanian Bogor on 2020-06-30 Submitted works	<1%
Rayuli Anira, Catur Herison, Dotti Suryati. "Genetic Variability and Herit Crossref	<1%

Program Pascasarjana Universitas Negeri Yogyakarta on 2018-12-27 Submitted works	<1%
A E Marpaung, B Karo, S Barus. "Inorganic fertilizers efficiency with usi Crossref	<1%
Engida Tsegaye ., Nigussie Dechassa ., E.V. Devakara Sastry "Genetic Crossref	<1%
The Scientific & Technological Research Council of Turkey (TUBITAK) Submitted works	<1%
Fakultas Ekonomi dan Bisnis Universitas Gadjah Mada on 2019-07-01 Submitted works	<1%
Institut Pertanian Bogor on 2019-04-06 Submitted works	<1%
Mariana Susilowati, Sri Wahyuni, Adi Setiadi, Nurliani Bermawie. "Grow Crossref	<1%
Cheng-cheng Si, Qing-gan Liang, Hong-Juan Liu, Ning Wang, Sunjeet K Crossref	<1%
Kennesaw State University on 2014-09-29 Submitted works	<1%
Carolina Oliveira Silva, Osvaldo Toshiyuki Hamawaki, Ana Paula Oliveir Crossref	<1%
Murilo Henrique Souza Leal, André Ricardo Zeist, Nilson Rodrigues Jún Crossref	<1%
Ruben Alfredo Valencia-Ramírez, Samuel Caicedo, Juan Carlos Reyes, Crossref	<1%

22	Institut Pertanian Bogor on 2020-08-05 Submitted works	<1%
23	Fitriani, Bina Unteawati, Zainal Mutaqin, Sutarni. "The Mapping of Agro Crossref	<1%
24	Midlands State University on 2014-05-21 Submitted works	<1%
25	Rodriguez-Bonilla, Lorraine, Hugo E. Cuevas, Milly Montero-Rojas, Fern Crossref	<1%
26	Sonia IM Naidoo, Sunette M Laurie, Hussein Shimelis, Mark D Laing. " Crossref	<1%
27	A C Kusumasari, R Pangestuti, E Sulistyaningsih, R Rosliani. "Growth a Crossref	<1%
28	Habte Jifar, Kebebew Assefa, Zerihun Tadele. "Grain yield variation an Crossref	<1%
29	Syiah Kuala University on 2020-01-06 Submitted works	<1%
30	Chipungu Felistus, Changadeya Wisdom, Ambali Aggrey, Saka John, M Crossref	<1%
31	Higher Education Commission Pakistan on 2014-06-14 Submitted works	<1%
32	Institut Pertanian Bogor on 2019-07-17 Submitted works	<1%
33	Rosmayati, D Bakti. "Identification and phylogenetic analysis of local y	<1%

Savitribai Phule Pune University on 2017-10-09 Submitted works	<1
Sri Nurmayanti, M Tahir, Gusti Ayu Putu Dianti. "Variabilitas, Korelasi, d Crossref	<1
A. F. Sanoussi, A. Dansi, A. Orobiyi, A. Gbaguidi, A. P. Agre, I. Dossou-A Crossref	<1
Abdul Rouf Amarulloh Khalil, Agus Setiawan, Elly Lestari Rustiati, Suge Crossref	<1
Ahmed Sallam, Amira M. I. Mourad, Waseem Hussain, P. Stephen Baen Crossref	<1
Joseph Adjebeng-Danquah, Isaac Kwadwo Asante, Joseph Manu-Adue Crossref	<1
Muhammad Saqib, Muhammad F. Khalid, Sajjad Hussain, Muhammad Crossref	<1
Niko Dwitama, Rustikawati Rustikawati, Dotti Suryati, Catur Herison. "C Crossref	<1
Program Pascasarjana Universitas Negeri Yogyakarta on 2018-11-12 Submitted works	<1
University of Rajshahi on 2019-07-14 Submitted works	<1
Noer-Rahmi Ardiarini, Damanhuri, Afifuddin-Latif Adiredjo. " Genetic V Crossref	<1

46	Universitas Mataram on 2022-03-13 Submitted works	<1%
47	University of Aberdeen on 2018-05-10 Submitted works	<1%
48	Vaal University of Technology on 2012-03-19 Submitted works	<1%
49	Wenbin Wang, Huan Yu, Ho Soo Kim, Yanxin Yang, Xiangpo Qiu, Sang-S Crossref	<1%
50	O. B. Bello, D. Aminu, A. Gambo, A. H. Azeez, M. Lawal, I. Ali, U. A. Abd Crossref	<1%
51	Institut Pertanian Bogor on 2019-05-23 Submitted works	<1%