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Abstract The aim of our study is to select the best method for ()vercmm partial and full multicollinearity in binary
logistic model for different sample sizes. Logistic ridge regression (LRR), least absolute shrinkage and selection operator
(LASSO) and principal component logistic regression (PCE) compared to maximum likelihood estimator (ME4s) using
simulation data with different level of multicollinearity and different sample sizes (n=20, 50, 100, 200). The best method is

chosen based on mean square error (MSE) values and the best

model is characterized by AIC value. The results show that

LRR, LASSO and PCLR surpass MLE in overcoming partial and full multicollinearity in binary logistic model. PCLR
exceeds LRR and LASSO when full multicollinearity occurs in binary logistic model but LASSO and LRR are better used

when partial multicollinearity exists in the model.
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1. Introduction

Consider that the model has the form y; =xéﬁ+£,-
where x;=[1xX;..X] . B = [Bo By - Bi] and
dependent variables y; has value either O or 1. Estimating

arameters in this model where the response variable is
hu‘y or multinomial is not appropriate when using the
linear regression model estimation method. The linear
regression model is based on a ratio scale measurement
[1,2,3]. In this case logistic regression model is more
suaale.

Logistic regression model is based on a logistic function to
model binary dependent variables. It is a classification of
individuals in different groups. Unlike multiple regression,
logistic regression is much more flexible in terms of basic
assumptions to be met. Logistic regression model as one
of nonlinear regression model does not require liner
relationship between independent and dependent variables,
assumption of normal distribution and homoscedasticity in
the error terms. Despite all the flexibility, the logistic
regression model still requires no correlation between
independent variables [4.5]. When there is a correlation
between the independent veu‘ielble,n;islic model becomes
unstable. This can cause errors in the interpretation of the
relationship between the dependent and each independent
variable in terms of odds ratios [6.7].
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There are several methods for overcoming the problem
of multicollinearity in the logistic models and have been
examined by several researchers [89,10,11,12]. In this
research, a selection of LRR, LASSO and PCLR methods
was conducted in logistic model with binary responses and a
set of continuous predictor variables. Each method was
compared using simulation data that contains partial and
full multicollinearity @1 different sample sizes. The best
method was examined based on the minimum value of MSE
and the best model is characterized by AIC value.

2. Logistic Regression Model

Suppose the response variable of regression application of
interest has two possible outcomes or Y; is a Bernoulli
random variable with the probability distribution P(y; =
0)= 1—m; and P(y; = 1) = m; The probability function
for each observation is f(y,) = mYi(1—m)
=1,2,....n [4,5,6,7]. The multiple logistic regression model
of the response variable ¥ = m(X) + &, with m (X)isannx
1 vector and

m(ﬁﬁ E[Y|X = x] = P[Y; = 1] = =2Gt=l)_ 4,

T Ttexp(BotxiB)
where 8 is a k x 1 vector of estimated parameters. The logit
function of m;(x) is logit[x;(x)] =1n (%) or in linear

form can be written as [3,13]:

L(X) =XB 2

The parameters were estimated by maximizing likelihood

function L(B) = [T, m;(x;)?i (1 — m,) ¥ . When the

log-likelihood is differentiated with respect to f equal to
Zero, we get
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' “1_:

Bu. = (XWX) XWZ (3)
where Z is a nxl column vector with elements z; =
logit(®) + =2~ and W = diag[#;(1 — #,)] [7].

(1)

2.1. Logistic Ridge Regression (LRR)

When multicollinearity exist between independent
variables in lheBgislic model, the matrix XWX is (near)
singular. Using maximum likelihood method to estimate the
parameters in the model is not suitable because we cannot get
the inversi(S)f the matrix. As aresult, the estimation of the
parameters in the logistic model using maximum likelithood
method is being unstable and cannot be uniquely estimated.
In this situation, the ridge regression method can be applied
by using a penalty to the diagonal matrix of XWX to
stabilize the coefficients estimates [14,15,16]. Although
this method will produce a bias in the coefficient estimates of
the model, it provides a lower variance of the coefficient
estimates than the unpenalized model. Ridge likelihood
estimator of the logistic model is done by maximize the ridge
penalized loglikelihood [17,18,19,20.21]:

LR (B,2) = L(B) — AB'B
= Xisalyilog(m) + (1 — i) log(1 + )] - lﬁm(‘l)
where the ridge penalty is the second summand (the sum of
the square of the elements of B) with A4 as penalty
ﬂrameter. Because the value of the B equation is not linear,
Newton-Raphson method is used to solve it. The solution
uses and follows the iterative weighted least square

algorithm to obtained the B estimates. The logistic ridge
regression (LRR) model following [17] is:

Birr = XWX + kI) "X WX Brape &)

with k = Fiz 5and W as in equation (3) [17].

2.2. Least Absolute Shrinkage and Selection Operator
(LASSQO)

LASSO method can be used to overcome problems
in multicollinearity [22]. LASSO shrinks the coefficient
parameter B which correlates to exactly zero or close to zero
[23]. Lagrangian constraint (L.1-norm) can be combined in a
log-likelihood parameter estimation in logistic regression

[24,25]. The estimation of parameters in LASSO in
combining log-likelihood and Lagrangian constraints
produces:
1(B) = = X[ = y)B'x; + In(L+ exp(—=f x))]
- A% 6)

So we get a logistic regression parameter estimates with
LASSO:

BiSS0 = argmax {I(B) - AX][B} @

A > 0 is the tuning parameter that control the strength of
penalty in the LASSO method and can be obtained using
generalized cross validation [22].
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2.3. Principal Component Logistic Regression (PCLR)

In linear regression analysis, principal component
regression (PCR) is one of the methods that has been
confirmed to be able to overcome lpr()blem of
multicollinearity [1,11,2627]. PCR aims to simplify the
observed variables by reducing the dimensions, where the
chosen principal com[ﬂ]ems must maintain as much
diversity as possible. This is done by eliminating the
correlation between the independent variables through the
transformation of the original independent variable into a
new variable that does not correlate at all. In lem‘m' the
principal component (PC) of the predictor variables, the logit
transformation (2) can be written as principal component
regression form as:

LOXOgPyEB = ZV R =2Zy (8)
where Z=XV as ann x k an.rix whose columns are the
PCs of X with V¥ is a k£ x kK matrix whose columns are the
eigenvectors of the of the matrix XX denoted by v; with
j=1,..,p.Itis obvious that ¥ = VT B can be estimated by

v=VB ©)
The prediction equation of MLE is ¥ (x) = #(x) with
fi(x) =
exp(Bo + X <12 ()7)/(1 + exp(By + Lf=12 (1)7))
where z (x) = x'v; is the j-th PC value for a point x. The
logit model (8) can be expressed as

L(X) = ol+Z,y° + Z,y" (10)

The principal component logistic regression (PCLR)
model in terms of the first PC is ¥ = 75(X) +&° and
the logit transformation, L(X) has components L;° =
In([m;*/(1 —m;*)] is defined as L°(X)=W,y® . The
parameter estimate of the PCLR [9] is:

B =vy (11

where the subscript (s) indicates number of PCs were used in
the PCLR model.
This method was introduced by Aguilera et al. [10] for
solving the problem of high-dimca'mal multicollinear
data in logistic regression of binary response variable and
a set of continuous predictor variables. They showed that
the PCLR model provides better estimation of model
parameters compared to partial least square (PLS) logistic
regression.

3. Methods

Mustration of the performance of LRR, LASSO PCLR
methods used in this study was calrriecn.ll using a simulation
study to show how these methods can improve the estimation
of parameters of the binary logistic model contains partial
and full multicollinearity using R. Six independent
variables (p=60) wer@nerilled using the formula X, =

J(1 —p&ij + PZipen: E=12,.,n and j=12,..,6

with z; ~N(0,1) and p = 0,99. The dependent variable Y is
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generated by the binary logistic regression probability
exp (Bo+ Baxi+ Baxp+4fpap)

P(yi=1) =mx) = Ltexp (Bo+ Brx1+ faxz+tfpty)
Bo=0 and By = fi =-+= B, =1 respectively. Partial
and full multicollinearity between independal variables
were applied in the model with different sample sizes
(n=20, 40, 60, 100, 200) and replicated 1000 times.
Multicollinearity — of e independent variables is

with

measured by VIF = with Rjz is the coefficient of

(=R}
determination. The best method in estimating the parameters
1s evaluated using MSE with formula:

MSE(B) = %ZIIF(” -8II"

and the best model is characterized by AIC. = 2k — 2In(L)
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where L = p(8,M), is the value that maximize the
likelihood function, n 1s the number of recorded
measurements and k is the number of parameters estimated
[28.29].

4. Results and Discussion

The partial and full multicollinearity of the independent
variables applied in this study is shown in Table 1. First,
partial multicollinearity in which correlation only applies
between X, and X;; second, partial multicollinearity where
correlation occurs only between X, X;, and X;; third, full
multicollinearity in all independent variables. This condition
1s applied to all sample sizes that are being studied.

Table 1. Multicollinearity in independent variables for all sample sizes studied
Ind . VIF
Vall'iab]es Partial multicollinearity Partial multicollinearity Full
in X1, Xz in Xo, Xz, X3, Xy multi-collinearity
X 20.35 20.35 20.35
X2 20.68 20.68 20.68
X 162 2317 2317
X 165 30.33 30.33
X5 148 128 31.28
X 158 114 41.14

From Table 1, we can see that the VIF values are greater
than 10 for all given cases in this study. It means that the
independent variables seem to correlate to each other and
indicate there is a multicollinearity between these variables.
To select the method that is considered the best in
overcoming the multicollinearity problems in this study,
MSE value is used. The best method is determined from an
MSE value that close to zero. The MSE values of MLE, LRR.,
LASSO, PCLR for partial and full multicollinearity in the
model at different sample sizes are shown in Table 2.

From Table 2 where partial multicollinearity in X, and X,
occurs in the model, MLE gives MSE =35608.77 for n=20,
MSE= 1112.951, for n=50, MSE= 0.0820, for n=100,
respectively. These values are far above the MSE of LRR,
LASSO and PCLR which give MSE = 0.0857, 00170,
0.0207 for n=20, MSE =0.0506, 0.0085, 0.0175 for n=50,
and MSE =0.0385, 0.0026, 0.0126 for n=100, respectively.
Similar results are obtained when partial multicollinearity
exists in X, X,;, X5, Xy and when the model contains
full multicollinearity. It is obvious that MLE is unable
to overcome partial and full multicollinearity between
independent variables very well in logistic regression with
binary responses when sample sizes are small enough. In a
larger sample size (n=200) the MSE of MLE seems to
decrease significantly, but its value still above the MSE of
LRR, LASSO and PCLR. This suggests that MLE should not
be used in estimating the parameters of logistic models with
binary responses that have partial and full multicollinearity

on small and large sample sizes.

Table 2. MSE of MLE, LRR, LASSO, PCLR

Multicolli- MSE
nearity in MLE LRR | LASS0 | PCLR
X, X n=20 | 35608.77 | 0.0857 | 0.0170 | 0.0207
n=50 | 1112951 | 0.0506 | 0.0085 | 0.0175
n=100 | 00820 | 0.0385 | 0.0026 | 0.0126
n=200 | 00064 | 0.0054 | 0.0017 | 0.0057
X0 X2 X Xe | n=20 | LO3E+27 | 00572 | 0.0495 | 0.0216
n=50 | 2.53E+25 | 0.0536 | 0.0291 | 0.0194
n=100 | 47.6825 | 0.0435 | 0.0078 | 0.0161
n=200 | 00162 | 0.0051 | 0.0052 | 0.0084
XiXaXaXe |20 | 377E+26 | 0.0668 | 01452 | 0.0182
X5 Xa
n=50 | 2.66E+25 | 0.0528 | 0.0664 | 0.0089
n=100 | 16867.23 | 0.0114 | 0.0149 | 0.0049
n=200 | 00336 | 0.0062 | 0.0092 | 0.0006
To provide clearer results from the LRR, LASSO

and PCLR methods 91 overcoming partial and full
multicollinearity for all sample sizes (n=20, 40, 60, 100, 200),
we compared the MSE of the three methods separately from
MLE as shown in Figure 1-3.
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Figure 3. MSE of full multicollinearity

Figures 1-3 shows MSE of LRR, LASSO and PCLR in
conditions where the binarg)gisljc model contains partial
and full multicollinearity at different sample sizes (n=20, 50,
100, 200. It can be seen that MSE values of LRR, LASSO
and PCLR vary depending on the number of correlated
variables and sample sizes. If partial multicolline arity occurs
between X, and X, in the model, LASSO gives MSE=
0.0170, 0.0085, 0.0025, and 0.0017 for n=20, 50, 100, and
200, respectively. These values are much lower than
MSE wvalue of LRR and PCLIQI()wever, when partial
multicollinearity occurs among X; X5 X3 and Xy in the
model, the results vary. For n = 20 and 50, LASSO and LRR
gives lower MSE than PCLR. Conversely, for n= 100 and
n=200, PCLR has tta()west MSE compared to LASSO and
LRR. This suggests that when partial multicollinearity exists
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in the binary logistic model, LASSO, LRR, and PCLR can be
used depending on the amount of multicollinearity and
sample sizes.

In situation where there is full multicollinearity between
the independent variables in the model, we can see from
Figure 3 that PCLR has the lowest MSE value than LRR and
LASSO with MSE= 00182, 00089, 0.0049, and 0.0006
for n=20, 50, 100, 200, respectively. Obviously, LRR and
LASSO appear unable to overcome full multicollinearity in
logistic regression with binary responses. In this case PCLR
exceeds LRR and LASSO for each sample size studied
(n=20, 50. 100, 200). This indicates that PCLR is the best
method for overcoming full multicollinearity in binary
logistic model for all sample sizes being studied.

To determine the best model, we examine the AIC values
of LRR, LASSO and PCLR as shown in Table 3.

Table 3. AIC of LRR, LASSO and PCLR

Method
Multicollinearity in
LRR LASSO PCLR
n=20 237817 | 22.2384 | 23.3529
n=50 239976 | 23.4506 | 23.9840
XX
n=100 | 248375 | 24,1487 | 24.6437
n=200 | 256043 | 252272 | 25.3984
n=20 219677 | 21.2499 | 19.6000
n=50 219843 | 217072 | 19.8603
XX XoX,
n=100 | 228726 | 20.1575 | 22.5838
n=200 | 216062 | 23.1186 | 23.5904
n=20 204921 19.6963 | 19.5883
n=50 207754 | 20.2561 19.8593
XXX XXX
n=100 | 218765 | 21.3905 | 20.1537
n=200 | 223716 | 21.9450 | 21.2761

Based on the AIC valum()m Table 3 it was found that
the best model depends on the number of correlated variables
in the binary logistics model and sample size. This supports
the results obtained based on the MSE value.

5. Conclusions

We conclude from the results of this study that LRR,
LASSO and PCLR surpass MLE in overcoming partial
multicollinearity and full multicollinearity occur in binary
logistic model. PCLR exceeds LRR and LASSO when full
multicollinearity occurs in binary logistic model but LASSO
and LRR are better used when partial multicollinearity exists
in the model.
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