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Abstract This study aims to compare the performance of Ordinary Least Square (OLS), Least Absolute Shrinkage and
Selection Operator (LASSO), Ridge Regression (RR) and Principal Component Regression (PCR) methods in handling
severe multicollinearity among explanatory variables in multiple regression analysis using data simulation. In order to select
the best method, a Monte Carlo experiment was carried out,awas set that the simulated data contain severe multicollinearity
among all explanatory variables (p = 0.99) with different sample sizes (n = 25, 50, 75, 100, 200) and different levels of
explanatory variables (p=4, 6, 8, 10, 20). The performances of the four methods are compared using Average Mean Square
Errors (AMSE) and Akaike Information Criterion (AIC). The result shows that PCR has the lowest AMSE among other
methods. It indicates that PCR is the most accurate regression coefficients estimator in each sample size and various levels of
explanatory variables studied. PCR also performs as the best estimation model since it gives the lowest AIC values compare

to OLS, RR, and LASSO.
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1. Introduction

Multicollinearity is a Lmition that arises in multiple
regression analysis when there is a strong correlation or
ationship between two or more explanatory variables.
Multicollinearity can create inaccurate estimates of the
regression coefficients, inflate the standard errors of the
regression coefficients, deflate the partial t-tests for the
regression coefficients, give false, nonsignificant, p-values,
and degrade the predictability of the model [1, 2]. Since
multicollinearity is a serious problem when we need to make
inferences or looking for predictive models, it is wvery
important to find a best suitable method to deal with
multicollinearity [3].

There are several methods of detecting nmcollinearity,
Some of the common methods are by using pairwise scatter
plots of the explanatory variables, looking at near-perfect
relationships, examining the correlation matrix for high
c]ations and the variance inflation factors (VIF), using
eigenvalues of the correlation matrix of the explanatory
variables and checking the signs of the regression
coefficients [4, 5].

Several solutions for handling multicollinearity problem
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have been developed depending on the sources of
multicollinearity. If the multicollinearity has been created by
the data collection, collect additional data over a wider
X-subspace. If the choice of the linear model has increased
the multicollinearity, simplify the model by using variable
selection techniques. If an observation or two has induced
the multicollinearity, remove those obscfZlions. When
these steps are not possible, one might try ridge regression
(RR) as an alternative procedure to the OLS method in
renssion analysis which suggested by [6].

Ridge Regression is a technique for ana]yzinﬂnu]tip]e
regression data that suffer from multicollinearity. By adding
a degree of bias to the regression estimates, RR reduces the
standard errors and obtains more accurate regression
coefficients estimation than the OLS. Other techniques, such
as LASSO and principal components regression (PCR), are
also very common to overcome the multicollinearity. This
study will explore LASSO, RR and PCR regression which
performs best as a method for handling multicollinearity
problem in multiple regression analysis.

2. Parameter Estimation in Multiple
Regression

2.1. Ordinary Least Squares (OLS)

The multiple liumregressiml model and its estimation
using OLS method allows to estimate the relation betw@ a
dependent variable and a set of explanatory variables. If data
consists of n observations {y;, x;}i~; and each observation i
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includes a scalar response y; and a vector of p explanatory
(regres] x; for j=1,.p, a multiple linear regression
model can be written as ¥ = Xf + £ where Y,,,, is the
vector dependent mible, Xpxp represents the explanatory
variables, B, is the regression coefficients to be estimated,
and g,,; represents the errors or residuals. Bos =
(X'X)"X'Y is estimated regression coefficients using OLS
by minimizing the squared distances between the observed
and the predicted dependent variable [1, 4]. To have
unbiased OLS estimation in the model, some assumptions
should be satisfied. Those assumptions are that the errors
have an expected value of zero, that the explanatory
variables are non-random, that the explanatory variables are
lineary independent, that the disturbance are homoscedastic
and not autocorrelated. Explanatory variables subject to
multicollinearity produces imprecise estimate of regression
coefficients in a multiple regression. There are some
regularized methods to deal with such problems, some of
them are RR, LASSO and PCR. Many studies on the three
methods have been done for decades, however, investigation
on RR, LASSO and PCR is still an interesting topic and
attract some authors until recent years, see e.g. [7-12] for
recent studies on the three methods.

2.2. Regularized Methods
a. Ridge regression (RR)

Regression coeficients B2-° require X as a centered and
scaled matrix, the cross product matrix (X' is nearly
singular when X-columns are highly correlated. It is often the
case that the matrix X'X is “close” to singular. This
phenomenon is called multicolling@ity. In this situation
BP% still can be obtained, but it will lead to significant
changes in the coefticients estimates [13]. One way to detect
multicollinearity in the regression data 1s to use the use the
variance inflation factors VIF. The formula of VIF is

(VIF)=(VIF); = 1_—‘Rz
i)

Ridge regression technique is based on adding a ridge
parameter (A) to the diagonal of X'X matrix forming a new
matrix (X’X+AI). It's called ridge regression because the
diagonal of ones in the correlation matrix can be described as
a ridge [6]. The ridge formula to find the coefficients is
fi=(X'X+AD"1X'Y, 1= 0. When A =0, the ridge
estimator become as the OLS. If all A's are the same, the
resulting estimators are called the ordinary ridge estimators
[14, 15]. It is often convenient to rewrite ridge regression in
Lagrangian form:

5 argmin

4 = ﬁo,@[ﬁ lly = XBI13 + AllII3}

Ridge regression has the ability to overcome this
multicollinearity by constraining the coefficient estimates,
hence, it can reduce the estimator’s variance but introduce
some bias [16].

b. The LASSO

The LASSO regression
optimazation problem:

estimates

BO LS

by the
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N in{1

B= " Iy — XBIE + A1

forsome A = 0. By Lagrangian duality, there is one-to-one
correspondence between constrained problem ||B]l, <t
and the Lagrangian form. For each value of ¢ in the range
where the constraint ||B||; <t is active, there is a
corresponding value of A that yields the same solution form
Lagrangian form. Conversely, the solution of f; to the
problem solves the bound problem with ¢ = ",1'.'?,1"1 [17, 18].

Like ridge regression, penalizing the absolute values of
the coefficients introduces shrinkage towards zero. However,
unlike ridge regression, some of the coefficients are
shrunken all the way to zero; such solutions, with multiple
values that are identically zero, are said to be sparse. The
penalty thereby performs a sort of continuous variable
selection.
¢. Principal Component Regression (PCR)

Let V=[V,,....V,} be the matrix of size p x p whose
columns are the normalized eigenvectors of X'X, and let

15 A, be  the cm‘rcdnding eigenvalues. Let
W=[WI1,...Wp]= XV. Then W;= XV; is the j-th sample
principal components of X. The regression model can be
writen as Y =XB+¢=XVV'B+¢=Wy where
¥ = V'B. Under this formulation, the least estimator of y is

7= WW) WY =A"W'Y.

And hence, the principal component estimator of f is
definfby f =V; =VA'W'Y [19-21]. Calculation of
OLS estimates via principal component regression 1 be
numerically more stable than direct calculation [22]. Severe
multicollinearity will be detected as very small eigenvalues.
To rid the data of the multicollinearity, principal component
omit the components associated with small eigen values.

2.3. Measurement of Performances

To evaluate the performances at the methods studied,
Average Mean Square Error (AMSE) of regression
coefficient B is measured. The AMSE is defined by

m
AMSE(B) = EZIIF(‘) -8l
17 ni
where £ denotes the estimated parameter in the /-th
simulation. AMSE value close to zero indicates that the slope
and intercept are correctly estimated. In addition, Akaike
Information Criterion (AIC) is also used as the formance
criterion  with formula: AIC, = 2k — 2In (L)  where
L= p(xlg, M ),g are the parameter values that maximize
the likelihood function, x = the observed data, n = the number
of data points in x, and k = the number of parameters
estimated by the model [23, 24]. The best model is indicated
by the lowest values of AIC.

3. Methods

In this study, we consider the true model as ¥ = X + €.
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We simulate a set of data with sample size n= 25, 50, 75, 100,
200 contain severe multicolleniarity among all explanatory
variables [p=On] using R package with 100 iterations.

Following [25] the explanatory variables are generated by

x5 = (1= pHY 2w + puy;,
i=12,n j=12..,p.

Where  uy; standard  normal
pseudo-random numbers and p is specified so that the
theoretical correlation between any two explanatory
variables is given by p2. Dependent variable (¥) foreach p
explanatory variables is from ¥ =XB+ & with f
parameters vectors are chosen arbitrarily (£,=0, and f=1
otherwise) for p=4, 6, 8, 10, 20 awN (0, 1). To measure
the amount of multicolleniarity in the data set, variance
inflation factor (VIF) is examined. The performances of OLS,
LASSO, RR, and PCR m s are compared based on the
value of AMSE and AIC. Cross-validation is used to find a

value for the A value for RR and LASSO.

are  independent

4. Results and Discussion

The existence of severe multicollinearity in explanatory
variables for all given cases are examined by VIF values.
The result of the analysis to simulated dataset with p =4, 6, 8,
10, 20 with n = 25, 50, 75, 100, 200 gives the VIF values
among all the explanatory variables are between 40-110.
This indicates that severe multicollinearity among all
explanatory variables is present in the simulated data
generated from the specified model and that all the
regression coefficients appear to be affected by collinearity.
LASSO method is for choosing which covariates to include
in the model. It is based on stepwise selection procedure. In
this  study, LASSO, cannot overcome
multicollinearity among all explanatory variables since it can
reduce the VIF in data set a little bit. Whereas in every cases
of simulated data set studied, RR reduces the VIF values less
than 10 and PCR reduce the VIF to 1. Using this data, we
compute different estimation methods alternate to OLS. The
experiment is repeated 100 times to get an accurate
estimation and AMSE of the estimators are observed. The
result of the simulations can be seen in Table 1.

In order to compare the four method{gkily, the AMSE
results in Table 1 are presented as graphs in Figure 1 - Figure
5. From those figures, it is seen that OLS has the highest
AMSE value compared to the other three methods in every
cases being studied followed by LASSO. Both OLS and
LASSO are not able to resolve the severe multicollinearity
problems. On the other hand, RR gives lower AMSE than
OLS and LASSO but still high as compare to that in PCR.
Ridge regression and PCR seem to improve prediction
accuracy by shrinking large regression coefticients in order
to reduce over fitting. The lowest AMSE is given by PCR in
every case.

It clearly indicates that PCR is the most accurate estimator
when severe multcollinearity presence. The result also show
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that sample size affects the value of AMSEs. % higher the
sample size used, the lower the value of AMSE from each
estimators. Number of explanatory variables does not seem
to affect the accuracy of PCR.

Table 1. Average Mean Square Error of OLS, LASSO, RR, and PCR

AMSE
P n
OLs LASSO RR PCR
25 5.7238 3.2880 0.5484 0.0169
50 32870 25210 0.3158 0.0035
4 75 23645 20913 0.2630 0.0029
100 1.7750 1.6150 0.2211 0.0017
200 0.8488 0.8438 0.1512 0.0009
25 15.3381 6.5222 0.5235 0.0078
50 53632 4.0902 0.4466 0.0051
6 75 4.0399 3.4828 0.3431 0.0031
100 28200 2.5032 0.2939 0.0020
200 1.3882 1.3848 0.2044 0.0013
25 20.4787 8.7469 0.5395 0.0057
50 82556 5.9925 0.4021 0.0037
8 75 5.6282 4.7016 0.3923 0.0018
100 38343 34771 0.3527 0.0017
200 1.9906 1.9409 0.2356 00008
25 27.9236 12.3202 12100 0.0119
50 12,1224 7.8290 0.5129 0.0089
10 75 7.0177 5.8507 0.4293 0.0035
100 4.7402 4.3165 0.3263 0.0022
200 25177 2.4565 0.2655 0.0013
25 396.6900 336787 10773 0.0232
50 33,8890 16.4445 0.7861 0.0065
20 75 18.5859 13.1750 0.6927 0.0052
100 12.1559 9.7563 0.5670 0.0032
200 55153 5.2229 0.4099 0.0014
7
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0 |+
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Figure 1. AMSE of OLS, LASSO, RR and PCR for p=4




N. Herawati et al.:  Regularized Multiple Regression Methods to Deal with Severe Multicollinearity

170
18
1e e LS
’\ i ASS0
12
= \ sl RR
29
- =g PCR
o lm_\
3
o
25 50 75 100 200
Sample Size (n)
Figure 2. AMSE of OLS, LASSO, RR and PCR for p=6
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Figure 3. AMSE of OLS, LASSO, RR and PCR for p=8
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Figure 4. AMSE of OLS, LASSO, RR and PCR for p=10
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Figure 5. AMSE of OLS, LASSO, RR and PCR for p=20
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To choose the best model, gus& Akaike Information
Criterion (AIC) of the models obtained using the four
methods being studied. The AIC values for all methods with
different number of explanatory variables and sampl@Z&ges is
presented in Table 2 and displayed as bars-graphs in Figure 6
—Figure 10.

Figure 6 —Figure 10 show that the greater the sample sizes
are the lower the values of AIC and in contrary to sample
sizes, number of explanatory variables does not seem to
affect the value of AIC. OLS has the highest AIC values in
every level of explanatory variables and sample sizes.
LASSO as one of the regularized method has the highest AIC
values compare to RR and PCR. The differences of AIC
values between the PCR performances from RR are small.
PCR is the best methods among the selected methods
including based on the value of AIC. It is consistent with the
result in Table 1 where PCR has the smallest AMSE value
among all the methods applied in the study. PCR is
approximately effective and efficient for a small and high
number of regressors. This finding is in accordance with
previous study [20].

Table 2. AIC values for OLS, RR, LASSO, and PCR with different
number of explanatory variables and sample sizes

p | Methods "
25 50 75 100 200

OLS 8.4889 | 82364 | 82069 | 8.1113 | 8.0590
LASSO B.4640 | 82320 | 82056 | 8.1108 | 8.0589
¢ RR 8.3581 | 8.1712 | B.1609 | 8.0774 | 8.0439
PCR 8.2854 | 8.1223 | B.1173 | 8.0439 | 8.0239
OLS 8.7393 | 83541 | 82842 | 8.1457 | 8.0862
LASSO 8.6640 | 83449 | B2B06 | 8.1443 | 8.0861
o RR 8.4434 | 82333 | B.1995 | 8.0868 | 8.0598
PCR 8.3257 | 8.1521 | B8.1327 | 8.0355 | 8.0281
OLS 8.8324 | 83983 | 83323 | 8.2125 | 8.1060
LASSO 8.7181 | 83816 | 83259 | 8.2104 | 8.1058
; RR 8.3931 | 82039 | 82062 | 8.1247 | 8.0660
PCR 8.2488 | 8.1069 | B.1162 | 8.0550 | 8.0254
OLS 9.0677 | 84906 | 83794 | 8.2595 | 8.1142
LASSO 89011 | 84556 | 83711 | 8.2570 | 8.1140
10 RR 8.4971 | 82275 | 82120 | 8.1446 | 8.0608
PCR 8.2405 | 8.0969 | B.1035 | 8.0674 | 8.0104
OLS 11.3154 | 9.1698 | 8.7443 | 85138 | §.2652
LASSO | 9.8490 | 9.0324 | B.7055 | 8.4968 | 8.2638
0 RR 8.5775 | 84475 | 83195 | 8.2202 | 8.1390
PCR 8.2628 | 82138 | 8.1375 | 8.0759 | 8.0535
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Figure 6. Bar-graph of AIC for p=4
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Figure 10. Bar-graph of AIC for p=20

5. Conclusions

Based on the simulation results at p =4, 6, 8, 10, and 20
and the number of data n = 25, 50, 75, 100 and 200
containing severe multicollinearity among all explanatory
variables, it can be concluded that RR and PCR method are
capable of overcoming severe multicollinearity problem. In
contrary, the LASSO method does not resolve the problem
very well when all variables are severely correlated even
though LASSO do better than OLS. In Overall PCR
performs best to estimate the regression coefficients on data
containing severe multicolinearity among all explanatory
variables.

88 =OLS
8.6 BLASSO
8.4 YRR
o]
E 8.2 mPCR
8
7.8
7.6
25 50 75 100 200
Sample size (n)
Figure 7. Bar-graph of AIC for p=6
S mOLS
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u 84 “RR
< 82 mPCR
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25 50 75 100 200
Sample size (n)
Figure 8. Bar-graph of AIC for p=8
9.5 ®OLS
9 mLASSO
RR
S 8.5 =
- 8 mPCR
7.5
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Sample size (n)

Figure 9. Bar-graph of AIC for p=10
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