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Abstract
In longitudinal studies, multiple measurements are taken on the same
subject at different points in time. Thus, observations for the same
subject are correlated. This paper proposes a robust procedure for
estimating parameters of regression model when generalized
estimating equation (GEE) applied to longitudinal data that contains
outliers. The procedure is a combination of the iteratively reweighted
least square (IRLS) and least trimmed square (LTS) methods and is
called iteratively reweighted least trimmed square (IRLTS). We
conducted a simulation study for gamma model and Poisson model
using the proposed method, the result shows that our approach can

provide a better result than the classical GEE.

1. Introduction

In statistics, generalized estimating equation (GEE) [5] is used to
estimate the parameters of a generalized linear mDIG (GLM) [6] with a
possible unknown correlation between outcomes. It is a general statistical
approach to fit a marginal model for longitudinal data analysis, and it has
been popularly applied into clinical trials and biomedical studies. GEEs
belong to a class of regression techniques that are referred to as
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semiparametric because they rely on specification of only the first two
moments. Under correct model specification and mild regularity conditions,
parameter estimates from GEEs are consistent. The generalized estimating
equation approach requires correct specification of the first two moments of'a
model. However, these moment assumptions can be distorted by
contaminated or irregular measurements namely outliers. As a result, the
generalized estimating equation method fails to give consistent estimators,
and more seriously this will lead to incorrect conclusions [1, 8]. In this

situation, we need a r%st method that can minimize the effect of outliers.

In recent years a few studies have considered robust methods for
longitudinal data analysis, see e.g. [1, 2, 4, 8, 11]. In this paper, we combine
the IRLS and LTS for obtaining a robust estimation of GEE when data
contain outliers. We have shown the effectiveness of this procedure for
normal model [7]. In this paper we apply the proposed procedure to gamma

and Poisson models.

2. Generalized Estimating Equation

Let the vector of measurements on the ith subject be Y; = [Yif,.... ¥; i ]T
with corresponding vector of means p; = [p;, ..\ pmé}" and X; =

[Xip oo X;]7 be the myx p matrix of covariates. In general, the

comporalts of ¥; are cormrelated but Y; and Y, are independent for any

i # k. To model the relation between the response and covariates, we can

use a regression model similar to the generalized linear models:

g(n;) =n; = X;B,
where p; = E(Y;|X;), g is a specified link function, and B = [B, ..., BP]T
is a vector ofunkrml regression coefficients to be estimated. The GEE for

estimating the p x 1 vector of regression parameter B is given by:

K T
S = Y- FEVN - wi(B) =0 0
i=l
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WEI‘E V; be the covariance matrix of Y; modeled as V; = ?LA:/ZR([:)AFZ,

I

A; is a diagonal matrix of variance functions v(n;), and R(a) is the

working correlation matrix of Y; indexed by a vector of parameters a.

Solutions to equation (1) are obtained by alternating between estimation of
and a. There are several specific choices of the form of working correlation

matrix R;(e) commonly used to model the correlation matrix of Y;, among

them are exchangeable and autoregressive correlation matrices.

hlving for B is done with iteratively reweighted least squares (IRLS).
The following is an algorithm for fitting the specified model using GEEs as
desﬁbed in [3] and [8]:

1. Compute an initial estimate of ﬁGEEa for example with an ordinary

generalized linear model assuming independence.

2. A current estimate ﬁGEE is updated by regressing the working

on
P

response vector Z* = Xf + = (y — i) on X. A new estimate f,,,,, is

obtained by:
Brew = (XTWX)XTWZ,
where W™ is a block diagonal weight matrix whose ith block is the

—1 -1
—— Z[(;lll;] A:IRi(&)A:I[?;] .

3. Use ﬁ},ew to update § = X[im,w = HZ", where
H=X(XTw*x) 'xTw*,
4. Iterate until convergence.
3. Iterated Reweighted Least Trimmed Square

Let us briefly recall that the robust estimation of regression parameters
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using LTS [9] method is given by:

h

- . 2
Brrs = argmin Z e

i=1

2 2 2 2 5
where ef < ey << ¢, =--- < ¢, are the ordered squared residuals, from

smallest to largest. LTS is calculated by minimizing the /& ordered squares

3n n+l

. n
residuals, where /i can be chosen between the range — + 1 <h<— +

2 4 4 7
with n being sample size and number of parameters, respectively. One can
refer to e.g. [9, 10] for some details on LTS method.

The IRLTS procedure is stated in the following short algorithm. To
motivate this method, it is convenient to write the algorithm with nvolving

the residuals.

1. Compute an initial estimate of Bggr using IRLS, use the estimate to

calculate fitted value: p; = g_I(X{-[A})A

2. Calculate residuals: ey =Y, - }1{"{" Sort | &j | for i =1, 2, ..t and

J =12 .. n inascendingorder: |e | <|ep | < <|e, |

3. Choose h observations which have the lowest A-residuals, we denote

as subset /.

4. Improve estimates of f by solving ﬁnew based on subset / using

IRLS.

5. Iterate until convergence.

4. Simulation Study

We compare the performances of IRLTS and IRLS through simulation
study. Two types of outcomes are considered, continuous and count

responses. The models for data generation are as follows:
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1/ = Bo + Brxyj +Paxays
Log(n;;) = Bo + Brxy; + Paxai»

where ;s ford =0, 1, 2 are randomly generated, i = 1, 2, ..., 200 and

j=1,2,.., 5 The covariates Xy;; are 1.i.d. from a uniform distribution
ﬁnif(l, 5), and x, is the measurement time variable, i.e., x5; =1, 2, 3, 4, 5.
For each scenario, we generate the data based on the underlying true
correlation structures as exchangeable and autoregressive with o = 0.5, For
the first model (inverse link) the gamma distributed model was used, and for
the second model (lcn link) the Poisson distributed model was applied. In
this simulation, 1000 Monte Carlo data sets were generated for each scenario.
We considered contamination proponm in data & = 5%, 10%, 20% and
30%. We evaluated the results using the mean square error (MSE) of the

parameter estimates.

We provide the expected mJE:S and MSEs of parameter estimates
resulted from our simulation on Table 1-Table 4. Table 1 and Table 2 show
the expected values and MSEs of parameter estimates for the first model,
while Table 3 and Table 4 for the second model.

Table 1. The expected values, standard errors and MSEs of [3{- for gamma

distributed model with exchangeable correlation matrix

Method Classical GEE IRLTS
Bo
e E(By) SE(Bg) MSE EBy) SE(Bg) MSE
5% 1.833421 0417356 0419098  1.292539  0.280084  0.080563
10% 1.963008  0.551804  0.694453  1.343505  0.345998  0.119739
20% 2105067 0522999 0861099  1.302799 0245013  0.061308

30% 2.158723  0.712847 1.180859  1.432421  0.581205  0.346613
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B
e E(B))  SE()  MSE  E@)  SE(;)  MSE
5% 0.664892 0297197 0205406  0.957103  0.034595 0.003693
10% 0.587415 0.348410  0.297492 0.968876 0.075239 0.007119
20% 0314225 0347369  0.600688  0.964959  0.039372 0.003323
30% 0.297561 0.338291 0.617832 0.937923 0.088894 0.012682
B2
£ E(p2) SE(B2) MSE E(B2) SE(B2) MSE
5% 0.743453 0289166  0.174850  0.974127  0.039936  0.006689
10% 0.549449  (0.423348 0425292 (.958451 0.018566  0.007922
20% 0.355655 0.349199  0.597828 0.975630 0.032734 0.005954
30% 0.332191 0336312 0.621917  0.969043 0.071512 0.010960
Table 2. The expected values, standard errors and MSEs of [§; for gamma
distributed model with autoregressive correlation matrix
Method Classical GEE IRLTS
Po
€ E(Bo) SE(Bo) MSE E(Bo) SE(Bo) MSE
5% 1713422 0.174403  0.127509 1.169724  (.219998 0.102270
10% 2.051958 0.292341 0.476604 1.172668 0.169948 0.081395
20% 2096749 0279746 0561178 1.182726  0.281815 0.127424
30% 2.208355 0.570003 0.975395 1.094088 0.105856 0.105908
P
€ E(p1) SE(By) MSE E(By) SE(By) MSE
5% 0.746269  0.169773 0.087549  0.977105 0.032371 0.001180
10% 0493787  0.257591 0311197 0.974237 0.026179  0.000892
20% 0.290721 0.257720  0.553459  0.982542 0.035247 0.001279
30% 0228004 0231963  0.595925  (.981851 0.023087 0.000579
B2
& E(B2) SE(B2) MSE E(B2) SE(B2) MSE
5% 0739142 0224797 0.132593  0.981539  0.021532 0.002405
10% 0511909 0302973 0.355672 0.981291 0.028264 0.002762
20% 0281145 0270400  0.627330  0.983924  0.028529  0.002551
30% 0.225163 0377600  0.646722 1.003760 0.035796 0.001758
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As shown in Table 1 and Table 2, our approach (IRLTS) performs better
than the classical GEE. The MSEs of IRLTS are smaller than the MSEs of

classical GEE, the outliers influence the estimation of ﬁg, ﬁl and ﬁz. The

parameter estimates of classical GEE are much more influenced than the

parameter estimates of IRLTS. The more outliers contained in the data the

larger the deviation of classical GEE estimates from the parameter value. In
Table 3 and Table 4, the behavior of MSEs of both methods is the same as
the first case, here we can see that IRLTS performs better than the classical
GEE because the MSEs of IRLTS are smaller than the MSEs of classical

GEE.

Table 3. The expected values, standard errors and MSEs of ﬁ;‘ for Poisson

distributed model with exchangeable correlation matrix

Method Classical GEE IRLTS
Bo
£ E(By) SE(Bg) MSE E(By) SE(Bg) MSE
5% 7851928  0.578389 49.012922 2242959 0411831  1.041084
10% 9299508  0.776268 71.575965 2.084935 0454712  1.670854
20% 10.710302 0425014 96.915019 2.351178  0.546663  1.478125
30% 11413164 0621123 111439999 1.088002  0.486656  1.475743
By
g E(B)) SE(B)) MSE EBy) SE(B) MSE
5% 0309635  0.108437 0418891  1.052717  0.059291  0.014543
10% 0.194983  0.044670 0.568586  1.011790  0.074132  0.009602
20% 0.097441  0.077894 0.729016 0.918343  0.038557  0.002349
30% 0.092040  0.031461  0.733153  0.809874  0.101063  0.029211
B2
£ E(B) SE(B5) MSE E(B>) SE(B5) MSE
5% 0281547 0.064601 0478304 0.947537  0.021808  0.000986
10% 0.1590566  0.060507  0.660655 0.967633 0065401  0.004284
20% 0.087528  0.031481 0.779957 0.900333  0.028748  0.005696
30% 0.067109  0.035320 0816673 0.825752 0057643  0.024164
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The result for Poisson model shows similar behavior to the result for
gamma model. For the result of Poisson model in Table 3 and Table 4,
IRLTS also performs better than the classical GEE. The MSEs of IRLTS are
smaller than the MSEs of classical GEE, the outliers influence the estimation
of ﬁo, ﬁ| and ﬁ} The parameter estimates of classical GEE are much more
influenced than the parameter estimates of IRLTS. The more outliers
contained in the data the larger the deviation of classical GEE estimates from
the parameter value. In Table 3 and Table 4, the behavior of MSEs of both

methods is the same as the first case, here we can see that IRLTS performs
better than the classical GEE.

The estimation of IRLTS yields better results than classical GEE for both
cases we considered here. The MSEs of IRLTS is smaller than classical GEE,
this means that IRLTS can reduce the influence of the high leverage points
better than the classical GEE.

Table 4. The expected values, standard errors and MSEs of ﬂ[- for Poisson

distributed model with autoregressive correlation matrix

Method Classical GEE IRLTS
Bo
£ E(Bp) SE(Bg) MSE E(By) SE(Bg) MSE
5% 8493574 0.689463 40.055071 1.614313 0331758  0.455831
10% 9.788645  0.962589 58.478701 1.765065  0.204619  0.523307
20% 10.525858  0.877176  70.050502  2.356166  0.470975  0.724548
30% 10.635832  0.570803 71.449706 3.071576  0.974599  1.054251
By
£ E(By) SE(B)) MSE E(By) SE(y) MSE
5% 0309635  0.108437 0418891  1.052717  0.059291  0.014543

10% 0.194983  0.044670  0.568586  1.011790  0.074132  0.009602
20% 0.097441  0.077894  0.729016  0.918343  0.038557  0.002349
30% 0.092040  0.031461  0.733153  0.809874  0.101063  0.029211
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Ba
g E(B) SE(B>) MSE E(B>) SE(By) MSE
5% 0281547  0.064601 0478304  0.947537 0.021808  0.000986
10% 0.159566  0.060507  0.660655  0.967633  0.065401  0.004284

20% 0.087528  0.031481  0.779957  0.900333  0.028748  0.005696

30% 0.067109  0.035320 0.816673  0.825752  0.057643  0.024164

the

5. Concluding Remark

In this paper, we have shown that our proposed procedure can minimize

effect of outliers on parameter estimation; IRLTS can produce a

relatively efficient and consistent estimator compared to the classical GEE
(IRLS). Based on the MSE, IRLTS performs much better than the classical
GEE for gamma and Poisson models.
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