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Abstract. This study explores the interaction between genetic potential for growth in Merino lambs and their birth type
(BT) or rearing type (RT). Data on birthweight (BWT), weaning weight (WWT), post-weaning weight (PWWT), scan fat
(PFAT) and eye muscle depth (PEMD) were used from 3920 single and 4492 twin-born lambs from 285 sires and 5279
dams. Univariate analysis showed a significant sire · BT interaction accounting for 1.59% and 2.49% of the phenotypic
variation for BWT andWWT, respectively, and no significant effect for PWWT, PFAT and PEMD. Sire · RT interaction
effects were much smaller and only significant for PEMD. Bivariate analysis indicated that the genetic correlation (rg)
between trait expression in lambs born and reared as singles versus those born and reared as twins were high for BWT,
WWT,PWWT(0.91� 0.02 – 0.96� 0.01),whereas rg for PFATandPEMDwere lower (0.81� 0.03 and 0.86� 0.02). The
rg between traits expressed in lambs born and reared as singles versus those born as twins but reared as singles were
lower: 0.77�0.08, 0.88�0.03, 0.66�0.06and0.61�0.08 forWWT,PWWT,PFATandPEMD, respectively.Adifferent
RT only affected the expression of breeding values for PFAT and PEMD (rg 0.62 � 0.04 and 0.47 � 0.03, respectively).
This study showed genotype · environment interaction for BWT and WWT (sire · BT interaction) and for PEMD (sire
by RT interaction). However, sires’ breeding value of a model that accounts for sire · BT interaction provides a very
similar ranking of sires compared with a model that ignores it, implying that there is no need to correct for the effect
in models for genetic evaluation.
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Introduction

Genotype · environment interaction (GEI) can be defined as
genotypes responding differently to changes in the environment
(Kolmodin et al. 2002; Kolmodin and Bijma 2004). The
environment could be described by region, flock, or nutritional
management. If the environment varies, the genotypes of animals
may respond differently. Different rankings of animals on
genetic merit may occur in different environments, or the
rankings could be the same but the scale of the expression of
genotype differences might vary between environments. When
GEI is important, it may be optimal to evaluate and select
animals in the appropriate environment (Mulder et al. 2006).
Alternatively, the genetic evaluation model used to generate
estimated breeding value (EBV) should account for such
interaction effects (Dominik and Kinghorn 2001; Dominik
and Kinghorn 2008; Márquez et al. 2015).

Birth type (BT) and rearing type (RT) constitute
environmental factors that influence the early life of sheep.
Animals born as singles have a better in utero environment
and have higher birthweight and grow faster than animals
born as twins or triplets (de Combellas et al. 1980; Thomson

et al. 2004; Fogarty et al. 2005; Safari et al. 2007; Yilmaz et al.
2007; Bermejo et al. 2010; Oldham et al. 2011; Mousa et al.
2013). Furthermore lambs reared as singles are heavier than
those reared as twins due to the better maternal milk availability
(Glimp 1971; Bush and Lewis 1977; Fogarty et al. 2005; Safari
et al. 2007; Huisman et al. 2008; David et al. 2011). Both BT
and RT are likely to continue to influence bodyweight at later
age such as weaning weight (WWT) and post-weaning weight
(PWWT).

Genotype · environment interactions have been studied
before in Australian sheep breeding programs, for example for
wool and growth traits (e.g. Dominik et al. 2001; Carrick and
van der Werf 2007) and for parasite resistance (Pollott and
Greeff 2004). Swan and Brown (2007) reported that reliability
of EBV was improved with inclusion of sire · flock-year
interaction in the MERINOSELECT data. In this study, we
investigated whether the expression of genetic merit depends
onor interactswith theBTandRTof lambs. If such an interaction
was large, there could be implications for the genetic evaluation,
for example there may be a need to account for such interaction
in the evaluation model.
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The objectives of this study were to estimate genotype · BT
and RT interactions for bodyweight and ultrasound scanning
traits of Merino sheep. These interactions were assessed on
variance components and ratios estimated from linear mixed
modelsfitting sire·BTorRT interaction effects, aswell as based
on an estimate of the genetic correlation between expressions
of these traits in lambs born and raised as singles or twins.

Material and methods

Data for this study were obtained from the Information Nucleus
program of the CRC for Sheep Industry Innovation in Australia.
Details on this program and its design are described by van der
Werf et al. (2010). Data consisted of birthweight (BWT, kg),
weaningweight (WWT, kg), post-weaningweight (PWWT, kg),
scan fat (PFAT,mm) and eyemuscle depth (PEMD,mm).WWT
wasmeasured at 91.9� 9.5 days and PWWT, PFAT and PEMD
were measured at 261.1 � 43.9 days of age. Birthweight
records were available from 8412 purebred Merino lambs
generated from 285 sires and 5279 dams. These sheep were
distributed over two BT classes (singles and twins) and two
RT classes except for BWT. The lambs were born in eight
different flocks between 2007 and 2012 and raised in up to
four management groups per flock per year. Details on number
of records, and simple trait statistics are presented in Table 1.

Linear mixed models were used for statistical analysis
fitting fixed effects of birth year (6 classes), flock (8 classes)
and management group within flock as one contemporary
group, age of dam (9 classes, 2–10 years), sex (ewes,
wethers), age at measurement as a covariate, and BT (single,

twin) andRT (single, twin) as an interaction effect. Additionally,
weight at scanning was included as a covariate for PFAT
and PEMD.

For each trait, we fitted sire · BT, sire · RT and sire · flock
(S ·BT=M2; S ·RT=M3; S · F =M4; S ·BT and S · F =M5;
S · RT and S · F = M6) interactions as a random effect in
separate linear mixed models. The models also contained the
random effects of animal (additive genetic), dam, and genetic
group in a univariate analysis as base model, M1. A pedigree
file consisting of 20 010 animals from 11 generations was used.
It was assumed that dams were unrelated, hence the dam effect
represents both maternal genetic and maternal permanent
environmental effects, and relationships among sires were
ignored in the S · BT/RT interaction terms. There were 135
genetic groups defined according to Merino sub-strain and
flock of origin of the base animals (Swan et al. 2016).
Variance components from all analyses were estimated using
ASREML software (Gilmour et al. 2009). We used the log-
likelihood ratio test (LRT) to compare the model including
S · BT and S · RT with a reduced model to test the
significance of the S · BT and S · RT interaction effect.
Heritability estimates were based on the ratio of the additive
genetic animal effect and the phenotypic variance, which was
the sum of variance components for animal, dam, with and
without S · BT and S · RT, and residual.

In bivariate analyses, we considered a particular trait when
expressed in either singles or twins as two different traits and
estimated the genetic correlation between the two expressions
(Falconer 1952). The magnitude of the GEI was then evaluated
based on the value of the estimated genetic correlation. The
same model used in the univariate analyses was also used in
bivariate analyses, other than omitting the interaction effect,
and fitting genetic group, animal and dam as random effects.
Traits expression were based on combinations of BT (SS,
lamb born and raised as a single; TS, lamb born as a twin and
raised as a single; and TT, lamb born and raised as a twin)
and used to investigate GEI in an attempt to disentangle effects
of BT and RT.

Results and discussion

Univariate analyses

Variance components and ratios from all models for the
growth and ultrasound traits are shown in Table 2. When S ·
BT interaction was included in the model the heritability
estimates decreased for BWT (12.5%) and WWT (31.25%)
and for these traits the contribution of S · BT was significant.
The S · BT interaction did not significantly influence PWWT,
PFAT and PEMD, and the heritability estimates were similar
with and without inclusion of S · BT (Table 2). When including
S · RT in the model, the heritability estimate decreased only
for PEMD.

The heritability estimates ofBWT(0.24� 0.04)without the S
· BT or S · RT interaction effects were slightly higher than
heritability estimates reviewed by Safari et al. (2005) (with
average values of 0.21 � 0.03 for wool breeds). Heritability
estimates of WWT (0.16 � 0.03) without the S · BT or S · RT
interaction effects were lower than heritability estimates
reviewed by Safari et al. (2005) (with average values of 0.23

Table 1. Summary of simple statistics of the data used for analyses

TraitsA/BTRTB Number of records MeanC s.d. Max. Min.

BWT (kg) (total) 8412 4.8 1.0 9.0 1.2
S 3920 5.1 1.0 9.0 1.2
T 4492 4.4 0.9 8.7 1.8
WWT (kg) (total) 8302 24.0 4.9 51.2 3.8
SS 3853 25.4 4.8 45.1 8.5
TS 1306 22.7 5.0 51.2 3.8
TT 3143 22.9 4.6 44.2 7.0
PWWT (kg) (total) 7916 37.0 7.7 67.4 20.2
SS 3645 37.2 7.6 67.4 20.2
TS 1223 36.0 7.6 67.2 20.2
TT 3048 37.2 7.9 62.2 20.2
PFAT (mm) (total) 6435 2.4 1.0 9.0 0.5
SS 2957 2.4 1.0 8.0 0.5
TS 901 2.4 1.0 9.0 0.5
TT 2577 2.5 1.1 7.0 0.5
PEMD (mm) (total) 6435 22.7 4.1 42.0 10.0
SS 2957 22.6 3.9 42.0 10.0
TS 901 22.3 3.9 35.0 10.0
TT 2577 23.0 4.3 36.0 10.0

ABirthweight (BWT), weaning weight (WWT), post-weaning weight
(PWWT), scan fat (PFAT) and eye muscle depth (PEMD).
BBirth type and rearing type (BTRT), S (lambs born as a single), T (lambs
born as a twin), SS (lamb born and reared as a single), TT (lambs born and
reared as a twin), TS (lambs born as a twin but reared as a single).
CT-test for mean: TS versus TT for WWT, SS versus TT for PWWT, all
combinations for PFAT and SS versus TS for PEMD were not significant
(P > 0.05).
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� 0.02 for wool breeds) and heritability estimate reported by
Brown and Fogarty (2017) (0.38 � 0.01).

Heritability estimates of PWWT (0.28 � 0.04) were
slightly lower than heritability estimates reported by Safari
et al. (2005) for wool breeds (0.33 � 0.02) and reported by
Brown and Fogarty (2017) (0.36 � 0.01), whereas heritability
estimates of PFAT (0.17 � 0.03) and of PEMD (0.26 � 0.03)
were in the same range as those summarised by Safari and
Fogarty (2003) for Merino sheep (0.19–0.26 for SF and
0.24–0.35 for PEMD) and similar with those reported by
Brown and Fogarty (2017) (0.13 � 0.02 for PFAT and 0.26 �
0.02 for PEMD).

The S · BT effect explained 1.59% and 2.49% of the
phenotypic variance of BWT and WWT, respectively, for
which it was significant. The variance of this interaction
component was not much affected by fitting sire · flock
interaction, i.e. the estimate of s2

S · BT differed little between
M5 and M2 for the BWT and WWT. The S · F interaction
component was always significant and generally larger than
the S · BT interaction. Brown et al. (2009) reported a similar
pattern with inclusion of a sire · flock-year interaction in a
model, where 2%, 3% and 4% of variation was explained in

WWT, PWWT and yearling bodyweight of Poll Dorset lambs,
respectively, and a large reduction occurred of heritability
estimates by up to 50%. In Merino breed, Swan et al. (2016)
found that sire · site interaction explained 3%, 5% and 4%
in PWWT, PEMD and PFAT variation, respectively. This is
not surprising, given that the heritability estimate is largely
based on the variance between half-sib families, which is
equal to one-quarter of the heritability (i.e. ~5% of the
phenotypic variance). Maniatis and Pollott (2002) also found
that the sire · flock-year interaction explained 2–3% of the
phenotypic variation in 8-week weight and scanning weight of
Suffolk lambs. In data from Merino industry flocks, a sire ·
contemporary group interaction accounted for 2.4% of the
variation in bodyweight and 2% and 2–4% of the variation in
muscle depth and fat depth (Pollott and Greeff 2004). Mortimer
et al. (2010) reported, using an earlier sub-set of the data used
as in this study with the inclusion of records on maternal breed
and terminal sire progeny, that a sire · site (flock) interaction
effect was significant for WWT, scanning weight, PFAT and
PEMD; heritability estimate were 0.14 � 0.03, 0.27 � 0.04,
0.15 � 0.03 and 0.23 � 0.03, respectively, but estimates of
the sire · site interaction effects were not given.

Table 2. Estimates of variance of additive genetic, maternal and sire by birth type and rearing-type effects, heritability
and ratios of maternal to phenotypic variance for growth and ultrasound scanning traits in Merino sheep

TraitsB sa
2A sc

2 s2
(S · BT(RT) s2

(S · f) se
2 h2 c2 LRT

BWTM1 0.140 0.182 – – 0.268 0.24 ± 0.04 0.31 ± 0.02 –

BWTM2 0.125 0.185 0.009 – 0.272 0.21 ± 0.04 0.31 ± 0.02 7.16
BWTM4 0.120 0.183 – 0.020 0.270 0.20 ± 0.04 0.31 ± 0.02 22.8
BWTM5 0.108 0.185 0.008 0.020 0.273 0.18 ± 0.04 0.31 ± 0.02 28.46
WWTM1 1.909 2.839 – – 7.358 0.16 ± 0.03 0.23 ± 0.02 –

WWTM2 1.389 2.942 0.302 – 7.491 0.11 ± 0.03 0.24 ± 0.02 16.28
WWTM3 1.898 2.842 0.004 – 7.362 0.16 ± 0.03 0.24 ± 0.02 0.00
WWTM4 1.476 2.800 – 0.495 7.363 0.12 ± 0.03 0.23 ± 0.02 30.24
WWTM5 1.047 2.879 0.287 0.481 7.466 0.09 ± 0.03 0.24 ± 0.02 45.00
WWTM6 1.476 2.800 0.000 0.495 7.363 0.12 ± 0.03 0.23 ± 0.02 30.24
PWWTM1 7.673 2.850 – – 16.702 0.28 ± 0.04 0.10 ± 0.02 –

PWWTM2 7.207 2.673 0.205 – 16.856 0.27 ± 0.05 0.10 ± 0.02 1.62
PWWTM3 7.564 2.600 0.038 – 16.745 0.28 ± 0.05 0.10 ± 0.02 0.06
PWWTM4 5.943 2.545 – 1.454 16.972 0.22 ± 0.04 0.09 ± 0.02 50.82
PWWTM5 5.797 2.574 0.079 1.444 17.018 0.22 ± 0.05 0.10 ± 0.02 51.06
PWWTM6 5.943 2.545 0.000 1.453 16.971 0.22 ± 0.04 0.09 ± 0.02 50.82
PFATM1 0.070 – – – 0.347 0.17 ± 0.03 – –

PFATM2 0.065 – 0.003 – 0.350 0.15 ± 0.03 – 0.67
PFATM3 0.065 – 0.003 – 0.349 0.16 ± 0.03 – 0.13
PFATM4 0.054 – – 0.019 0.345 0.13 ± 0.03 – 31.67
PFATM5 0.054 – 0.001 0.019 0.345 0.13 ± 0.03 – 31.71
PFATM6 0.054 – 0.000 0.019 0.345 0.13 ± 0.03 – 31.71

– –

PEMDM1 1.495 – – – 4.239 0.26 ± 0.03 – –

PEMDM2 1.439 – 0.004 – 4.262 0.25 ± 0.04 – 0.00
PEMDM3 1.372 – 0.067 – 4.296 0.24 ± 0.04 – 3.90
PEMDM4 1.219 – – 0.277 4.238 0.21 ± 0.04 – 35.78
PEMDM5 1.217 – 0.002 0.277 4.239 0.21 ± 0.04 – 35.78
PEMDM6 1.186 – 0.024 0.272 4.254 0.21 ± 0.04 – 36.18

As2
a, additive genetic variance; s2

c, maternal variance; s2
S · BT, sire by birth-type interaction variance, s2

S · RT, sire by rearing-
type interaction variance;s2

e = residual variance; h
2, direct genetic heritability; C2, ratio of damvariance to phenotypic variance.

BBirthweight (BWT), weaningweight (WWT), post-weaning weight (PWWT), scan fat (PFAT) and eyemuscle depth (PEMD);
M1, base model; M2, M1 + S · BT; M3, M1 + S · RT; M4, M1 + S · F; M5, M1 + S · BT + S · F; M6, M1 + S · RT + S · F.
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The S ·RT effect was significant for PEMDonly, explaining
1.44% the phenotypic variation. The maternal effect contributed
to variation in BWT and WWT (31% and 23%), but less so for
PWWT (10%). Overall, these results indicate that there is
a significant interaction between genotype and BT influencing
BWT and WWT.

Bivariate analyses

Table 3 shows the estimates of genetic correlation between
the same traits expressed in lambs where environment was
classified according to birth and rearing-type combinations.

Breeding values expressed in an environment of lambs
being born and reared as singles versus an environment of
lambs being born as twins but reared as a single had genetic
correlations between 0.61� 0.08 for PEMD and 0.88� 0.03 for
PWWT. Here, the environment of the lambs differed in BT but
the RT was the same. A difference in RT environment for twin-
born lambs mainly affected the expression of breeding value
for scanned carcass traits, with a genetic correlation of
0.62 � 0.04 and 0.47 � 0.03, PFAT and PEMD respectively.
Overall, these results indicate that differences in BT and RT
environment experienced by lambs influenced the expression of
the growth traits in Merino sheep. Genetic correlations between
trait expressions for scanned carcass traits were generally lower.
This was expected for PEMD because the S · RT interaction
was significant, but these results are not consistent with the lack
of significant interaction effect we found for PFAT and PEMD
in the case of differences in BT. However, note that the number

of lambs in the TS cohort was smaller, especially for the
scanned carcass traits, and estimated of variance components
for these traits were less accurate. James (1979) pointed out that
a relationship exists between the genetic correlation between
trait expression in two environments (rg) and the variance
component for the interaction between sire and environment
(s2

(S · E)) as follows: s2
(S · E) = (1 – rg) s2

S where s2
S is the

sire variance, (which is one-quarter of the additive genetic
variance). This clearly shows that the interaction component
should be lower when the estimated genetic correlation is
higher. The relationship holds roughly in our study, with
small deviations due to slight differences in data and model.

This study indicated also that different BT environments
had a greater effect on the expression of genetic merit in
earlier bodyweights (0.77 � 0.08 for WWT and 0.88 � 0.03
for PWWT), whereas different RT environments tended to
have a greater effect on later bodyweights (0.99 � 0.05 for
WWT and 0.90 � 0.02 for PWWT). In a study where
environments were defined by the mean performance of each
trait, Carrick and van der Werf (2007) found that differences
in genetic expression between more extreme environments
were larger for earlier growth traits of sheep with the genetic
correlation between the two extreme environments of 0.61,
0.75, and 0.62 for post-weaning weight, PEMD and PFAT
for yearling data compared with 0.70, 0.92 and 0.91,
respectively, for hogget data. Dominik et al. (1999) found that
the genetic correlation between breeding values for bodyweight
at hogget age in a low and high nutrition group was close to 1,

Table 3. Genetic correlations between growth and ultrasound traits expressed in Merino lambs classified according to birth and rearing-type
combinations

TraitsC Bivariate analysisB Univariate analysis
rg12 h21 C1

2 h22 C2
2 h2 C2

BWT
SS · TTA 0.91 ± 0.02 0.33 ± 0.06 0.22 ± 0.06 0.25 ± 0.06 0.34 ± 0.05 h2SS, 0.26 ± 0.05 C2

SS, 0.28 ± 0.04
h2TT, 0.22 ± 0.05 C2

TT, 0.30 ± 0.03

WWT
SS · TT 0.91 ± 0.03 0.29 ± 0.06 0.27 ± 0.06 0.16 ± 0.06 0.21 ± 0.05 h2SS, 0.19 ± 0.05 C2

SS, 0.23 ± 0.04
SS · TS 0.77 ± 0.08 0.19 ± 0.07 0.25 ± 0.07 0.10 ± 0.11 0.20 ± 0.11 h2TS, 0.10 ± 0.08 C2

TS, 0.24 ± 0.06
TS · TT 0.99 ± 0.05 0.10 ± 0.08 0.27 ± 0.08 0.14 ± 0.03 0.22 ± 0.04 h2TT, 0.12 ± 0.05 C2

TT, 0.22 ± 0.03

PWWT
SS · TT 0.96 ± 0.01 0.29 ± 0.06 0.06 ± 0.05 0.27 ± 0.07 0.10 ± 0.04 h2SS, 0.29 ± 0.05 C2

SS, 0.06 ± 0.04
SS · TS 0.88 ± 0.03 0.22 ± 0.03 0.04 ± 0.05 0.16 ± 0.12 0.07 ± 0.11 h2TS, 0.14 ± 0.12 C2

TS, 0.18 ± 0.08
TS · TT 0.90 ± 0.02 0.20 ± 0.07 0.09 ± 0.04 0.25 ± 0.07 0.07 ± 0.05 H2

TT, 0.27 ± 0.07 C2
TT, 0.08 ± 0.03

PFAT
SS · TT 0.81 ± 0.03 0.13 ± 0.05 – 0.28 ± 0.05 – h2SS, 0.12 ± 0.05 –

SS · TS 0.66 ± 0.06 0.13 ± 0.05 – 0.27 ± 0.14 – h2TS, 0.29 ± 0.14 –

TS · TT 0.62 ± 0.04 0.28 ± 0.13 – 0.30 ± 0.05 – h2TT, 0.29 ± 0.05 –

PEMD
SS · TT 0.86 ± 0.02 0.24 ± 0.05 – 0.33 ± 0.05 – h2SS, 0.24 ± 0.06 –

SS · TS 0.61 ± 0.08 0.25 ± 0.06 – 0.42 ± 0.13 – h2TS, 0.43 ± 0.13 –

TS · TT 0.47 ± 0.03 0.42 ± 0.13 – 0.36 ± 0.06 – h2TT, 0.35 ± 0.06 –

ASS · TT, correlation between lambs born-reared as single and lambs born-reared as twins; SS · TS, correlation between lambs born-reared as single and
lambs born as twins but reared as single; TS · TT, correlation between lambs born as twins but reared as single and lambs born-reared as twins.
Brg12, genetic correlation between trait 1 (for example SS) and trait 2 (for example TT); h2, direct genetic heritability; C2, ratio of dam variance to
phenotypic variance.
CTraits include birthweight (BWT), weaning weight (WWT), post-weaning weight (PWWT), scan fat (PFAT) and eye muscle depth (PEMD).
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indicating that the different nutritional environments were
not influencing the expression of genetic merit in bodyweight
of older sheep.

Bodyweight of lambs having twin BT and RT environments
(TT) were lower than those with single BT and RT (SS) for
BWT and WWT, but their bodyweight were the same for
PWWT. In these data, lambs born as twins appear to have
undergone compensatory growth post-weaning when the
environment is relatively the same between single- and twin-
born lambs. This may explain that as a result we observed the
expression of genetic merit in PWWT to be essentially the
same in lambs of SS and TT birth-rearing combinations.
A surprising result is that the genetic correlation between SS
and TT environments was much higher than between SS and
TS environments, indicating that the rearing type affects the
expression of genetic merit significantly when the BT is the
same, but less when the BT is different. We did not observe
this BT and RT combination in the sire · RT interaction
variance component, but in the univariate analysis it was
more difficult to separate the BT and RT effects. There may
be some natural selection effect because lambs in the TS
cohort typically will be the surviving sibling in a litter where
one lamb died around birth. However, the number of lambs in
the TS group was relatively small, so analysis of more data
is required for firmer conclusions about separating BT and
RT effects.

The existence of GEI could impact on the accuracy of
prediction of breeding value and therefore on the effectiveness
of a breeding program. The impact of accounting for sire · birth-
type (S · BT) interaction on the selection of sires can be
evaluated by comparing EBV from the various models and
compare differences in sire ranking or selection efficiency
based on these EBV. We compared EBV on sires for BWT,
WWT and PWWT resulting from analysis based on M2 and
M1, i.e. with, and without fitting an S · BT interaction effect
in the model. The results showed that the correlation between
EBV from these two models was 0.99, indicating that the
impact of accounting S · BT interaction on incorrect sire
ranking was very small.

Conclusions

The contribution of sire · birth-type interaction to the variation
of birthweight and weaning weight was significant, whereas
the contribution of sire · rearing-type interaction was only
significant for eye muscle depth. This study suggested that
different BT provided environments influenced early growth
potential of lambs (BWT, WWT, PFAT and PEMD), whereas
different RT environments influenced the expression of PFAT
and PEMD. The prenatal environment appears to have a stronger
effect on genetic expression for growth after birth to weaning
than the maternal rearing environment. However, we found that
a model that accounts for sire · birth-type interaction provides
a very similar ranking of sires compared with a model that
ignores it, implying that there is no need to correct for the
effect in models for genetic evaluation.
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