The Implementation of Rough Set on a Group Structure

Ananto Adi Nugraha¹, Fitriani¹*, Muslim Ansori¹, Ahmad Faisol¹

¹Department of Mathematics, Universitas Lampung, Indonesia

Article history:
Received Jul 6, 2021
Revised, May 9, 2022
Accepted, May 31, 2022

Kata Kunci:
aproksimasi bawah, aproksimasi atas, himpunan rough, grup rough, sentralizer

Abstract. Let U be a non-empty set and R an equivalence relation on U. Then, (U, R) is an approximation space. The equivalence relation on U forms disjoint equivalence classes. If $X \subseteq U$, we can form a lower approximation and an upper approximation of X. If $X \subseteq U$, then we can form a lower approximation and an upper approximation of X. In this research, rough group and rough subgroups are constructed in the approximation space (U, R) for commutative and non-commutative binary operations.

How to cite:
1. Introduction

Zdzislaw Pawlak [1] first introduced the rough set theory in 1982 as a mathematical technique to deal with vagueness and uncertainty problems. Various studies have discussed this theory and the possibility of its applications, for example, in data mining [2] and some algebraic structures. In [3], Biswaz and Nanda introduce the rough group and rough ring. Furthermore, Miao et al. [4] improve definitions of a rough group and rough subgroup and prove their new properties. In [5], Jesmalar investigates the homomorphism and isomorphism of the rough group. Furthermore, in [6], Bagirmaz and Ozcan give the concept of rough semigroups on approximation spaces. Then, Kuroki in [7] gives some results about the rough ideal of semigroups. In [8], Davvaz investigates roughness in the ring, and in [9], Davvaz and Mahdavipour give a roughness in modules. In [10], Isaac and Neelima introduce the concept of the rough ideal. Moreover, in [11], Zhang et al. give some properties of rough modules. Davvaz and Malekzadeh give roughness in modules [12]. They use the notion of reference points. Furthermore, Ozturk and Eren give the multiplicative rough modules [13]. Then, Sinha and Prakash introduce the rough exact sequence of rough modules[14]. They also give the injective module based on rough set theory [15]. In [16], Kazanci and Davvaz give the rough prime in a ring. Jun in [17] investigate the roughness of ideals in BCK-algebras. Moreover, Dubois and Prade [18] define the rough fuzzy sets.

This research focuses on the algebraic aspects by applying a rough set theory to construct a rough group and its subgroups on an approximation space. Moreover, in this research, we discuss the centralizer and the center of a rough group.

2. Preliminaries

In this section, there will be several definitions and theorems that can be helpful for this article. Those definitions are written as follows:

Definition 1 [19] Define \(C_G(A) = \{ g \in G \mid gag^{-1} = a \text{ for all } a \in A \} \). This subset of \(G \) is called the centralizer of \(A \) in \(G \). Since \(gag^{-1} = a \) if and only if \(ga = ag \), \(C_G(A) \) is the set of elements of \(G \) which commute with every element of \(A \).

Definition 2 [19] Define \(Z(G) = \{ g \in G \mid gx = xg \text{ for all } x \in G \} \), the set of elements commuting with all the elements of \(G \). This subset of \(G \) is called the center of \(G \).

Definition 3 [20] Let \(R \) be an equivalence relation on \(A \) and \(a \in A \). Then the equivalence class of \(a \) under \(R \) is \([a]_R = \{ x : x \in A \text{ and } aRx \} \). In other words, the equivalence class of \(a \) under \(R \) contains all the elements in \(A \) to which \(a \) is related by \(R \).

Definition 4 [3] Let \((U, R)\) be an approximation space and \(X \) be a subset of \(U \), the sets,
\[
\overline{X} = \{ x \mid [x]_R \cap X \neq \emptyset \} \quad (1)
\]
\[
\underline{X} = \{ x \mid [x]_R \subseteq X \} \quad (2)
\]
are called upper approximation and lower approximation of \(X \).

Definition 5 [1] Let \(R \) be an equivalence relation on universe set \(U \), a pair \((U, R)\) is called an approximation space. A subset \(X \subseteq U \) can be defined if \(\overline{X} = \overline{X} \), in the opposite case, if \(\overline{X} - \underline{X} \neq \emptyset \) then \(X \) is called a rough set.
Definition 6 [3] Let $K = (U, R)$ be an approximation space and \ast be a binary operation defined on U. A subset G of universe U is called a rough group if the following properties are satisfied:

i. $\forall x, y \in G, x \ast y \in \overline{G}$;

ii. Association property holds in \overline{G};

iii. $\exists e \in \overline{G}$ such that $\forall x \in G, x \ast e = e \ast x = x$; e is called the rough identity element of G;

iv. $\forall x \in G, \exists y \in G$ such that $x \ast y = y \ast x = e$; y is called the rough inverse element of x in G.

We will give the example of rough group in Section 3.

The following theorem gives the characteristics of a rough group.

Theorem 1. [3] A necessary and sufficient condition for a subset H of rough group G to be a rough subgroup is that:

(i) $\forall x, y \in H, x \ast y \in \overline{H}$;

(ii) $\forall x \in H, x^{-1} \in H$.

Several steps will be taken to achieve the objectives of this research. Those steps are written as follows:

1. Determine a set U, where $U \neq \emptyset$.
2. Define a relation R on U.
3. Shows that a relation R is the equivalence relation on U.
4. Determine equivalence classes on U.
5. Determine a set G, where $G \subseteq U$ and $G \neq \emptyset$.
6. Determine the approximation space, lower approximation on $G (G)$, and upper approximation on $G (G)$.
7. Determine a rough set $Apr(G) = (G, G)$.
8. Determine a binary operation \ast on the set G.
9. Shows that (G, \ast) is a rough group in the approximation space that has been constructed.
10. Determine a rough subgroup (H, \ast) from a rough group (G, \ast).

3. Rough Group Construction

3.1 Commutative Rough Group Construction

In this section, we will give the construction of commutative rough group.

Example 3.1. Given a non-empty set $U = \{0,1,2,3, ..., 99\}$. We define a relation R on the set U, that is, for every $a, b \in U$ apply aRb if and only if $a - b = 7k$ where $k \in \mathbb{Z}$. Furthermore, it can be shown that relation R is reflexive, symmetrical, and transitive. So, relation R is an equivalence relation on U. As a result, relation R produces some disjoint partitions called equivalence classes. The equivalence classes are written as follows:

$E_1 = [1] = \{1,8,15,22,29,36,43,50,57,64,71,78,85,92,99\}$;
$E_2 = [2] = \{2,9,16,23,30,37,44,51,58,65,72,79,86,93\}$;
$E_3 = [3] = \{3,10,17,24,31,38,45,52,59,66,73,80,87,94\}$;
$E_4 = [4] = \{4,11,18,25,32,39,46,53,60,67,74,81,88,95\}$;
$E_5 = [5] = \{5,12,19,26,33,40,47,54,61,68,75,82,89,96\}$;
$E_6 = \{6\} = \{6,13,20,27,34,41,48,55,62,69,76,83,90,97\};$
$E_7 = \{0\} = \{0,7,14,21,28,35,42,49,56,63,70,77,84,91,98\}.$

Given a non-empty subset $X \subseteq U$ that is $X = \{10,20,30,40,50,60,70,80,90\}$. Because the set $U \neq \emptyset$ and R is an equivalence relation on U, a pair (U, R) is the approximation space. Furthermore, it can be obtained the lower approximation and upper approximation of X, that is:

\[X = \emptyset. \]
\[\bar{X} = E_1 \cup E_2 \cup E_3 \cup E_4 \cup E_5 \cup E_6 \cup E_7 = U. \]

After determining the lower approximation and upper approximation of X, then given a binary operation $+_\{100\}$ on X. Here is given Table Cayley of X with the operation $+_\{100\}$.

Table 1. Table Cayley of X with the operation $+_\{100\}$

<table>
<thead>
<tr>
<th>$+_{100}$</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>0</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>70</td>
<td>80</td>
<td>90</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>80</td>
<td>90</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>90</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
</tr>
</tbody>
</table>

i. Based on Table 1, it is proved that for each $x, y \in X$, apply $x(+\{100\})y \in \bar{X}$.

ii. For each $x, y, z \in X$, the associative property that is $(x(+\{100\})y)(+\{100\})z = x(+\{100\})(y(+\{100\})z)$ holds in \bar{X}. The operation $+_\{100\}$ is associative in \bar{X}.

iii. There is a rough identity element $e \in \bar{X}$ that is $0 \in \bar{X}$ such that for each $x \in X$, $x(+\{100\})e = e(+\{100\})x = x$.

Table 2. Table of element inverse of the set X

<table>
<thead>
<tr>
<th>x</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>x^{-1}</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

iv. For each $x \in X$, there is a rough inverse element of x that is $x^{-1} \in X$ such that $x(+\{100\})x^{-1} = x^{-1}(+\{100\})x = e$. Based on Table 2, it can be seen that each element x in the set X, then the inverse element x^{-1} is also in X.

Since those four conditions have been satisfied, then $(X, +_{\{100\}})$ is a rough group.

3.2 Non-Commutative Rough Group Construction

In this section, we will give the construction of non-commutative rough group.

Example 3.2. Given a permutation group S_3 to the operation of permutation multiplication "o." For example, take a subgroup $G = \{(1), (12)\}$ of the group S_3. For $x, y \in S_3$, define a relation R that is xRy if and only if $x \circ y^{-1} \in G$. Furthermore, it can be shown that relation R is reflexive, symmetrical, and transitive. So, relation R is an equivalence relation on S_3. As a result, relation R produces some disjoint partitions called equivalence classes. Suppose a is the element in S_3, the equivalence class containing a defined as follows:

$[a]_R = \{x \in S_3 \mid xRa\}$
$= \{x \in S_3 \mid x \circ a^{-1} \in G\}$
\[x \in S_3 \mid x \circ a^{-1} = g, \; g \in G \]
\[x \in S_3 \mid x = g \circ a, \; g \in G \]
\[\{ g \circ a \mid g \in G \} \quad (3) \]

Based on the Equation (3), this is corresponding to the definition of the right coset of \(G \) in \(S_3 \) that is \(G a = \{ g \circ a \mid g \in G \} \). Thus, the right cosets of \(G \) in \(S_3 \) as follows:

\[
G \circ (1) = G \circ (12) = \{(1), (1 2)\};
G \circ (1 3) = G \circ (1 2 3) = \{(1 3), (1 2 3)\};
G \circ (2 3) = G \circ (1 3 2) = \{(2 3), (1 3 2)\}.
\]

Given a non-empty subset \(Y \subseteq S_3 \) that is \(Y = \{(1), (1 2), (1 2 3), (1 3 2)\} \). Furthermore, it can be obtained the lower approximation and upper approximation of \(Y \), that is:

\[
\underline{Y} = \{(1), (1 2)\}.
\]

\[
\overline{Y} = \{(1), (1 2)\} \cup \{(1 3), (1 2 3)\} \cup \{(2 3), (1 3 2)\} = S_3.
\]

After determining the lower approximation and upper approximation of \(Y \), then we give a permutation multiplication "\(\circ \)" on \(Y \). We give a Table Cayley of \(Y \) with the operation of permutation multiplication as follows.

| Table 3. Table Cayley of \(Y \) with the operation of permutation multiplication |
|---|---|---|---|---|
| \(\circ \) | (1) | (1 2) | (1 2 3) | (1 3 2) |
| (1) | (1) | (1 2) | (1 2 3) | (1 3 2) |
| (1 2) | (1 2) | (1) | (2 3) | (1 3) |
| (1 2 3) | (1 2 3) | (1 3) | (1 3 2) | (1) |
| (1 3 2) | (1 3 2) | (2 3) | (1) | (1 2 3) |

i. Based on Table 3, it is proved that for each \(x, y \in Y \), apply \(x \circ y \in \overline{Y} \).

ii. For each \(x, y, z \in Y \), the associative property that is \((x \circ y) \circ z = x \circ (y \circ z) \) holds in \(\overline{Y} \). The operation \(\circ \) is associative in \(\overline{Y} \).

iii. There is a rough identity element \(e \in \overline{Y} \) that is \((1) \in \overline{Y} \) such that for each \(y \in Y \),

\[y \circ e = e \circ y = y. \]

\[
| Table 4. Table of inverse element of \(Y \) |
|---|---|---|---|---|
| \(y \) | (1) | (1 2) | (1 2 3) | (1 3 2) |
| \(y^{-1} \) | (1) | (1 2) | (1 3 2) | (1 2 3) |

iv. For each \(y \in Y \), there is a rough inverse element of \(y \) that is \(y^{-1} \in Y \) such that \(y \circ y^{-1} = y^{-1} \circ y = e. \) Based on Table 4, it can be seen that each element \(y \) in the set \(Y \), then the inverse element \(y^{-1} \) is also in the set \(Y \).

Since those four conditions have been satisfied, then \(\langle Y, \circ \rangle \) is a rough group.

4. Subgroup Construction of the Rough Group

After constructing a commutative rough group and a non-commutative rough group, we will construct subgroups of each of the previously constructed rough groups.

4.1 Subgroup Construction of Commutative Rough Group

Before it has been obtained, a commutative rough group \(X \) with the operation "\(+_{100} \)". Furthermore, we will construct several subgroups that can be formed from the rough group \(X \). Based on Theorem 1, we can obtain several subgroups from the rough group \(X \) that written as follows:
1. \(\langle \{20,30,40,50,60,70,80\}, +_{100}\rangle \);
2. \(\langle X, +_{100}\rangle \).

After determining several subgroups from the rough group \(X \) that is commutative, then we will determine the centralizer and the center of subgroups in rough group \(X \). Suppose all subgroups of rough group \(X \) above are denoted by \(A \). Based on Definition 1, the centralizer \(A \) in \(X \) is the set where is the element of \(X \) is commutative with each element of \(A \). Here is given the table that shows the centralizer of subgroups \(A \) in rough group \(X \).

| Table 5. Table of the centralizer of subgroups \(A \) in rough group \(X \) |
|------------------|-------------------|
| \(A \) | \(C_x(A) \) |
| \(\{20,30,40,50,60,70,80\} \) | \(X \) |
| \(X = \{10,20,30,40,50,60,70,80,90\} \) | \(X \) |

Since the operation \(+_{100} \) of rough group \(X \) is commutative, the centralizer of subgroups in rough group \(X \) is \(X \) itself.

Based on Definition 2, the center of \(X \) is the set of elements that is commutative with all elements of \(X \). Because rough group \(X \) using commutative operation, the center of rough group \(X \) is \(X \) itself, or it can be written as \(Z(X) = X \).

Using Theorem 1, we will show that the center of rough group \(X \) that is \(Z(X) = X \) is a rough subgroup of rough group \(X \).

i. Based on Table 1, it is proved that for each \(x, y \in Z(X) = X \), apply \(x(+_{100})y \in Z(X) = X \).

ii. For each \(x \in Z(X) = X \), there is an inverse element of \(x \) that is \(x^{-1} \in Z(X) = X \). Based on Table 2, it can be seen that if each element \(x \) in the set \(X \) then the inverse element of \(x \) also in the set \(X \).

Two conditions on Theorem 1 have been satisfied, so it is proved that the center of rough group \(X \) that is \(Z(X) = X \) is a rough subgroup of rough group \(X \).

4.2 Subgroup Construction of Non-Commutative Rough Group

Before it has been obtained a non-commutative rough group \(Y \) with the operation of permutation multiplication "\(\circ \)". Furthermore, we will construct several subgroups that can be formed from the rough group \(Y \). Based on Theorem 1, we can obtain several subgroups from the rough group \(Y \) that written as follows:

1. \(\langle \{(1)\}, \circ \rangle \);
2. \(\langle \{(1),(1,2)\}, \circ \rangle \);
3. \(\langle \{(1),(1,2,3),(1,3,2)\}, \circ \rangle \);
4. \(\langle \{(1,2),(1,2,3)\}, \circ \rangle \);
5. \(\langle Y, \circ \rangle \).

After determining several subgroups from the rough set \(Y \) that are non-commutative, then we will determine the centralizer and the center of subgroups in rough group \(Y \). Suppose all subgroups of rough group \(Y \) above are denoted by \(B \). Based on Definition 1, the centralizer \(B \) in \(Y \) is the set where is the element of \(Y \) is commutative with each element of \(B \). Here is given the table that shows the centralizer of subgroups \(B \) in rough group \(Y \).

| Table 6. Table of the centralizer of subgroups \(B \) in rough group \(Y \) |
Based on Definition 2, the center of Y is the set of elements that is commutative with all elements of Y. From the Definition 2, the center of rough group Y is an identity element, or it can be written as $Z(Y) = \{(1)\}$.

Using Theorem 1, we will show that the center of rough group Y that is $Z(Y) = \{(1)\}$ is a rough subgroup of rough group Y. Previously, determine the upper approximation of $Z(Y)$ that is $\bar{Z}(Y) = \{(1), (1,2)\}$.

i. For $(1) \in Z(Y)$, apply $(1) \circ (1) = (1) \in \bar{Z}(Y)$.

ii. For $(1) \in Z(Y)$, there is an inverse element of (1) that is $(1) \in Z(Y)$.

Based on Theorem 1, because the two conditions have been satisfied, it is proved that the center of rough group Y that is $Z(Y) = \{(1)\}$ is a rough subgroup of rough group Y.

5 Conclusions

Based on the results, we construct a rough group, a rough subgroup in the case of the commutative and non-commutative binary operation. Furthermore, the centralizer of a commutative rough subgroup is also a rough group. In comparison, the centralizer of the subgroup of a non-commutative rough group must contain the identity element and the center. The center of each rough group, both commutative and non-commutative, are subgroups of each rough group.

References

Research in Mathematical Archives, vol. 1, no. 6, pp 90-98, 2013.

