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Chaos theory for forecasting

D.I. Kusumastuti

The University of Lampung, Bandar Lampung, Indonesia

R.K. Price
IHE, Delft, The Netherlands

ABSTRACT : Given a time series for runoff in a river there is often the need to make short term
forecasts of flows, particularly if they can lead to possible flooding. The use of chaos theory in
different sectors to analyse apparently chaotic systems has provided a set of useful tools. In each
case the forecast from chaos theory works better than the other techniques, such as artificial neural
network based on extrapolating one or more time steps ahead and nearest neighbour techniques.
The decay rate of the forecast is developed in terms of the structure of the time series.

1 INTRODUCTION

This case study was carried out at a number of
sites in Tulang Bawang basin in Indonesia.
About 20 years of daily runoff data were
available from 5 flow gauges in Tulang
Bawang basin. There is some concern about
the timing of the daily measurements in the
Tulang Bawang basin, so an approach was
developed using an artificial neural network to
generate the (daily) time series from daily
rainfall data. The multilayer perceptron method
was used to train the network in order to fill in
missing daily runoff data.

The daily runoff time series data were
analysed for an wunderlying chaotic. A
systematic methodology for analysing the
measurement data had to be developed to
indicate the presence of chaos in the data set.

2 CHAOS THEORY

Chaos comprises a class of signals
intermediate between regular sinusoidal or
quasiperiodic motions and unpredictable, truly
stochastic behaviour. It has long been seen as a
form of ‘noise’ because the tools for its
analysis were couched in a language tuned to
linear processes. Chaos, as a property of orbits

x(t), manifest itself as complex time traces
with continuous, broadband Fourier spectra,
nonperiodic ~ motion, and  exponential
sensitivity to small changes in the orbit. With
conventional linear tools such as Fourier
transform, chaos looks like ‘noise’, but chaos
has structure in an appropriate state or phase
space. This structure means there are numerous
potential engineering applications to sources of
chaotic time series which can take advantage
of the structure to predict and control those
sources (Abarbanel, 1996).

One set of data used in the process of
developing the models above consisted of
recorded runoff from Rantau Jangkung flow
gauge in the period 1974-1993. An easy tool
for identifying irregularities in observed
signals is the Fourier Power Spectrum as
shown in Figure 1. A broadband and
continuous spectrum indicates that the signal
has possibly originated from a chaotic system.
However, the Fourier power spectrum is not
itself a true invariant because new frequencies
will be introduced with nonlinear changes to
the coordinate system, and multi-harmonic
outputs do not necessarily indicate that the
system is chaotic. The Fourier power spectrum
only provides an indication that the system



might have a chaotic origin because systems
with large degrees of freedom may generate
similar power spectra.
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Figure 1: Power spectrum of the runoff in
Rantau Jangkung flow gauge. The spectrum is
broadband and continuous, indicating a non-
periodic signal.

An auto-correlation of a periodic signal
produces a periodic function. For a chaotic or a
random signal the autocorrelation function will
approach zero rapidly. This tool is a good
indicator of whether the system is chaotic or
random in nature.
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Figure 2: The autocorrelation function plotted
against time lags for the runoff in Rantau
Jangkung flow gauge.

2.1 Reconstruction of phase space

To go from scalar or univariate abservations to
the multivariate state or phase space which is
required for chaotic motions, it is necessary to
construct the data vectors y(n):

y(n) =[s(n),s[n+T1,....s(n+T(d -1))] (@9)]

of the
observation at time n7 . These y(n) replace

composed simply of time lags

the scalar data measurements s(n) with data
vectors in an Euclidean d-dimensional space in
which the invariant aspects of the sequence of
points x(n) are captured with no loss of
information about the properties of the original

system. The appropriate time lag 77 and the

dimension d are the central issues

oinreconstructing the phase space.

2.1.1  Average mutual information

The mutual information between measurement

a; drawn from a set 4 = {a;} and measurement
b; drawn from a set B = {b ]—} is the amount to

be learned by the measurement of a; from the
measurement of b;. The average over all
measurements, called the average mutual
information between measurements A and B,
is
P a:, b
Tap = % Pyplajbj)logy LanTily )
7] PA(al-)PB(bj)

where P,,(a,b) is the joint probability
density for measurements A and B resulting in
values a and b. Pp(a) and Pg(b) are the
individual probability densities for the
measurements of A and of B.

The choice of values for the time lag is
accomplished by asking when the nonlinear
correlation function, called average mutual
information, has its first minimum. This
function gives the amount of information, in

bits, learned about x(#+7T7g), at time

T =Trg, from the measurement of

x(t + (T — 1)z ). The integer multiple T of the

sampling time is the goal. The average mutual
information among measurements of the runoff
at Rantau Jangkung flow gauge is seen in
Figure 3. Here it is observed that the first
minimum is at T = 15.
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Figure 3: The average mutual information I(T)
for runoff in Rantau Jangkung flow gauge.
2.1.2  Global Dimension

The global embedding dimension, dr , is the
lowest dimension which unfolds the attractor
so that none of these overlaps remain. df is an
integer. If the dimension of the attractor
defined by orbits is d,, then the attractor can be
unfolded in an integer dimensional space of
dimension dr where di > 2d,.

If the signal is contaminated, however, it
may be that the contamination will so
dominate the signal of interest that we see
instead the dimension required to unfold the
contamination. If the contamination has a very
high dimension, such as would be anticipated
for noise, then it cannot be seen that the
percentage of false nearest neighbours will
drop anywhere near to zero in any dimension.
A plot of the percentage of false neighbours for
runoff in Rantau Jangkung flow gauge is
shown in Figure 4.
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Figure 4: Global false nearest neighbour; a

time delay T=15 is used

From this it can be seen that the percentage of
false nearest neighbours does not drop to zero

in any dimension, and this indicates the
presence of a high dimensional signal in the
data. The high residual level of global false
nearest neighbours is about 21 percent where
the dimension is 4. We interpret this level of
high dimensional signal as arising from noise.

2.1.3 Lyapunov exponents and correlation
dimension

The stability of the system is determined by the
Lyapunov exponents, which tell us how small
changes in the orbit will grow or shrink in
time. On taverage, the Lyapunov exponents
indicate how well a prediction could be made
of the evolution of the system L steps ahead of
the present location. Since chaotic systems are
extremely sensitive to initial conditions,
Lyapunov exponents provide a good test for
chaos.
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Figure 5: Average local Lyapunov for runoff in
Rantau Jangkung.

Figure 5 shows four Lyapuov exponents for
runoff in Rantau Jangkung flow gauge. Three
positive exponents suggest that the trajectories
are diverging exponentially, which indicate
that the system is chaotic. The negative
exponent means a dissipative mechanism exist
within the system. The presence of four
exponents also indicates that there are four
degrees of freedom, which implies that the
behaviour of the system could be described by
four differential equations.

The sum of all four Lyapunov exponents is,
in this case, positive. This indicates that overall
the system is diverging, so that it can be



expected that data may be polluted by a large
degree noise.
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Figure 6: Correlation dimension for runoff in
Rantau Jangkung flow.

The correlation dimension of different radii
r can be estimated from Figure 6. The fractal
dimension estimated from the slopes of the
curves is in the range 0.9 — 2.2. This indicates
a non-integer, fractal dimension for the
attractor and is an indication that chaotic
dynamics may present.

From the discussion above it can be
concluded that runoff in Rantau Jangkung flow
gauge exhibits chaotic behaviour.  This,
however, does not agree with the global false
nearest neighbour curve, which should drop to
zero and would remain zero from then on. This
indicates there is significant random
contribution in the data.

There is quite a bit of information in the
local exponents, since they tell us how well we
can predict the evolution of the system T step
ahead. The prediction will work accurately
within the limits of prediction dictated by the
largest Lyapunov exponent A;.When we try to
predict beyond the instability horizon, that is,

T

much greater than —-, our
1
prediction should rapidly lose accuracy.

for times

3 CHAOS PREDICTION

The phase space structure that has been built
up out of the y(n) can be used to provide

effective models of the dynamics which enable
the prediction of the evolution of any new

point in the phase space which has been
observed. Since it has been seen how points in
a neighbourhood evolve into points in the
following neighbourhood, the next step is to
provide an appropriate interpolation scheme
that allows us to say that any new point
evolves more or less as the points in its
neighbourhood.

The Chaos prediction is a purely predictive
model. It does not use rainfall as a forcing
term, but generates predictions on the basis of
the observed runoffs only. The first ten years
of daily data from 1974 — 1983 were used for
training, while the second ten years were used
for testing. The Chaos model was built for the
horizon of T= 1 and T = 2 using embedding
dimension d = 4, time sampling rate T = 2.
Performance of the testing data is presented in
Figure 7.
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Figure 7. Results of runoff prediction in
Rantau Jangkung (T=2).

The performance of the model shows good
prediction for lead time T =1 with coefficient
of goodness of fit of 0.9116. This shows that
chaos can be used to give precise short-term
forecasting if the time series is indeed chaotic
and low-dimensional. Comparing the results of
forecasting of river discharges by ANN,
Genetic Algorithm, and Chaos Theory showed
that even for an horizon of T = 2, results are
comparable with that of neural network for
forecast horizon of T = 1 (Babovic et al,
1999).

In units of 7, the largest Lyapunov
exponent from Figure 5 is approximately

/11 ~1.4, so we should be able to make



accurate predictions for one or two steps
beyond any starting location on the attractor.
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Figure 8: The decay rate of the forecast.

Figure 8 exhibits the attempt to predict for
1, 2, 10, 25, and 50 steps using precisely the
same methods and the same learning data set.
It is clear that we have gone beyond the
predictability horizon by pushing so far, since
we are dealing with a chaotic evolution which
is unstable everywhere in state space.

4 FORECASTING BY ANN AND
NEAREST NEIGHBOUR

4.1 Forecasting by ANN

The most widely used neural network
architecture for modeling water resources
systems is the MLP network with the error
back-propagation algorithm as learning rule.
However, a major limitation of the MLP is that
it can only learn an input-output mapping that
is static. These networks are well suited for the
prediction of outputs from inputs where the
outputs do not affect any of the other input
patterns. However, it is questionable how far
MLP can be used for forecasting in time.

The network used for prediction is a three
layer-ANN with five inputs, eight hidden
nodes, and one output node. The network was
trained using backpropagation algorithm. The
network is same as ‘the usual’ MLP network,
except the desired output dynamically changes
as time prediction changing. In practice, it can
be simply done by shifting the output one step
for one step higher time level.

For one step prediction, it can be considered
that MLP gives a good result with the

coefficient of efficiency 0.7339 and 0.6199 for
training and verification respectively. However,
when the networks were trained for higher time
level prediction these values decrease to be
unacceptable.

4.2. Forecasting by nearest neighbour

The nearest neighbour algorithm may be stated
briefly as follows. Training set patterns are first
plotted in multi-dimensional feature space, and
then test patterns are taken one at a time and
classified according to which training set
pattern is the nearest in feature space (Dudani,
S.A., 1990).

For every data vector in training set the
value of precedent runoff is known. With the
new vector we want to forecast runoff for one
step ahead.

5. CONCLUSION

Chaos has structure in an appropriate state or
phase space in which that structure can be used
to predict the source of the chaos. A systematic
methodology for analysing the measurement
data depends on a reconstruction of the phase
space from scalar observation, choosing time
delays, deducing the false nearest neighbour for
determining the size of the reconstructed space,
and modelling of the observed systems. The
experimental results indicated the presence of
chaos in the data set, but there remains
uncertainty that runoff in Tulang Bawang river
basin actually exhibits chaotic behaviour.

The prediction by Chaos Theory worked
remarkably accurately within the limits of the
prediction prescribed by the largest lyapunov
exponent A;. With the set of data the
predictions are accurate with horizons 1 and 2.
However, predictions beyond this horizon lead
rapidly to loss of accuracy. The experiments
with 10, 25, and 50 steps ahead showed how
the accuracy degrades

In forecasting, Chaos Theory shows its
superiority compared with ANN and nearest
neighbour (NN). Results displayed in Table 1,
for an experiment in Ranrau Jangkung flow
gauge, show that even for a lead time T=4,
results are comparable with that of neural



network and nearest neighbour for forecast lead
time of T=I.

Table 1. The comparison of the results

Lead | Chaos ANN NN
Time | Theo- | Train Test
ry
1 0912 0.734 0.619 0.752
2 0.834 0.636 0.532 0.682
3 0.781 0.567 0.462 0.622
4 0.774 0.512 0.416 0.560
5 0.713 0.471 0.358 0.499
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