An Investigation of Green Roof Deployment in Bandung City, Indonesia

M. Iryad, Ari D. Pasek and Yuli S. Indartono

Department of Mechanical Engineering, Universitas Lampung, Bandar Lampung, Indonesia
Faculty of Mechanical and Aerospace Engineering, Institut of Teknologi Bandung, Bandung, Indonesia

Abstract: Indonesia is located in the tropics with high average temperature at daytime and relative exposure time throughout the year. Solar radiation received by the roof of a building can increase the cooling load. Green roof utilization can be one of the alternative solutions to decrease thermal rate in a building. Extensive green roof is one of green roof types which needs specific construction. Some suitable plants for the tropical zone are Amaranth, Bromeliaceae, Euphorbia and Red Edged Dracaena which need little water. Green roof application with Amaranth and Bromeliaceae in Bandung, using layers which consist of drainage, filter and soil have been able to inhibit heat transfer so the heat is not sent into the room. Stable roof temperature preserves roof construction strength from the effect of cooling and heating cycle. Constructing a garden using synthetic grass is recommended if drainage is available to ease heat transfer through the roof.

Key words: Green roof, tropic, plants, synthetic grass, heat transfer

INTRODUCTION

Energy efficiency needs to be enhanced in all sectors. Energy building is one sector which has significant contribution to primary energy consumption. Energy utilization of buildings in USA is 40% (Levermore, 2008), 23% in Spain, 25% in Japan, 28% in China, 39% in Great Britain, 42% in Brazil and 47% in Switzerland (Saadatian et al., 2013). In a building, large energy is consumed by air conditioning system. Especially for countries in the tropical zone, such as Indonesia, energy consumption for air conditioning system reaches 63% and for Malaysia it is 57%. Energy utilization for air conditioning system can be minimized by decreasing the cooling load. Thermal energy from sunlight which enters the room through roof materials is one of the cooling loads that need to be minimized especially, for countries in the tropical zone.

Green roof has been applicable to decrease roof surface temperature. Result of a research in Japan showed that green roof can decrease roof surface temperature to about 30-60°C (Saadatian et al., 2013; Wong et al., 2003). Liu and Minor stated that green roof can reduce sunlight which enters a building around 70% in summer and about 10-30% in winter (Roche and Beradi, 2014). Indirect impact by using green roof is reducing energy consumption for air conditioning system about 5-80% (Saadatian et al., 2013; Wong et al., 2003). Another study related to this topic in Greece showed that the application of green roof can decrease energy for air conditioning system about 2-48% and temperature reduction reaching 4 K (Niachou et al., 2001).

Furthermore, green roof utilization has some advantages such as upgrading the air management (Mentens et al., 2006), decreasing air pollution (Yang et al., 2008), cutting back noise (Renterghem and Botteldooren, 2011), enhancing biodiversity in a city (Schrader and Boman, 2006), relieving dioxide carbon as an effect of photosynthesis (Feng et al., 2010, Jaffal et al., 2012). Green roof utilization can increase roof life as well because it can decrease thermal stress (Jaffal et al., 2012; Fioretti et al., 2010). For a comprehensive application, green roof contributes to the mitigation of the urban heat island effect (Alexandri and Jones, 2008).

The phenomenon of heat transfer in green roof is where the solar radiation into green roof undergoes several processes (Ouldoukkhtine et al., 2011). On energy crops used for photosynthesis, water evaporates and partly reflects and emits radiation back. On the ground conduction heat transfer, thermal energy storage for the use of water evaporation, as well as most of the radiation is reflected and radiated back. The energy that enters the lower surface of the roof is forwarded to the room by convection and radiation. Of the incoming solar radiation into green roof, about 27% is reflected, 60% is absorbed by plants and soil to water evaporation process.
and 13% are transmitted into the soil (Ayata et al., 2011). Energy distribution on the green roof is shown in Fig. 1. The following shows some equation of energy that occurs on green roof. Energy balance on the foliage is given by Sailor (2008) and Frankenstein and Koenig:

\[F_z = \sigma_l \left[(1 - \alpha_f) + \varepsilon_f \lambda_{\nu} - \varepsilon_f \sigma T_f^4 \right] + \frac{\sigma_l \varepsilon_f \varepsilon_g \sigma}{\varepsilon_f + \varepsilon_g} (T_f^4 - T_g^4) + H_z + L_z \]

(1)

\[H_z = (\varepsilon_f + \lambda_{\nu}) \times L_{AI} \times \rho_d \times C_p \times C_r \times W_d \times (T_d - T_f) \]

(2)

Meanwhile, sensible heat flux on the ground is given by Deardoff:

\[H_g = (\varepsilon_g + \lambda_{\nu}) \times L_{AI} \times \rho_d \times C_p \times C_r \times W_d \times (T_d - T_g) \]

(3)

The latent heat flux in the surface of the plant is given by Deardoff:

\[L_z = (LAI \times \rho_d \times L \times W_d \times \rho_d \times (q_d - q_n)) \]

(4)

The latent heat flux on the ground is given by Deardoff:

\[L_g = C_p \lambda_{\nu} + L \times W_d \times \rho_d \times (q_d - q_n) \]

(5)

The balance of energy on the ground is given by Sailor (2008) and Frankenstein and Koenig:

\[F(T_g) = \left[(1 - \sigma_l) \left[(1 - \alpha_g) + \varepsilon_g \lambda_{\nu} - \varepsilon_g \sigma T_g^4 \right] - \frac{\sigma_l \varepsilon_f \varepsilon_g \sigma}{\varepsilon_f + \varepsilon_g} (T_g^4 - T_f^4) \right] + H_g + L_g + \kappa \frac{\partial T_g}{\partial z} \]

(6)

The heat energy to the surface of concrete’s top layer is forwarded by means of conduction heat transfer to the surface of concrete’s bottom layer with the following equation:

\[Q = \kappa \frac{\partial T_g}{\partial z} \]

(7)

Ambient temperature in Indonesia: Indonesia is located in the equator zone with coordinates of 6° North latitude 110°08’ South latitude and 95° 141°45’ East longitude. Climate in Indonesia is tropical. Time of solar radiation has no significant differences each month, time of day and night is relatively the same as well. Indonesian Agency for Meteorological, Climatological and Geophysics released monthly data in 2014 as shown in Fig. 2 on maximum and minimum temperature average. Jakarta and Surabaya had high monthly average temperature which could reach 31°C. While Bandung was relatively cool which had a maximum temperature of, on the average, 28°C and it could be 19.4°C at night. Generally, in rainy and dry seasons the monthly average temperature is almost the same. However the minimum and maximum temperature differences in some big cities are quite varied between 1.5 and 7°C.
Fig. 2: The maximum and minimum ambient temperature in several cities in Indonesia

Fig. 3: Weather in Bandung from 30 September to 1 October 2015

Maximum and minimum temperature differences defined as a range between peak temperature at daylight and the lowest temperature at night. Daily temperature in Bandung during the extreme weather due to El Nino is shown in Fig. 3. Temperature difference between maximum and minimum values reached 16°C. Solar radiation at peak condition could reach 1200 Wm⁻².

Environmental temperature conditions influence the selection of plants suitable for green roof especially the extensive type. The choice of plants for areas of Indonesia is a plant that requires little water and stays strong at ambient temperatures ranging from 30-35°C. Some plants that can be grown, for example, are Amaranta, Bromelia, grass, Euphorbia and Red edged Dracaena.

MATERIALS AND METHODS

The equipment used for testing the green roof was two models of buildings, thermocouples, temperature data logger as well as solar power meter. The size of the building model was 1×1×1 m with 12 cm thick concrete roof. The top surface of the roof of the building walls were made of 10 cm thick styrofoam covered with plywood and painted in white color. The layer of green roof consisted of water proof, drainage, filter, soil and plants as shown in Fig. 4. Drainage was used. There were two kinds namely rubber mating Trell-link type and stone gravel. Thick drainage of rubber was 1.8 cm and of stone gravels were 2-3 cm. The soil thickness was 9 cm. Plants used were Bromelia, Amaranta. Placement of plants was also done using pots arranged on the roof. A test by using artificial turf was also conducted. Temperatures were measured using a type K thermocouple sensor and data logger Lutron brand type BTM-4208SD. Testing of solar irradiation was done by using solar power meter Lutron brand type SPM-1116SD. Data recording period is every 5 sec. Thermal properties of green roof materials to references in heat transfer calculation are shown Table 1.
RESULTS AND DISCUSSION

Heat transfer of green roof application: Solar radiation due to direct exposure on the surface of the roof generates heat which is then passed through the roof material by conduction towards the room. Heat transfer into the room can be determined by calculating the heat transfer conduction on concrete layer of both roof types, i.e., standard and green roof type. The heat transfer into the roof layer causes increase of temperature on the lower roof surface. Standard roof surface temperature can reach 48°C when the weather is sunny as shown in Fig. 5. The lower roof surface temperature increases along with the increase in surface temperature over the rooftops. The heat energy on the surface of the underside of the roof is transferred to the room by convection and radiation. This has resulted in the rise of room temperature, too.

The use of plants on green roof has been able to inhibit the thermal energy entered in the room from the roof. From result of examination it appears that almost nothing heat transfer into the room from the roof. Instead, the heat transfer is very large standard roof during the day when solar radiation is high. That is shown in Fig. 6. The heat energy that entered in the green roof is absorbed by the water in plants and soil for the evaporation process. Some of the energy has been stored by the soil material. During the day, the heat transfer occurred from the room to the roof, and at night when the room temperature and the environment is lower than the roof of the heat transfer from the concrete roof. The thermal energy stored in the soil and concrete are released, either to the top surface and the bottom surface to the roof. Utilization of green roof can cause roof temperature to be stable which is shown in Fig. 7.

Plants on green roof receive direct solar radiation. Most are reflected, the others are absorbed for photosynthesis used to evaporate the water in plants and soil. The rest is then passed to the roof through the soil. According Lazzarin et al. (2005) only about 1.8% was passed onto the roofing material. Soil with a low enough thermal conductivity can slow the rate of heat to the roof. Drainage made of rubber also slows the rate of heat transfer to the roof.
Results of testing with several types of plants, drainage and the use of synthetic turf are presented in Table 2. Analysis has been carried out for 4 h testing time. Heat transfer of standard roof is very large. For average solar radiation of about 500 w m\(^{-2}\), heat transfer value is around 60 w m\(^{-2}\). While the average solar radiation above 1000 w m\(^{-2}\) produces heat transfer value above 80 w m\(^{-2}\). The possibility of no-plant green roof to hinder the thermal energy is very significant, where the heat transfer in concrete layer is only 0.4 w m\(^{-2}\). The use of Amaranta and Bromelia plants at green roof have been able to inhibit heat transfer to the concrete layer; so that, the thermal energy do not enter the room. The use of gravel as drainage does not give much difference on the heat transfer compared to the use of rubber. In using gravel, the strength of the roof must be considered since its density is much greater than the rubber. The placement of plants in pots also has been a positive influence on the decrease of heat transfer into the room. The heat transfer in concrete layer is 12.4 w m\(^{-2}\). The closer the placement of the pots, the better its effect is. This is due to the smaller surface of the roof that gets direct sunlight. The roof of the building will be hindered by plants and soil potting dam. The use of artificial turf directly on the roof turned out to not significantly gives effect of heat transfer into the room. However, by installing a drainage layer as synthetic turf mat on the roof surface, it could impede heat transfer where the value is 15.9 w m\(^{-2}\).
Table 2: Green roof application to heat transfer reducing

<table>
<thead>
<tr>
<th>Plant</th>
<th>Green roof layer</th>
<th>Average of heat transfer into the room (Wm⁻²)</th>
<th>Average of ambient temperature (°C)</th>
<th>Average of solar irradiation (Wattm⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Standard Green roof</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil</td>
<td>Filter Drainage (rubber)</td>
<td>85.1</td>
<td>0.4</td>
<td>30.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amarantha</td>
<td>Soil Filter Drainage (rubber)</td>
<td>81.9</td>
<td>0</td>
<td>30.0</td>
</tr>
<tr>
<td>Bromelia</td>
<td>Soil Filter Drainage (rubber)</td>
<td>68.5</td>
<td>0</td>
<td>30.4</td>
</tr>
<tr>
<td>Bromelia</td>
<td>Soil Filter Drainage (gravel)</td>
<td>89.3</td>
<td>0</td>
<td>32.0</td>
</tr>
<tr>
<td>Bromelia</td>
<td>Soil Flower pots Synthetic grass Synthetic grass Drainage (rubber)</td>
<td>84.8</td>
<td>12.4</td>
<td>32.1</td>
</tr>
</tbody>
</table>

CONCLUSION

The average maximum temperature during the day in Indonesia is high, about 30°C and evenly throughout the year. This strongly supports the use of green roof on buildings as it can be used to reduce the cooling load of the room throughout the year. Besides that, green roof can function to overcome roofing material damage due to thermal fatigue that occurs because of differences in high maximum and minimum average temperature of around 6.8°C and repeated every day.

The application of green roof can reduce the rate of heat transfer into the room significantly. The use of Amarantha and Bromelia plants using rubber drainage can inhibit heat transfer into the room. The same is shown by the use of gravel drainage, but it is worth noting to the additional load on the roof. The use of synthetic grass as lawn on a building roof can be maintained as long as it is lined with rubber drainage. This is because the use of synthetic grass directly leads to unimpeded heat transfer in concrete layer. While the addition of rubber drainage can reduce the thermal energy into the room, where the heat transfer is only 15.9 Wm⁻², so is the use of plants in pots. They have a positive impact on the decline of heat transfer in concrete layer down to 12.4 Wm⁻².

ACKNOWLEDGEMENTS

This researcher was supported by International Research Collaboration and Scientific Publication 2015-2016 from Indonesia's Ministry of Research, Technology and Higher Education.

NOMENCLATURE

- C_{r} = Bulk transfer coefficient
- C_{h} = Bulk transfer coefficient for the sensible heat
- C_{vp} = Specific heat transfer of air at constant pressure (J/kgK)
- e_{0} = Windless exchange coefficient
- F_{l} = Foliage energy balance (W m⁻²)
- H_{s} = Foliage sensible heat flux (W m⁻²)
- H_{g} = Ground sensible heat flux (W m⁻²)
- I_{s} = Total incoming short-wave radiation (W m⁻²)
- I_{l} = Total incoming long-wave radiation (W m⁻²)
- LAI = Leaf Area Index
- K = Thermal conductivity (W mK⁻¹)
- l = Latent heat of evaporation (J kg⁻¹)
- L_{f} = Foliage latent heat (J kg⁻¹)
- L_{g} = Ground latent heat (J kg⁻¹)
- q_{m} = Mixing ratio for air within foliage interface
- q_{inf} = Saturation mixing ratio at foliage temperature
- m = Surface wetness factor
- T_{e} = Air temperature within foliage (K)
- T_{v} = Foliage temperature (K)
- T_{g} = Ground temperature (K)
- W_{s} = Wind speed at the air-foliage interface (m sec⁻¹)
- a_{r} = Albedo of the canopy
- a_{g} = Albedo of ground surface
- e_{s} = Foliage emissivity
- e_{g} = Ground surface emissivity
- ρ_{v} = Density of air at foliage temperature (kg m⁻³)
- ρ_{g} = Density of air at ground surface temperature (kg m⁻³)
- σ = Stefan-Boltzmann constant (5.67×10⁻⁸ W m⁻²K⁻⁴)
- γ = Fractional vegetation coverage

REFERENCES

An Investigation of Green Roof Deployment in Bandung City, Indonesia

M. Irsyad, Ari D. Pasek and Yuli S. Indartono

Abstract: Indonesia is located in the tropics with high average temperature at daytime and relative exposure time throughout the year. Solar radiation received by the roof of a building can increase the cooling load. Green roof utilization can be one of the alternative solutions to decrease thermal rate in a building. Extensive green roof is one of green roof types which needs specific construction. Some suitable plants for the tropical zone are Amarantha, Bromelia, Euphorbia and Red Edged Dracaena which need little water. Green roof application with Amarantha and Bromelia in Bandung, using layers which consist of drainage, filter and soil have been able to inhibit heat transfer so the heat is not sent into the room. Stable roof temperature preserves roof construction strength from the effect of cooling and heating cycle. Constructing a garden using synthetic grass is recommended if drainage is available to ease heat transfer through the roof.

How to cite this article:

DOI: 10.3923/jaesci.2016.2528.2534
URL: http://medwelljournals.com/abstract/?doi=jeasci.2016.2528.2534
Journal of Engineering and Applied Sciences (2017 Volume 12)

Two Improved Methods Based on Broyden's Newton Methods for the Solution of Nonlinear System of Equations
M.H. Al-Towaiq and Y.S. Abu Hour

Sol-Gel BaTiO Thin Films for Optical Application

Wind-PV Hybrid System Modeling Using Bidirectional Converter with MPPT-Dual Adaptive Neuro Fuzzy Inference System (ANFIS) in Microgrid Isolated System
Suyanto, Farid Dei Murdianto, Ontoseno Penangsang, U.P. Dimas Fajar, Adi Soeprjanto and Rony Seto

Rainfall Data Analysis in Langat River Basin Using Hyfran-Plus
Khairi Khalid, Mohd Fozl Ali, Nurul Fatin Manc, Nor Faiza Abd Rahemanb, Ahmad Amzari Yacob, Nur Asmaliza Mohd Noor and Siti Hawa Rosli

Reconfiguration of Distribution Network for Minimizing Losses and Improving Voltage Stability Index Using Binary Firefly Algorithm
Yuli Prasetyo, Ontoseno Penangsang, Adi Soeprjanto, D.F. Uman and Yudha Anugerah

Effect of Newtonian Heating on the Mixed Convection Boundary Layer Flow of Eyring-Powell Fluid Across a Nonlinearly Stretching Sheet
Hussein Ali Mohammed Al-Sharifi, Abdul Rahman Mohd Kasim and Mohd Zuki Salleh

Benchmarked Pterygium Images for Human and Machine Graders
Mohd Zulfaezal Che Azemin, Norfazrina Abdul Gaffur, Mohd Radzi Hilmi, Mohd Izzuddin Mohd Tamrin and Khairidzan Mohd Kamal

Reduced Order Model for Model Updating of a Jointed Structure
Wan Imaan Izhan Wan Iskandar Mirza, Muhamad Norhisham Abdul Rani, Salmiah Kasolang and Mohd Azmi Yunus

Cubic Spline Regression Model and Gee for Land Surface Temperature Trend Using Modis in the Cloud Forest of Khao Nan National Park Southern Thailand During 2000-2015
Anusa Suwanwong and Noodchanath Kongchouy

Algebraic Properties of Generalized Fibonacci Sequence via Matrix Methods
Sia Jye Ying, Ho Chee Kit, Haslinda Ibrahim and Nazihah Ahmad

Investigating the Convergence of Some Selected Properties on Block Predictor-Corrector Methods and it's Applications
Jimewo Godwin Oghonyon, Julius Ehiieg and Stella Kanayo Eke

The Method to Estimate the Surface Appearance Quality of the Paint Applied to the Cement
V.I. Loganina, T.V. Uchaeva and P.V. Monastyrev

Laws of Formation of Quality of Appearance of Paint Coverings of Cement Concrete
V.I. Loganina, G.A. Fokin and N.N. Laskov

Survey US Ability and Spatial Effectiveness of Housing Facilities in Blocks of Flats in the Czech Republic
Dagmar Kuta and Jan Ceselsky

The Dynamics of the System "Elastic Foundation-High Rise Construction-Dynamic Ring-Type Damper"
Alexander Shein and Olga Zemtsova

A Review of the Automatic Methods of Cancer Detection in Terms of Accuracy, Speed, Error and the Number of Properties (Case Study: Breast Cancer)
Jalilvand Farnaz
The Technique for Enhancing Effectiveness of One Modification’s of Algorithm Peterson-Gorenstein-Zierler
Mehrdad A. Babavand Arablou, Fikrat G. Feyziyev and Maral R. Mekhtiyeva

Wideband CPW Fed Monopole Fractal Antenna with Defected Ground Structure
K.V.L. Bhavani, Habibulla Khan and B.T.P Madhav

Workload Energy Efficiency Scheduling for Heterogeneous Clouds
T. Sri Nagavalli

Materials as Complex Systems
I.A. Garkina, A.M. Danilov and V.P. Selyaev

Flow Visualization Study of Vortex Formation for a Wing with Cavity
Tham Weng Hong, Noorfazreena Mohammad Kamaruddin and Zulfaa Mohamed-Kassim

Experimental Investigation of Dynamic Behaviour of a Structure with Closely Spaced Modes
Ahmad Burhani Ahmad Basri, Muhamad Norhisham Abdul Rani, Mohd Hakimi Ohthman, Wan Imaan Izhan Wan Iskandar Mirza, Mohd Azmi Yunus and Liyana Roslan

Finite Element Model of the Spot Welded Joints of Door in White (DIW)
Nor Irwan Abd Halim, Mohd Azmi Yunus, Salmiah Kasolong and Muhamad Norhisham Abdul Rani

Fault Classification in Transmission Line Using Support Vector Machine (SVM) and Wavelet Features
Mat Nizam Mahmoud, Mohammad Nizam Ibrahim, Muhammad Khusairi Osman and Zakaria Hussein

Thermal, Composition and Morphological Properties of Untreated and Alkali-Treated Napier Grass Fibres

Kinetic and Linear Equation of Adsorption by TiO$_2$ Nanofilm Coating in Photocatalytic Reactor
Sunun Khami, Wipawee Khamwichit and Charat Siripattana

Verification of Moving Particle Pressure Mesh (MPPM) Method in Simulating Nonnewtonian Flow in a Square Cavity
Khar-Ching Ng, Tony Wen-Hann Sheu and Yao-Hein Hwang

The Performance of Coconut Husk and Shell for the Removal of Methyl Red from Aqueous Solution: Adsorption Equilibrium and Kinetic Study

Transesterification of Waste Frying Oil (WFO) using Waste Chicken Bone as a Catalyst
K. Azduwin, Nordini Syuhada Sahardi, M.J.M. Ridzuan and Anis Alikah Ahmad

Desk and Chair Design of Elementary School using Kansei Engineering and Conjoint Analysis
Cucuk Nur Rosyidi, Indri Hermayanti, Pringgo Widyo Laksono, Lu’u Purwaningrum, Susy Susmartini and Satoshi Murakic

Plane Strain Plastic Deformation in Geometrically Nonlinear Arrays in Tresca-Saint-Venant Plasticity Condition
S. Bakushev

Methodological Principles Design of Composite Materials
I.A. Garkina, A.M. Danilov and E.A. Budylina

An Investigation of Green Roof Deployment in Bandung City, Indonesia
M. Irsyad, Ari D. Pasek and Yuli S. Indartono

A Composite Remote Sensing and Monitoring Method for Effective Traffic Management
J.K.R. Sastry, T. Naveena Muralidhar, Y. Lakshmi Chandana and J. SasiBhanu

Exergoeconomic Analysis of Gas Turbines Cogeneration Systems
Amin Jodat

A Review on Electromagnetic Energy-Regenerative Shock Absorbers
A.V. Kireev Kozhemyaka, N.M. Burdugov, S.A. Nazarenko and A.V. Klimov
Journal of Engineering and Applied Sciences (2017 Volume 12)

Number of issues per year: 24
ISSN : 1816-949x (Print)
ISSN : 1818-7803 (Online)

AIMS & SCOPE

Subject areas suitable for publication include, but are not limited to the following fields:

:: Applied Science
:: Mathematics
:: Electrical engineering
:: Computer engineering
:: Electronic engineering
:: Optical engineering
:: Power engineering
:: Mechanical engineering
:: Acoustical engineering
:: Manufacturing engineering
:: Thermal engineering
:: Vehicle engineering
:: Automotive engineering
:: Aerospace engineering
:: Naval architecture
:: Agricultural engineering
:: Bioprocess engineering
:: Food engineering
:: Aquaculture engineering
:: Applied engineering
:: Automation/Control systems/Robotics
:: Computer-aided Drawing & Design (CADD)
:: Construction
:: Electronics
:: General
:: Graphics
:: Manufacturing
:: Nanotechnology
:: Biological engineering
:: Biomedical engineering
:: Genetic engineering
:: Biochemical engineering
:: Biological organisms
:: Tissue engineering
:: Protein engineering
:: Building services engineering
:: Energy engineering
:: Industrial engineering
:: Manufacturing engineering
:: Component engineering
:: Systems engineering
:: Construction engineering
:: Textile Engineering
:: Safety engineering
:: Reliability engineering
:: Mechatronics
:: Nano engineering
:: Nuclear engineering
:: Petroleum engineering
:: Chemical Engineering

Abstracted/Indexed in
:: Agro Asia
:: World Agri. Database
:: MedLit

Abstracted/Indexed in

Number of issues per year: 24
ISSN : 1816-949x (Print)
ISSN : 1818-7803 (Online)

EDITORIAL BOARD

Editor-in-Chief: Dr. Ibrahim Badran
Director Publications: Dr. Muhammad Sohail (Pakistan)

EDITORIAL BOARD MEMBERS

<table>
<thead>
<tr>
<th>Name</th>
<th>Country</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Dimitris Kanellopoulos</td>
<td>Greece</td>
<td></td>
</tr>
<tr>
<td>Dr Oleg Makarynsky</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>Dr. A.M.S. Harnouda</td>
<td>Qatar</td>
<td></td>
</tr>
<tr>
<td>Dr. Afaq Ahmad</td>
<td>Oman</td>
<td></td>
</tr>
<tr>
<td>Dr. Angelo Basile</td>
<td>Italy</td>
<td></td>
</tr>
<tr>
<td>Dr. Benafi Abd El Hamid</td>
<td>Algeria</td>
<td></td>
</tr>
<tr>
<td>Dr. Byung-Gyu Kim</td>
<td>Korea</td>
<td></td>
</tr>
<tr>
<td>Dr. Chetate Boukhemis</td>
<td>Algeria</td>
<td></td>
</tr>
<tr>
<td>Dr. Christopher J. Koroneos</td>
<td>Greece</td>
<td></td>
</tr>
<tr>
<td>Dr. Coskun Hamzacebi</td>
<td>Turkey</td>
<td></td>
</tr>
<tr>
<td>Dr. Elif Derya Ubayli</td>
<td>Turkey</td>
<td></td>
</tr>
<tr>
<td>Dr. Fabian I. Ezema</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>Dr. Guibing Zhu</td>
<td>China</td>
<td></td>
</tr>
<tr>
<td>Dr. Habib Zaidi</td>
<td>Switzerland</td>
<td></td>
</tr>
<tr>
<td>Dr. Haitao Liu</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>Dr. H. Huseyin Aksel Eren</td>
<td>Turkey</td>
<td></td>
</tr>
<tr>
<td>Dr. Isik Yilmaz</td>
<td>Turkey</td>
<td></td>
</tr>
<tr>
<td>Dr. Jahankakhsh Ghasemi</td>
<td>Iran</td>
<td></td>
</tr>
<tr>
<td>Dr. Ji-Huan He</td>
<td>China</td>
<td></td>
</tr>
<tr>
<td>Dr. K.W. Chau</td>
<td>Hong Kong</td>
<td></td>
</tr>
<tr>
<td>Dr. Lykourgos Magafas</td>
<td>Greece</td>
<td></td>
</tr>
<tr>
<td>Dr. Marcin Marek Kamil'ski</td>
<td>Poland</td>
<td></td>
</tr>
<tr>
<td>Dr. Miklas Scholz</td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Dr. Mohamad Y. Jaber</td>
<td>Canada</td>
<td></td>
</tr>
<tr>
<td>Dr. Oke Sunday Ayoola</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>Dr. P. Predeep</td>
<td>India</td>
<td></td>
</tr>
<tr>
<td>Dr. Sabah A. Abdul-Wahab Al-Suaiman</td>
<td>Oman</td>
<td></td>
</tr>
<tr>
<td>Dr. Steven Sheng-Uei Guan</td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Dr. Ugur Ulusoy</td>
<td>Turkey</td>
<td></td>
</tr>
<tr>
<td>Dr. Yong Hong Wu</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>Dr. Zhenya Yan</td>
<td>China</td>
<td></td>
</tr>
<tr>
<td>Dr.N.S Marimuthu</td>
<td>India</td>
<td></td>
</tr>
<tr>
<td>Lubos Smutka</td>
<td>Czech Republic</td>
<td></td>
</tr>
<tr>
<td>Oluwumi Adetan</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>Prof. C. S. Bagewadi</td>
<td>India</td>
<td></td>
</tr>
<tr>
<td>Prof. J. M. Feliz Teixeira</td>
<td>Portugal</td>
<td></td>
</tr>
<tr>
<td>Prof. Jean Deprez</td>
<td>France</td>
<td></td>
</tr>
<tr>
<td>Prof. Magdy El-Tawil</td>
<td>Egypt</td>
<td></td>
</tr>
<tr>
<td>Prof. T. Sree Renga Raja</td>
<td>India</td>
<td></td>
</tr>
<tr>
<td>Dr. Murat Karaku</td>
<td>Turkey</td>
<td></td>
</tr>
<tr>
<td>Dr. ZEDIRA Hamma</td>
<td>Algeria</td>
<td></td>
</tr>
<tr>
<td>Dr. Adel M. Alimi</td>
<td>Tunisia</td>
<td></td>
</tr>
<tr>
<td>Dr. Amir Nasserirand</td>
<td>Iran</td>
<td></td>
</tr>
<tr>
<td>Dr. Baowen Xu</td>
<td>China</td>
<td></td>
</tr>
<tr>
<td>Dr. Bin Xu</td>
<td>China</td>
<td></td>
</tr>
<tr>
<td>Dr. Cesim Alas</td>
<td>Turkey</td>
<td></td>
</tr>
<tr>
<td>Dr. Chien-Ho Ko</td>
<td>Taiwan</td>
<td></td>
</tr>
<tr>
<td>Dr. Chunzhao Liu</td>
<td>China</td>
<td></td>
</tr>
<tr>
<td>Dr. Daoud I. Zafar</td>
<td>France</td>
<td></td>
</tr>
<tr>
<td>Dr. Ercan Kahya</td>
<td>Turkey</td>
<td></td>
</tr>
<tr>
<td>Dr. Govindhan Dhanraj</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>Dr. H-S Shen</td>
<td>China</td>
<td></td>
</tr>
<tr>
<td>Dr. Hai-Bin Duan</td>
<td>China</td>
<td></td>
</tr>
<tr>
<td>Dr. Haiwen Liu</td>
<td>China</td>
<td></td>
</tr>
<tr>
<td>Dr. Isaac Elshakoff</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>Dr. Jadambaa Temuujin</td>
<td>Mongolia</td>
<td></td>
</tr>
<tr>
<td>Dr. Jasvir Singh</td>
<td>India</td>
<td></td>
</tr>
<tr>
<td>Dr. Justin Zhan</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>Dr. Ling WANG</td>
<td>China</td>
<td></td>
</tr>
<tr>
<td>Dr. Maode Ma</td>
<td>Singapore</td>
<td></td>
</tr>
<tr>
<td>Dr. Mark J. Kaiser</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>Dr. Minggen Cui</td>
<td>China</td>
<td></td>
</tr>
<tr>
<td>Dr. Nam H. Tran</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>Dr. Ozgur Kisi</td>
<td>Turkey</td>
<td></td>
</tr>
<tr>
<td>Dr. Giang Ji</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>Dr. Shahram Ariafar</td>
<td>Norway</td>
<td></td>
</tr>
<tr>
<td>Dr. Tariq Jamil</td>
<td>Oman</td>
<td></td>
</tr>
<tr>
<td>Dr. Yaser Dahman</td>
<td>Canada</td>
<td></td>
</tr>
<tr>
<td>Dr. Yugang YU</td>
<td>The Netherlands</td>
<td></td>
</tr>
<tr>
<td>Dr. Zine Eddine Baarir</td>
<td>Algeria</td>
<td></td>
</tr>
<tr>
<td>Dr.V.Sivasubramanian</td>
<td>India</td>
<td></td>
</tr>
<tr>
<td>Mansoor Mailah</td>
<td>Czech Republic</td>
<td></td>
</tr>
<tr>
<td>Prof. Ali Allahverdi</td>
<td>Kuwait</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Ahmed Masmoudi</td>
<td>Tunisia</td>
<td></td>
</tr>
<tr>
<td>Prof. Jan Awejczewicz</td>
<td>Poland</td>
<td></td>
</tr>
<tr>
<td>Prof. M. Jamah</td>
<td>Jordan</td>
<td></td>
</tr>
<tr>
<td>Prof. Milorad Bojic</td>
<td>Serbia</td>
<td></td>
</tr>
<tr>
<td>Prof. Yskandar Hamam</td>
<td>France</td>
<td></td>
</tr>
</tbody>
</table>
1) Irsyad, M., Pasek, A.D., Indartono, Y.S.
An investigation of green roof deployment in Bandung City, Indonesia
DOI: 10.3923/jeasci.2016.2528.2534

Document Type: Article
Source: Scopus
<table>
<thead>
<tr>
<th>Author Name</th>
<th>Country</th>
<th>Publications</th>
<th>Subject Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hadi, Sutopo</td>
<td>Indonesia</td>
<td>30</td>
<td>Chemistry; Biochemistry; Genetics and Molecular Biology; Pharmacology, Toxicology and Pharmacuetics; ...</td>
</tr>
<tr>
<td>Samosir, Ahmad Saudi</td>
<td>Indonesia</td>
<td>28</td>
<td>Engineering; Energy; Computer Science; ...</td>
</tr>
<tr>
<td>Haryanto, Agus</td>
<td>Indonesia</td>
<td>24</td>
<td>Energy; Chemical Engineering; Agricultural and Biological Sciences; ...</td>
</tr>
<tr>
<td>Ulvan, Ardian</td>
<td>Indonesia</td>
<td>19</td>
<td>Computer Science; Engineering; Social Sciences; ...</td>
</tr>
<tr>
<td>Hidayat, Wahyu</td>
<td>Indonesia</td>
<td>19</td>
<td>Materials Science; Engineering; Environmental Science; ...</td>
</tr>
<tr>
<td>Suharso, undefined</td>
<td>Indonesia</td>
<td>19</td>
<td>Environmental Science; Chemistry; Engineering; ...</td>
</tr>
<tr>
<td>Suharto, Tati</td>
<td>Indonesia</td>
<td>18</td>
<td>Pharmacology, Toxicology and Pharmaceutics; Biochemistry, Genetics and Molecular Biology; Chemistry; ...</td>
</tr>
<tr>
<td>Sukmana, Irza</td>
<td>Indonesia</td>
<td>18</td>
<td>Engineering; Materials Science; Medicine; ...</td>
</tr>
<tr>
<td>Buhani</td>
<td>Indonesia</td>
<td>18</td>
<td>Environmental Science; Chemistry; Engineering; ...</td>
</tr>
<tr>
<td>Simanjuntak, Wasirton</td>
<td>Indonesia</td>
<td>18</td>
<td>Materials Science; Environmental Science; Chemistry; ...</td>
</tr>
<tr>
<td>Hasanuddin, Udin</td>
<td>Indonesia</td>
<td>17</td>
<td>Environmental Science; Engineering; Energy; ...</td>
</tr>
<tr>
<td>Yandri, A.</td>
<td>Indonesia</td>
<td>16</td>
<td>Biochemistry, Genetics and Molecular Biology; Pharmacology, Toxicology and Pharmacuetics; Chemistry; ...</td>
</tr>
<tr>
<td>Manurung, Posman</td>
<td>Indonesia</td>
<td>14</td>
<td>Materials Science; Chemical Engineering; Engineering; ...</td>
</tr>
<tr>
<td>Offermans, Astrid</td>
<td>Indonesia</td>
<td>14</td>
<td>Environmental Science; Social Sciences; Business, Management and Accounting; ...</td>
</tr>
<tr>
<td>Aeri, Dwi</td>
<td>Indonesia</td>
<td>14</td>
<td>Materials Science; Physics and Astronomy; Chemical Engineering; ...</td>
</tr>
<tr>
<td>Number</td>
<td>Author Name</td>
<td>Years Published</td>
<td>Journal Categories</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>16</td>
<td>Niswati, Ainin</td>
<td>13</td>
<td>Agricultural and Biological Sciences ; Environmental Science ; Immunology and Microbiology</td>
</tr>
<tr>
<td>17</td>
<td>Ulvan, Melvi</td>
<td>13</td>
<td>Computer Science ; Social Sciences ; Engineering ; ...</td>
</tr>
<tr>
<td>18</td>
<td>Suhandy, Diding</td>
<td>13</td>
<td>Agricultural and Biological Sciences ; Engineering ; Chemical Engineering ; ...</td>
</tr>
<tr>
<td>19</td>
<td>Nugroho, Sutopo Ghani</td>
<td>12</td>
<td>Agricultural and Biological Sciences ; Environmental Science</td>
</tr>
<tr>
<td>20</td>
<td>Hakim, Lukmanul</td>
<td>12</td>
<td>Computer Science ; Engineering ; Energy ; ...</td>
</tr>
<tr>
<td>21</td>
<td>Uzman, Mustofa</td>
<td>11</td>
<td>Engineering ; Computer Science ; Mathematics ; ...</td>
</tr>
<tr>
<td>22</td>
<td>Lumbansri, Jamalam</td>
<td>11</td>
<td>Agricultural and Biological Sciences ; Environmental Science</td>
</tr>
<tr>
<td>23</td>
<td>Ibrahim, Gzuri Akhyar</td>
<td>10</td>
<td>Engineering ; Materials Science ; Physics and Astronomy ; ...</td>
</tr>
<tr>
<td>24</td>
<td>Rivai, Ida Faridita</td>
<td>10</td>
<td>Environmental Science ; Pharmacology, Toxicology and Pharmacaceutics ; Medicine ; ...</td>
</tr>
<tr>
<td>25</td>
<td>Situmeang, Rudy</td>
<td>10</td>
<td>Materials Science ; Chemistry ; Pharmacology, Toxicology and Pharmacaceutics ; ...</td>
</tr>
<tr>
<td>26</td>
<td>Sembrero, Simon</td>
<td>10</td>
<td>Materials Science ; Chemistry ; Environmental Science ; ...</td>
</tr>
<tr>
<td>27</td>
<td>Badaruddin, Mohammad</td>
<td>9</td>
<td>Engineering ; Physics and Astronomy ; Materials Science ; ...</td>
</tr>
<tr>
<td>28</td>
<td>Yuwono, Surjito Dwi</td>
<td>9</td>
<td>Environmental Science ; Engineering ; Biochemistry, Genetics and Molecular Biology ; ...</td>
</tr>
<tr>
<td>29</td>
<td>Yuliansyah, Yuliansyah</td>
<td>9</td>
<td>Business, Management and Accounting ; Economics, Econometrics and Finance ; Arts and Humanities ; ...</td>
</tr>
<tr>
<td>30</td>
<td>Irsyad, M.</td>
<td>9</td>
<td>Engineering ; Materials Science ; Environmental Science ; ...</td>
</tr>
<tr>
<td>31</td>
<td>Despa, Dikpride</td>
<td>8</td>
<td>Computer Science ; Engineering ; Energy ; ...</td>
</tr>
<tr>
<td>32</td>
<td>Sinaga, Herman H.</td>
<td>8</td>
<td>Engineering ; Energy ; Materials Science ; ...</td>
</tr>
<tr>
<td>33</td>
<td>Storua, Henry B.H.</td>
<td>8</td>
<td>Engineering ; Materials Science ; Energy ; ...</td>
</tr>
</tbody>
</table>
The Scopus Author Identifier assigns a unique number to groups of documents written by the same author via an algorithm that matches authorship based on certain criteria. If a document cannot be confidently matched with an author identifier, it is grouped separately. In this case, you may see more than one entry for the same author.

Irsyad, M.

Universitas Lampung, Department of Mechanical Engineering, Bandar Lampung, Indonesia

Author ID: 56979246700

Documents: 9

Citations: 2 total citations by 2 documents

h-index: 1

Co-authors: 13

Subject area: Engineering, Materials Science

9 Documents | Cited by 2 documents | 13 co-authors

| 9 documents | View in search results format |

Export all | Add all to list | Set document alert | Sat document feed |

Experimental study on flow characteristics of salt hydrate slurry in phase change temperature range

Irsyad, M., Indartono, Y.S., Pasek, A.D., Adriansyah, W.

2017 Engineering Journal

View abstract | Related documents

Phase change materials development from salt hydrate for application as secondary refrigerant in air-conditioning systems

Irsyad, M., Suwono, A., Indartono, Y.S., Pasek, A.D., Pradipta, M.A.

2017 Science and Technology for the Built Environment

Article in Press

View abstract | Related documents

Heat transfer characteristics of coconut oil as phase change material to room cooling application

Irsyad, M., Harmen

2017 IOP Conference Series: Earth and Environmental Science

View abstract | Related documents

Heat transfer characteristics of building walls using phase change material

Irsyad, M., Pasek, A.D., Indartono, Y.S., Pratomo, A.W.

2017 IOP Conference Series: Earth and Environmental Science

View abstract | Related documents

Design and optimization of smart grid system based on renewable energy in Nyamuk Island, Karimunjawa district, Central Java

Novitasari, D., Indartono, Y.S., Rachmidha, T.D., Reksowardojo, I.K., Irsyad, M.

2017 IOP Conference Proceedings

View abstract | Related documents

Study of Micro Grid Hybrid System of Photovoltaic and Diesel Engine

Novitasari, D., Indartono, Y.S., Harjono, J.E., Rachmidha, T.D., Reksowardojo, I.K.

2016 MATEC Web of Conferences

View abstract | Related documents

An investigation of green roof deployment in Bandung City, Indonesia

Irsyad, M., Pasek, A.D., Indartono, Y.S.

2016 Journal of Engineering and Applied Sciences

View abstract | Related documents

Application of calcium chloride as an additive for secondary refrigerant in the air conditioning system type chiller to minimized energy consumption

Suwono, A., Indartono, Y.S., Irsyad, M., Al-Aifar, I.C.

2015 IOP Conference Series: Materials Science and Engineering

View abstract | Related documents

Thermal characteristics of non-edible oils as phase change materials candidate to application of air conditioning chilled water system

Irsyad, M., Suwono, A., Irsyad, M., Pasek, A.D.

2015 IOP Conference Series: Materials Science and Engineering

View abstract | Related documents

| Display: [20 results per page] | Page 1 |

Follow this Author | Receive emails when this author publishes new articles

Add to ORCID | Request author detail corrections

Author History

Publication range: 2015 - Present

References: 102

Source history:

Engineering Journal
Science and Technology for the Built Environment
AIP Conference Proceedings

View More

Show Related Affiliations

Print | Email

20 of 3

10/31/2017, 6:20 AM