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The locating chromatic number of a graph G is defined as the cardinality of a minimum resolving partition of the vertex set V(G)
such that all vertices have distinct coordinates with respect to this partition and every two adjacent vertices in G are not contained
in the same partition class. In this case, the coordinate of a vertex v in G is expressed in terms of the distances of v to all partition
classes. This concept is a special case of the graph partition dimension notion. In this paper we investigate the locating chromatic

number for two families of barbell graphs.

1. Iﬁroduction
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The partition dimensiofigfehs introduced by Chartrand et al.
[1] as the development of the concept of metric dimension.
The application of metric dimension plays a role in robotic
navigation [2], the optimization of threat detecting sensors
[3], and chemical data classification [4]. The concept of
locating chromatic number is a marriage between the parti-
tion dimension and colorinf@Af a graph, first introduced by
Chartrand et al in 2002 [5]. The locating chromatic number
of a graph is a newly interesting topicstudy because there
is no general theorem for determining the locating chromatic
nu.ré' of any graph.

Let G = (V,E) be a connected graph. We@e the
distance as the minimum length of path connectingsertices u
and vin G, denoted by d(u, v). A k-coloring of G is a function
2F V(GB—» {1,2,...,k}, where c(u) # c(v) for any two
adjacent vertices u and v in G. Thus, the coloring ¢ induces
a partition IT of V(G) into k color classes (independent sets)
C,,C,,...,Cy, where C, is the set of all v es colored by
the colori for 1 < i < k. The i}~ code ¢, (v) of a vertex v in
G is defined as the k-vector (d(v,C,),d(v,C,),...,d(v,C)),
where d(v,C;) = min{d(v,x) : x € C;}for 1 =i < k. The
k-coloring ¢ of G such that all vertices have d]ffe@ color
codes is called a locating coloring of G. The locating chromatic

15
number of G, denoted by x; (G), is%minimum k such that
G has a locating coloring.

The following theorem is a basic theorem proved by
Chartrand et al. The neighborhood of vertex u in a
connected graph G, denoted by N(u), is the set of vertices
adjacent to u.

Theorem 1(see [§45)) Let ¢ be a locating coloring in a connected
graph G. If u and v{ef distinct vertices of G such that d(u, t) =
t) for allt € V(G)—{u, v}, then c(ua: c(v). In particular, if
u and v are non-adjacent vertices of G such that N(u) = N(v),
then c(u) # c(v).

The following corollary gives the lower bound g the
locating chromatic number for every connected graph G.

Corollary 2 (see [5]). If G is a connected graph and there is a
vertex adjacent to k leaves, then xL(G) =k+ 1

There are some interesting results related to the determi-
nation of the locating chromatic number of some graphs. The
results are obtained by focusing on certaiffg§milies of graphs.
Chartrand et al. in [5] have determined all graphs of order
n with locating chromatic number #, namely, a complete
multipartite graph of n vertices. Moreover, Chartrand et
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al. [6] have succeeded in constructing tree on n vertices,
n = 5, with locating chromatic numbers varying from 3
to n, except for (n — 1). Then Behtoei and Omoomi [7]
have obtained the locating chromatic number of the Kneser
graphs. Recently, Asi et al. [8] obtained the locating
chromatic number of the generalized Petersen graph P(n, 1)
for n = 3. Baskoro and Asmiati [9] have characteﬂed all
trees with locating chromatic number 3. In [10] all trees
of order n with locating chromatic number n — 1 were
characterized, for any integers n and t, where n > t + 3
and2 <t < Asmiati et al. in [11] have succeeded in
determining the locating chromatic number of homogeneous
amalgamation of stars and their monotonicity properties and
in [12] for firecracker graphs. Next, Wellyyanti et al. [13]
determined the locating chromatic number for complete n-
aryees.

The generalized Petersen graph P(n,m), n = 3and1 <
m < | (n—1)/2], consists of an outer n-cycle y,, ¥5,..., ¥,
a setﬂ spokes yx;, 1 < i < n, and n edges x;x;,,,,
1 = i £ n, with indices taken modulo n. The gener
Petersen graph was introduced by Watkinsin [14]. Let us note
the generalized Petersen graph P(#, 1) is a prism defined
as Cartesian product of a cycle C,, and a path P,.

Next theorems givene locating chromatic numbers for
complete graph K, and generalized Petersen graph P(n, 1).

Theorem 3 (see [6]). Forn = 2, the locating chromatic number
of complete graph K,, is n.

eorem 4 (see [8]). The locating chromatic number of
generalized Petersen graph P(n,1) is 4 for odd n = 3 or 5 for
evenn = 4.

The barbell graph is constructed by corflcting two
arbitrary connected graphs G and H by a bridge. In this paper,
firstly we discuss the locating chromatic number for barbell
graph B, . for m,n = 3, where G and H are complete graphs
on m and nvertices, respectively. Secondly, we determine the
locating chromatic number of barb@raph BP(n.l} forn = 3,
where G and H are two isomorphic copies of the generalized
Petersen graph P(n, 1).

2. Results and Discussion

Next theorem proves the exact value of the locating chromatic
number for barbell graph B, .

locating chromatic number of B is y; (B, ) =n+1.

Theorem 5. Let B, ,, be a barbell graph for n = 3. Then the

Proof. Let B,,,, n = 3, be tm}arbell graph with the vertex
set V(B,,) = {u;,v; : 1 =i £ n} and the edge set E(B, )
= U;:ll{“fuhj cl1<jsn-i UU;:ll{viij tl=js
n—ilU{u,v,}

First, we determine the lower bound of the locating
chromatic number for barbell graph B, for n > 3. Since
the barbell graph B, ,, contains two isomorphic copies of a
complete graph K, then with respect to Theorem 3 we have
X.(B,,) = n. Next, suppose that ¢ is a locating coloring
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using # colors. Es easy to see that the barbell graph B, ,
contains two vertices with the same color codes, which is a
contradiction. Thus, we hamxat Xu(B,,)zn+1.

To show that #n + 1 is an upper bound for the locating
chromatic number of barbell graph B, it suffices to prove
the exista:e of an optimal locating coloring ¢ : V(B,,) —
11,2,...,n + 1}. For n = 3 we construct the function c in the
following way:

clu,) l<i<n
", fori=1
m
c(v,-): i, for2<i=n-1

n+1, otherwise.

By using the coloring ¢, we obtain the color codes of V(B,,,,)
as follows:

o (1)

, for ith component, 1<i=n
, for (n+1)™ component, 1<i<n-1

1, otherwise,

0, for ith component, 2 <i<n-1 @)
for n'™

component, i = 1, and
for (n+1)" comp t, i =n,

ap (vi) = 1 . ﬁl

3, for 1 component, 1 <i<n-1

2, for 1" component, i=n

1, otherwise.

Since all vertices in V(B, ) have distinct color codes, then
the coloring c is desired locating coloring. Thus, x,;(B,,,) =
n+ 1

Corollary 6. Forn,m = 3, and m + n, the locating chromatic
number of barbell graph B,,, , is

Xt (Byn) = max {m,n}. 3)

Next theorem provides the exact value of the locating
chromatic number for barbell graph Bp,, ).

Theorem 7. Let Bpiyy be a barbell graph for n = 3. Then the
locating chromatic number of Bp, ) is
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4, for odd n

X1 (Bpgy) = (4)
Sl 5, for even n.

Proof. Let BP(n.l}’ n = 3, be the barbell graph witme vertex
set V(Bpy, 1)) = s thyey W w0 1 < i < nj and the edge set
E(Bp(n.n) = Uy s Uy )y WG Wy W,y 2 1 S
n-— 1} U {“nuls Uaplyy s Wy, u"21-1“";-&1} U{“f“nﬂ'! Wity * 1
i< npUfu,wl

Let us distinguish two cases.

=
=

Case I (n odd). According to Thco4 for n odd we have
X1(Bpgn)) = 4. To show that 4 is an upper bound for the
locating chromatic number of the barbell graph B, ,, we
describe an locating coloring ¢ using 4 colors as follows:

1, forgzl
c(u) =43 foreveni, i=2

|4, for odd i, i = 3.

2, forj=1

C(“nﬂ') =13

4, foreveni, i =2.

forodd i, i =3

(5)
1, foroeddi, i<n-2
c(w;) =42 foreveni,i<n-1

| 3, fori =n.

1, foreveni,i=n-1

c(wy;) =42 foroddi, isn-2

| 4, fori=n.

For n odd the color codes of V(B ) are

‘51'1(“3

. . on+1l
i for 2 component, i < 5
) . on+
i-1, for 19 component, i <
" ; .on+1
n—i+1, forl™ component, i >
= 4 ) . on+1
n—i+2, for an component, ¢ > T
0, for 3 component, i even, i =2

for 4% component, ¢ odd, i= 3

1, otherwise.

3
a (um?
. st . on+1
i for 1" component, i < 3
n+1
i—1, for 2™ component, i < 3
n+1
n—i+1, for 2 component, i > 5
= 4 . st on+1
n—i+2, forl component, i > T
0, for 4™ component, i even, i= 2
for 3™ component, { odd, i =3
1, otherwise.
a (w;)
n—1
i for 3™ component, i < 5
. th . on-—1
it+1, for 4™ component, i < 5
th . n+1
n—i, for 3 component, T
= 1 . B +1
n—i+1, for 4”“ component, i = nT
0, for 2"d component, i even, i £n— 1
for 1** component, i odd, i <n -2
1, otherwise.
ai (wmr')
n—1
i for 4 component, i < >
. . _n-—1
i+1, for 3" component, i < -
n+1
n—i, for 4" component, T
= . th ..o n+l
n—i+1, for 3™ component, i = 5
0, for 1% component, ieven, i=n—1
for 2 component, i odd, i £n-2
1, otherwise.
(6)

Since all vertices in Bp, ;) have distinct color codes, then the
coloring c with 4 colors is an optimal locating coloring and it
proves that y; (Bp, 1)) < 4.

Case 2 (neven). In view of the lower bound from Theorem 7
it suffices to prove the existence of a locating coloring ¢ :
V(Bpg,y)) — 11,2,...,5} such that all vertices in By, ),
have distinct color codes. For n even, n = 4, we describe the
locating coloring in the following way:

1, fori=1

zisn-—

4, foroddi, 3<i<n-1

3, foreveni, 2 2

C(“f) =

5, fori=n.
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=

2, fori=1

clu,;) =143, foroddi, i=3

| 4, for even i, i = 2.

1, foroddi, i=sn-3
2, foreveni, i<n-2
C(wr') =7
3, fori=n-1

| 4, fori =n.

1, foreveni,isn-2

c(wy) =12, foroddi, isn-1

| 5 fori=n.
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In fact, our locating coloring of Bp(y,1), 1 even, has been
chosen in such a way that the color codes are

q (”i)
. = . h
i, for 2! and 5" components, i < 3
. . n
i-1, for 1 component, i < 5
. c . n
n-i for 57 component, i > —
2
. . n
n—i+1l, for 1 component, i > —
2
. . n
_Jn-i+2, for 2nd component, i > 5
0, for 3" component, i even, 2<i<n -2
for 4™ component, i odd, 3<i=n-1
2, for 4" component, i= 1
for 3" component, i =n
1, otherwise.
i (”nli)
. . n
i, for 1* component, i < —
2
. . n
i-1, for 2 component, i < 2
. c . n
H+ i, for 5™ component, i < 2
. - . n
n—i+1, for 2™ and 5" components, i > —
2
_ . .oon
=1n-i+2, for 1" component,i > 3

0, for 3" component, i odd, 3<i<n-1
for 4™ component, i even, 2<i<n

=1

2, for 3" component,

1, otherwise.

e (w;)
i . on
i, for 41" component, -
2
. - . h
i+ 1, for 5 component, i £ 1
. n
for 3 component, — -1
2
. . n
n—i for 4" component, —
, =th n
n—i+1, for5" component, —
ponent. (] 2
= ) no.
1n-i-1, for 3th component, Eﬁlﬁn—l
0, for 1% component, i odd, :'nvn -3
for 2 component, i even, i <#n —2
2, for 1 component, i =n— 1
for 2™ component, i = n
1, otherwise.
a1 (wnlf)
: c . n
i, for 5 component, i < N
. . n
i+ 1, for 41" component, i < 3
. . n
i+ 2 for 3" component, i< — -1
2
. no_.
H—i, for 3" component, 3 <i<n-1
.oon
for 5 component, i > 3
= {
. . n
n—i+1, for 4™ component, i > 3
0, for 1° component, i even, i <n-2

for 2™ component, i odd, i <n-1

2, for 15 and 3 components, i = n

1, otherwise.
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Since for neven all vertices of Bp,,;, have distinct color codes
then our locating coloring has the required properties and

XL(Bpgn1y) < 5. This concludes the proof.
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