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ABSTRACT 

As an alternative to full Gaussianity, multivariate normal-Poisson model has been recently introduced. The model 
is composed by a univariate Poisson variable, and the remaining random variables given the Poisson one are real 
independent Gaussian variables with the same variance equal to the Poisson component. Under the statistical aspect of the 
generalized variance of normal-Poisson model, the parameter of the unobserved Poisson variable is estimated through a 
standardized generalized variance of the observations from the normal components. The proposed estimation is 
successfully evaluated through simulation study. 
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INTRODUCTION 

Normal-Poisson model is a special case of normal 
stable Tweedie (NST) models which were introduced by 
Boubacar Maïnassara and Kokonendji [1] as the extension 
of normal gamma [2] and normal inverse Gaussian [3] 
models. The NST family is composed by distributions of 
random vector X= (X1, …, Xk) 

Twhere Xj is a univariate 
(non-negative) stable Tweedie variable and (X1, …, Xj-1, 

Xj+1,…,Xk)
T=:𝐗𝑐given Xj are k-1 real independent Gaussian 

variables with variance Xi, for any fixed j {1, 2, …, k}. 
Several particular cases have already appeared in different 
contexts; one can refer to [1] and references therein. 

Normal-Poisson is the only NST model which 
has a discrete component and it is correlated to the 
continuous normal parts. Similar to all NST models, this 
model was introduced in [1] for a particular case of j that 
is j=1. For a normal-Poisson random vector X as described 
above, Xjis a univariate Poisson variable. In literatures, 
there is a model called "Poisson Gaussian" [4] [5] which is 
also composed by Poisson and normal distributions. 
However, normal-Poisson and Poisson Gaussian are two 

completely different models. Indeed, for any value of j 
{1, 2, …, k}, a normal-Poissonjmodel has only one 
Poisson component and k-1 Gaussian components, while a 
Poisson-Gaussianj model has j Poisson components and k-j 
Gaussian components which are all independent. Normal-
Poisson is also different from the purely discrete Poisson-
normal model of Steyn [6] which can be defined as a 
multiple mixture of k independent Poisson distributions 
with parameters m1, m2, … ,mk and those parameters have 
a multivariate normal distribution. Hence, the multivariate 
Poisson-normal distribution is a multivariate version of the 
Hermite distribution [7]. 

Generalized variance (i.e. the determinant of 
covariance matrix expressed in term of mean vector) has 
important roles in statistical analysis of multivariate data. 
It was introduced by Wilks [8] as a scalar measure of 
multivariate dispersion and used for overall multivariate 

scatter. The uses of generalized variance have been 
discussed by several authors. In sampling theory, it can be 
used as a loss function on multiparametric sampling 
allocation [9]. In the theory of statistical hypothesis 
testing, generalized variance is used as a criterion for an 
unbiased critical region to have the maximum Gaussian 
curvature [10]. In the descriptive statistics, Goodman [11] 
proposed a classification of some groups according to their 
generalized variances. In the last two decades the 
generalized variance has been extended for non-normal 
distributions in particular for natural exponential families 
(NEFs) [12] [13]. 

Three generalize variance estimators of normal-
Poisson models have been introduced (see [14]). Also, the 
characterization by variance function and by generalized 
variance of normal-Poisson have been successfully proven 
(see [15]). In this paper, a new statistical aspect of normal 
Poisson model is presented, i.e. the Poisson variance 
estimation under only observations of normal components 
leading to an extension of generalized variance term i.e. 
the "standardized generalized variance".  
 
NORMAL POISSON MODELS 

The family of multivariate normal-Poissonj 

models for allj {1, 2, …, k}and fixed positive integer k>1 
is defined as follows: 

Definition 1. ForX = (X1, …,Xk)
T a k-dimensional 

normal-Poisson random vector, it must hold that  
 
1. Xj is a univariate Poisson random variable, and 
2. X𝑐:=(X1, …, Xj-1, Xj+1,…,Xk)

Tgiven Xjfollows theሺ𝑘 −ͳሻ-variate normalNk-1(0,XjIk-1) distribution, whereIk-1= 
diagk-1(1, …, 1) denotes the (k-1)×(k-1)unit matrix. 

 
In order to satisfy the second condition we need 

Xj>0. But in practice it is possible to have Xj=0 in the 
Poisson component. In this case, the corresponding normal 

components are degenerated as the Dirac mass 0which 
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makes their values become 0s. We have shown that zero 
values in Xj do not affect the estimation of the generalized 
variance of normal-Poisson [16].   

From Definition 1, for a fixed power of 

convolution t>0 and givenj {1, 2, …,k}, denote 

Ft;j=F(t;j) the multivariate NEF of normal-Poisson with 

t:=t*, the NEF of a k-dimensional normal-Poisson 
random vector X is generated by 
 

 
 

where 1A is the indicator function of the set A. 

Since t>0 thent;j  is known to be an infinitely divisible 
measure; see, e.g., Sato [17].  

The cumulant function of normal-Poisson is 
obtained from the logarithm of the Laplace transform 

oft;j, i.e. K𝑡;ೕሺθሻ=log∫ expሺ𝜃Txሻ𝑅ೖ 𝑡;ሺ݀𝐱) and the 

probability distribution of normal-Poissonj which is a 
member of NEF is given by 
 

Pሺθ; t;୨ሻሺdx) = exp {θTx − Kt;jሺθሻ} t;୨ሺdx) 

 
The mean vector and the covariance matrix of Ft;j 

can be calculated using the first and the second derivatives 
of the cumulant function, i.e.: 
ߤ  = K′𝑡;ೕሺ𝜃ሻ 

 
and 
 V𝐹𝑡;ೕሺߤሻ = K′′

𝑡;ೕ(𝜃ሺߤሻ). 
 

For practical calculation we need to use the 
following mean parameterization: 
 

P(𝝁; (𝑡;ܨ ≔ 𝑃(𝜽ሺ𝝁ሻ; 𝑡;), 
 

where𝜃ሺߤሻis the solution in 𝜽of the equation ߤ = K′
𝑡;ೕሺ𝜃ሻ.Then for a fixed j {1, 2, …, k}, the 

variance function (i.e the variance-covariance matrix in 
term of mean parameterization) is given by 
 V𝐹𝑡;ೕሺߤሻ =  ଵఓೕ Tߤߤ + diagሺߤ , … , ,ߤ Ͳ , ,ߤ … ,  ሻ    (2)ߤ

 
on its support 
𝐹𝑡;ೕ= {µRۻ 

k; µ j> 0 and µ lR for l ≠j}.                  (3) 

 
For j = 1, the covariance matrix of X can be 

expressed as follows: 
 

 
 

Indeed, for the covariance matrix above one can 
use the Schur complement [18] of a matrix block to obtain 
the following representation of determinant 
 

 
 

with the non-null scalar  = 1, the vector aT=(2, 

…,k) and the (k-1) ×(k-1) matrixA= -1
aa

T + 1Ik-1, where 
Ij= =diag(1, …, 1) is the j×j unit matrix. Consequently, the 
determinant of the covariance matrix for j = 1 is  
 

det𝐕𝐹𝑡;1ሺ𝝁ሻ = ଵwith 𝝁ߤ ∈  𝐹𝑡;1ۻ

 

Then, it is trivial to show that for j {1, 2, …,k} 
the generalized variance of normal-Poissonj  model is 
given by 
 det 𝐕𝐹𝑡;1ሺ𝝁ሻ = with 𝝁ߤ ∈  𝐹𝑡;ೕ                                 (5)ۻ

 
Equation (5) expresses the generalized variance 

of normal-Poisson model depends only on the mean of the 
Poisson component and the dimension space k>1. 
 
CHARACTERIZATIONS AND GENERALIZED 

VARIANCE ESTIMATIONS   

Among NST models, normal-Poisson and 
normal-gamma are the only models which are already 
characterized by generalized variance (see [19] for 
characterization of normal-gamma by generalized 
variance). In this section we present the characterizations 
of normal-Poisson by variance function and by generalized 
variance, then we present three estimations of generalized 
variance by maximum likelihood (ML), uniformly 
minimum variance unbiased (UMVU) and Bayesian 
methods. 
 
Characterization 

The characterizations of normal-Poisson models 
are stated in the following theorems without proof. 
 
Theorem 1  

Let k{2,3, …} and t>0. If an NEFFt;j satisfies 

(2) for a given j{1,2, …,k}, then up to affinity, Ft;jis a 
normal-Poissonj model. 
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Theorem 2 

Let Ft;j=F(𝑡;) be an infinitely divisible NEF on 

Rk (k>1) such that 
 

1) 𝚯(𝑡;) = 𝑅  and 

2) det ۹′′
𝑡;ೕሺ𝜽ሻ = 𝑡 exp ሺ𝑘 × 𝜽T�̃�𝑐ሻ 

 

for 𝜽=(1, …. k)
Tand �̃�𝑐=(1,…, j-1, 1, j+1, …, k)

T. 

Then Ft,j is of normal-Poisson type. 
All technical details of proofs can be seen in [15]. 

In fact, the proof of Theorem 1 is established by analytical 
calculations and using the well-known properties of NEFs 
described in Proposition 3 below.   
 
Proposition 3 

Let and ̃be two -finite positive measures on 

R
k such that F=F()$,̃ܨ =   .ሺ̃ሻ and µMFܨ

 

(i) If there exists (d,c)𝑅 × 𝑅 such that̃ሺ݀xሻ = 

exp (dTx+c)(dx), thenܨ = :ܨ̃ Θఔ̃ = Θఔ − d andKఔ̃ሺ𝜃ሻ =Kఔሺ𝜃 + dሻ + ܿ; for̃ߤ = ሻߤϵM𝐹, V�̃�ሺ̃ߤ = V𝐹ሺߤሻanddet V�̃�ሺ̃ߤሻ = det V𝐹ሺߤሻ. 
 

(ii)If ̃ߥ = 𝜑 ∗ with 𝜑ሺxሻ ߥ = Ax + b, then: Θሺ̃ߥሻ = ATΘሺߥሻandKఔ̃ሺ𝜃ሻ = KఔሺAT𝜃ሻ + bT𝜃; for ̃ߤ = Aߤ + b ϵ 𝜑M𝐹 , V�̃�ሺ̃ߤሻ = AV𝐹(𝜑−ଵሺ̃ߤሻ)AT 

and det 𝐕�̃�ሺ�̃�ሻ = ሺdet 𝐀ሻ𝟐 det 𝐕𝐹ሺ𝝁ሻ. 
 

(iii) If̃ߥ =  forߥ is the t-th convolution power of ∗ߥ
t>0, then, for �̃� = 𝑡𝝁ϵ 𝑡ۻ𝐹 ,   
 𝐕�̃�ሺ�̃�ሻ = 𝑡𝐕𝐹ሺ𝑡−ଵ�̃�ሻand det𝐕�̃�ሺ�̃�ሻ = 𝑡 det 𝐕𝐹 ሺ𝝁ሻ 
 

The proof of Theorem 2 is obtained by using the 
infinite divisibility property of normal-Poisson, also 
applying two properties of determinant and affine 
polynomial. The infinite divisibility property used in 
theproof is provided in Proposition 4below. 
 
Proposition 4 

If ߥis an infinitely divisible measure on R
k, then 

there exist a symmetric non-negative definite d×d matrix 

with rank rk and a positive measure on Rk such that  ۹"ఔሺ𝛉ሻ = Σ + ∫ 𝐱𝐱Texpሺ𝜽T𝐱ሻ𝑅ೖ  .(ሺ݀𝐱ߦ

See, e.g.[20, page 342]. 
 

The above expression of ۹"ఔሺ𝜽ሻ is an equivalent 

of the Lévy-Khinchine formula [17]; thus, comes from a 
Brownian part and the rest ۺ"కሺ𝜽ሻ = ∫ 𝐱𝐱Texpሺ𝜽T𝐱ሻ𝑅ೖ  ሺ݀𝐱)corresponds to jumpsߦ

part of the associated  Lévy process through the Lévy 

measure . 
 
 
 

Generalized variance estimators 
Let X1, …,Xn be random vectors i.i.d. with 

distribution P(;Ft;j) in a normal-Poissonj model 

Ft;j=F(t;j) for fixed j{1,2, …,k}. Denoting 𝐗 =ሺ𝑋1+⋯+𝑋𝑛ሻ𝑛 = ሺX̅ଵ, … , X̅ሻT the sample mean. 

 
a) Maximum likelihood estimator 

The ML generalized variance estimator of normal 

Poisson modeldet 𝐕𝐹𝑡;ೕ ሺ𝝁ሻ =   is given byߤ

 𝑇𝑛,𝑡; =  det 𝐕𝐹𝑡;ೕ ሺ�̅�ሻ = ܺ̅.                                 (6) 

 
The ML estimator (6) is directly obtained from 

(5) by substituting µ j with its ML estimatorܺ̅. For all p≥1, 
Tn,t;j is a biased estimator ofdet 𝐕𝐹𝑡;ೕ ሺ𝝁ሻ with a given 

quadratic risk with tedious calculation of explicit 
expression or infinite. 
 
b) Uniformly minimum variance unbiased estimator 

The UMVU generalized variance estimator of 

normal Poisson modelsdet 𝐕𝐹𝑡;ೕ ሺ𝝁ሻ =    is given byߤ

 Un,t;୨ = n−୩+ଵX̅୨(nX̅୨ − ͳ) … ሺnX̅୨ − k + ͳሻ,  if 𝑛ܺ̅ ≥ 𝑘(7) 

 

The UMVU estimator of det 𝐕𝐹𝑡;ೕ ሺ𝝁ሻ is deduced 

by using intrinsic moment formula of univarite Poisson 
distribution as follows: 
]ܧ  ܻ( ܻ − ͳ) … ( ܻ − 𝑘 + ͳ)] =  .ߤ

 

Indeed, letting ܻ = 𝑛ܺ̅ gives the result that (7) is 

the UMVU estimator of (5). Because, by the completness 
of NEF, the unbiased estimator is unique. 
 
c) Bayesian estimator 

Under assumption of prior gamma distribution of 

µ jwith parameter >0 and >0, the Bayesian estimator of det 𝐕𝐹𝑡;ೕ ሺ𝝁ሻ =    is given byߤ

 𝐵𝑛,𝑡;,ఈ,ఉ =  ቀఈ+𝑛�̅�ೕఉ+𝑛 ቁ.                                  (8) 

  
To show this, let Xj1,…,Xjn given µ j be Poisson 

distribution with mean µ j, then the probability mass 
function is given by 
 𝑝(𝒙ߤ| ) = !𝑥ೕ𝑥ߤ expሺ−ߤሻ         ∀ 𝑥𝜖 𝑁 

 

Assuming thatµ j follows gamma(,), then the 
prior probability distribution function ofµ jis written as 
,ߤ)݂  ,ߙ (ߚ = ሻߙఈ𝛤ሺߚ ఈ−ଵߤ exp(−ߤߚ) , ߤ∀ > Ͳ       
 



                                    VOL. 12, NO. 12, JUNE 2017                                                                                                              ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                              3839 

withΓሺߙሻ ≔ ∫ 𝑥ఈ−ଵ݁−𝑥݀𝑥 ∞ .Using the classical Bayes 

theorem, the posterior distribution of ߤ given an 

observation xji can be expressed as 
;|𝑥ߤ)݂  ,ߙ (ߚ = 𝑝(𝑥|ߤ)݂(ߤ, ,ߙ ∫(ߚ 𝑝(𝑥|ߤ)݂(ߤ , ,ߙ ఓೕ>ߤ݀(ߚ  

= ሺߚ + ͳሻఈ+𝑥ೕ𝛤ሺߙ + 𝑥ሻ ఈ+𝑥ೕ−ଵߤ exp{−ሺߚ + ͳሻߤ} 

 
which is the gamma density with parameters 

'=+xji, '=+1. Then with random sample Xj1, …, Xjn 

the posterior will be gamma(ߙ + 𝑛ܺ̅, ߚ + 𝑛 ሻ. Since 

Bayesian estimator of µ jis given by the expected value of 

the posterior distribution i.e. 
ఈ+𝑛�̅�ೕఉ+𝑛  , then this will lead to 

(8). 
 
MAIN RESULT 

 
Poisson variance estimation under gaussianity 

For a given random vector X= (X1, …, Xk)
Ton Rk 

of normal-Poissonj, we now assume that only k-1 normal 

terms𝐗𝑐  of X are observed:𝐗ଵ𝑐 ,…, 𝐗𝑛𝑐  and, therefore, Xj is 

an unobserved Poisson random effect. Note that j is fixed 
in {1, 2,...,k}. 

Assuming t=1 and following [1] with X having 

mean vector µ=(µ1, …, µk)
Tۻ𝐹1;ೕand covariance matrix 

V=V(µ), then𝐗𝑐  follows a (k-1)-variate normal 

distribution, denoted by 
 𝐗𝑐~Nk-1ሺ𝝁𝑐 , 𝐗𝐕𝑐),                                   (9) 

 

with𝝁𝑐 = ሺߤଵ, … , ,−ଵߤ ,+ଵߤ … , -ሻT. The (kߤ

1)×(k-1)-matrix𝐕𝑐 (which does not depend on 𝝁𝑐)is 

symmetric and positive definite such thatdet 𝐕𝑐 = ͳ or 𝐕𝑐 = 𝐈−ଵ. Thus, without loss of generality,Xj in (9) can 

be a univariate Poisson variable with parameter µ j>0 
which is known to be at the same time the mean and the 
variance. It follows that the unit generalized variance of 𝐗 = ሺ ܺ, 𝐗𝑐TሻTis easily deduced as ߤ . Hence, the Poisson 

parameter jof Xj can be estimated through generalized 
variance estimators of normal observations in the sense of 
``standardized generalized variance" [21]: 
 

 
or 

 
 

with𝐗𝑐 = ሺ𝐗ଵ𝑐 + ⋯ + 𝐗𝑛𝑐 ሻ/𝑛and ܺ̅ℓ = ሺܺℓଵ +⋯ + ܺℓ𝑛ሻ/𝑛. This statistical aspect of normal-Poissonj 
models in (9) points out the flexibility of these models 

compared with the classical multivariate normal model Nk-

1ሺ𝝁𝑐, 𝚺ሻ,where the generalized variance det is replaced to 

the random effect 𝐗𝐕𝑐. 

In fact, for𝐕𝑐 = 𝐈−ଵ  in (9) with estimation ̂ߤ of 

(10) which corresponds to Part 2 of Definition 1, one has a 
kind of conditional homoscedasticity under the assumption 
of normality. However, we here have to handle the 
presence of zeros in the sample of Xj when the Poisson 
parameter µ jis close to zero.  

More precisely and without loss of generality, 
within the framework of one-way analysis of variance and 
keeping the previous notations, since there are at least two 
normal components to be tested, so the minimum value of 
k is 3 (or k≥ 3) for representing the number of levels k-1.  
 
Simulation study 

We present empirical analyses through simulation 

study to evaluate the consistency of ̂ߤ. In order to apply 

this point of view, one can refer to [21] for a short 
numerical illustration; or in the context of multivariate 
random effect model, it can be used as the distribution of 
the random effects when they are assumed to have 
conditional homoscedasticity. 

Using the standardized generalized variance 
estimation in (10) we assume that the Poisson component 

is unobservable and we want to estimate ̂ߤbased on 

observations of normal components. In this simulation, we 
fixedj=1 and we set some sample sizes n = 30, 50, 100, 
300, 500, 1000. We consider k=3, 4, 6, 8 to see the effects 
of k on the standardized generalized variance estimations. 
Moreover, to see the effect of zero values proportion 
within Xj, we also consider small mean (variance) values 

on the Poisson component i.e. ߤ=0.5, 1, 5, because 

P(Xj=0)=exp(-µ j). We generated 1000 samples for each 

case. From the resulted ̂ߤvalues of the generated samples 

we obtained the expected values and variance of ̂ߤ i.e. 

E(̂ߤ) and Var(̂ߤ) respectively. Then we calculated their 

MSE using the following formula 
 

MSE(̂ߤ) = [E(̂ߤ)-µ j]
2+ Var(̂ߤ), 

 
where 
 

E(̂ߤ)=
ଵଵ ∑ ଵ=ଵ[ሺሻߤ̂]  

 
and 
 

Var(̂ߤ)=
ଵ999 ∑ ሺሻߤ̂] − ሻ]ଶଵ=ଵߤሺ̂ܧ  

 

We report the expected values and MSE of ̂ߤ in 

Table-1, Table-3. 
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Table-1. The expected values and MSE of ̂ߤ with 1000 

replications for n{30,50,100,300,500,1000}, 

k{3,4,6,8}, and µ j=0.5. 
 

k n E(̂ߤ) MSE(̂ߤ) 

3 30 0.473270 0.039251 

 
50 0.487402 0.023864 

 
100 0.491117 0.010882 

 
300 0.495814 0.004058 

 
500 0.496612 0.002540 

 
1000 0.499035 0.001158 

4 30 0.465915 0.031980 

 
50 0.488503 0.019574 

 
100 0.491804 0.009975 

 
300 0.494617 0.003457 

 
500 0.496200 0.002019 

 
1000 0.498271 0.000968 

6 30 0.452953 0.026781 

 
50 0.478994 0.015763 

 
100 0.483284 0.007801 

 
300 0.495324 0.002713 

 
500 0.496771 0.001562 

 
1000 0.497542 0.000771 

8 30 0.454636 0.023539 

 
50 0.468367 0.014280 

 
100 0.482915 0.007374 

 
300 0.495749 0.002395 

 
500 0.499078 0.001542 

 
1000 0.499199 0.000726 

 

Table-2. The expected values and MSE of ̂ߤ with 1000 

replications for n{30,50,100,300,500,1000}, 

k{3,4,6,8} , and µ j=1. 
 

k n E(̂ߤ) MSE(̂ߤ) 

3 30 0.962617 0.095854 

 
50 0.983720 0.055901 

 
100 0.993564 0.029386 

 
300 0.994837 0.010214 

 
500 0.997781 0.005969 

 
1000 0.998467 0.003125 

4 30 0.955849 0.078891 

 
50 0.973454 0.049405 

 
100 0.981452 0.023848 

 
300 0.992874 0.007467 

 
500 0.996215 0.004848 

 
1000 1.001149 0.002456 

6 30 0.944165 0.058871 

 
50 0.972215 0.033577 

 
100 0.985437 0.017781 

 
300 0.992045 0.006229 

 
500 0.995822 0.003725 

 
1000 0.998113 0.001752 

8 30 0.944031 0.052258 

 
50 0.973103 0.032476 

 
100 0.981169 0.015210 

 
300 0.992240 0.005135 

 
500 0.998451 0.002981 

 
1000 0.999042 0.001400 

 
From the results in the tables we can see that 

when the sample size (n) increases, the expected values of ̂ߤ converge to the target value (µ j) for all µ j values we 

consider here. Also, the MSE of̂ߤ decrease when sample 

size increase for all dimension k, this means that ̂ߤis 

consistent. The simulation results with moderate sample 

sizes produce very good performances of ̂ߤ. Note that the 

presence of zeros in the samples of the Poisson component 
does not affect the estimation of µ j.  

For a clear description of the performance of ̂ߤ ,we provide the bargraphs of MSE of ̂ߤin Figure-1, 

Figure-3. The figures show that MSE value decrease when 
the sample size increase. From the result we conclude that ̂ߤis a consistent estimator of µ j. Notice that ̂ߤproduce 

smaller MSE for larger dimension. 
 

 
 

Figure-1. Bargraph of MSE(̂ߤሻ  for µ j= 0.5. 
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Table-3. The expected values and MSE of ̂ߤ with 1000 

replications for n {30,50,100,300,500,1000}, 

k{3,4,6,8}, and µ j=5. 
 

k n E(̂ߤ) MSE(̂ߤ) 

3 30 4.886415 1.120641 

 
50 4.942883 0.690184 

 
100 4.984949 0.356851 

 
300 4.987437 0.118193 

 
500 4.992459 0.064591 

 
1000 5.006692 0.035814 

4 30 4.856583 0.928853 

 
50 4.921017 0.511915 

 
100 4.950201 0.269422 

 
300 4.983517 0.086223 

 
500 4.988398 0.050144 

 
1000 4.988551 0.025137 

6 30 4.852608 0.589918 

 
50 4.926390 0.354075 

 
100 4.942147 0.175198 

 
300 4.974067 0.056670 

 
500 4.995231 0.033951 

 
1000 4.996774 0.016958 

8 30 4.838751 0.457897 

 
50 4.910668 0.281625 

 
100 4.949142 0.135143 

 
300 4.985705 0.046987 

 
500 4.990750 0.027643 

 
1000 4.998134 0.013399 

 

 
 

Figure 2. Bargraph of MSE(̂ߤሻ  for µ j= 1. 

 

 
 

Figure-3. Bargraph of MSE(̂ߤሻ  for µ j= 5. 
 
CONCLUSIONS 

In this paper we discussed some properties of 
normal-Poisson model, its characterizations by variance 
function and by generalized variance, and also its 
generalized variance estimators. Then we showed that the 
variance (which is also the mean) of unobserved Poisson 
component can be estimated through the standardized 
generalized variance of the (k-1) normal components. The 

result from simulation study gives a conclusion that ̂ߤ is a 

consistent estimator of the Poisson variance.      
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