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Abstract 
We study the dynamics of a two dimensional map which is derived from another two dimensional map by 

re-parametrizing the parameter in the system. It is shown that some of the properties of the original map can be preserved 

by the choice of the re-parametrization. By means of performing stability analysis to the critical points, and also studying 

the level set of the integrals, we study the dynamics of the re-parametrized map. Furthermore, we present preliminary 

results on the existence of a set where iteration starts at a point in that set, in which it will go off to infinity after finite step.  

 

Keywords- Re-parametrizing, 2-dimensional mapping, Generalized double discrete sine-Gordon, Integral.  
 

 

 

1. Introduction 
Arguably, one of the most important and general integrable maps is known in the literature as the 

Quispel-Roberts-Thompson map (QRT). It is a two-dimensional map depending on 18 parameters. 

The QRT map is closely related to so called soliton equations (Quispel et al., 1988; Quispel et al., 

1989). More recent studies have focused on generalizations of QRT maps. One of them was 

proposed by Joshi and Kassotakis (2019). Main result of their paper is a new connection between 

two major theories that generalize QRT maps. They provide a new formulation of QRT involutions 

in terms of Hirota derivatives and discover conditions under which each involution can be 

factorized into two further involutions.  

 

The sine-Gordon equation is a partial differential equation, which is known to have soliton 

solutions; hence, it is a soliton equation (Quispel et al., 1991). Discretizations of the sine-Gordon 

equation have been done in various ways (Quispel et al., 1988; Quispel et al., 1989; Quispel et al., 

1991). The reduction of the sine-Gordon equation to a two dimensional ordinary difference 

equations using a standard staircase (see Van der Kamp and Quispel, 2010 for the method) is 

known as being a special case of the celebrated QRT map. Recently, Celledoni et al. (2019) have 

studied a new systematic approach for calculating the preserved measures and integrals of a 

rational map in which a two-dimensional sine-Gordon (standard) map was chosen as an example 

(see Celledoni et al., 2019 §4.3 Example 4). 

 

Generating a new family of mapping from a known one is an interesting topic to study. A 

piece-wise linear map from a known integrable map by using the ultra discretization technique is 
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generated by Tuwankotta et al. (2004). The number of independent integrals are preserved by the 

transformation which implies that the integrability is preserved. In our article (Zakaria and 

Tuwankotta, 2016) a straight-forward generalization by adding parameters in the Lax pair of the 

ordinary discrete sine-Gordon partial difference equation has done. By using the standard staircase 

method, the resulted equation is then reduced to system of ordinary difference equations (see Van 

der Kamp et al., 2007 for the method). Note that this generalized sine-Gordon system is also 

analyzed in (Duistermaat, 2010). 

 

Another novel method to introduce a new class of discrete systems from an integrable discrete 

system, is by introducing the concept of dual (Quispel et al., 2005). This works beautifully for a 

single discrete equation, although the resulting equation may not be new nor integrable. This idea 

of dual is extended to system of discrete equations in (Tuwankotta et al., 2019). The latter is 

interesting in the sense that the method proposed there produces in general more than one system. 

 

Roberts et al. (2002) constructed a new family of mapping by interchanging the parameter and the 

integral. For example, consider a discrete dynamical system in 
n

 which is denoted by: 

= ( )
x f x , where the prime denotes the upshift,   is a parameter in the system, and 

: n n

 f . We assume that the exists a smooth function : n nG    such that: 

( , ) ( , )G G  x x , which is called an integral for the system. Suppose that we can solve the 

equation ( , ) = 0G x  for ( ) x . Then by substituting this solution to ( )f x  (and call it ( )g x ), 

we derive a new discrete system: = ( )gx x , with integral: ( ) x . 

 

We will follow this technique and apply it to a generalized sine-Gordon equation. The aim of this 

paper is to show a number of properties of the new mapping (after re-parameterization) and to 

compare them with the original mapping. Furthermore, the qualitative behavior of the new 

mapping is studied by means of obtaining fixed points and their stability, and also the base points. 

 

The outline of this paper is the following. In Section 2, a system of first order difference equations  

derived from generalized double discrete sine-Gordon ( sine-Gordon) equations is formulated 

by restricting to traveling wave solution. In Section 3 a new integrable mapping derived from 
sine-Gordon mapping by interchanging the role of the integral and the parameter in the original 

system is presented. The new system is then analyzed by means of describing its symmetry and 

measure preservation. In Section 4 finding fixed points and periodic points (and their linear 

stability) and also computing the base points are discussed. These are done in the remaining 

subsections in Section 4. We have divided Section 4 into five subsections. This paper ends with 

some concluding remarks in Section 5. 

 

2. Formulation of the Problem 
Consider a three parameters family of partial difference equation on two dimensional lattice:  

 1 , 1 1, 1, 1 , 2 1, 1 , 1 1, , 3= .l m l m l m l m l m l m l m l mV V V V V V V V                                             (1) 

 

This equation is derived from the compatibility condition of the generalized Lax pair of the 

classical discrete sine-Gordon equation (see Zakaria and Tuwankotta, 2016). The travelling wave 

solutions of (1) can be obtained by considering the following form:  
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, 1 2= , = ,l m nV V n z l z m  

where 1z  and 2z  are relatively prime integers. Substituting this to (1), we have an infinite 

hierarchy of mapping labeled by 1z  and 2z , i.e.  

 1 2 3
1 2 1 2 1 2 2 1

0n z z n n z n z n z z n z n z nV V V V V V V V             .                                  (2) 

 

If 1z  and 2z  are fixed, a mapping from 1 2 1 2
z z z z 

 can be obtained from (2). It can be 

noted that by setting 2 3 1    and 1 = pq  in (2), we can derive the two dimensional 

mappings in Quispel et al., (1991).  

 

Let 1 2= =1z z , 1 2=  , and 3 2=  . From (2), we derive:  

 

2

1
2 2

1

,n
n

n n

V
V

V V

 












 

which is a second order difference equation. Then, by writing  

1= , and =n n n nx V y V . 

 

We derive a system of first order difference equations:  

 

2

1 2

1

= ,

= .

n
n

n n

n n

x
x

y x

y x

 








                                                                      (3) 

 

Let us define: 
2 2:f  , by  

 
 

2

2
( , ) , .

x
f x y x

y x

 



 
 
 
 

 

 

Using this, we can write (3) as:  

( , ) = ( , )x y f x y                                                                              (4) 

where the prime denotes the upshift. The mapping (4) has an integral, i.e.  

1
( , ) = .

x y
F x y xy

y x xy
 
   

     
   

                                                        (5) 

 

Thus, 
1 1( , ) = ( , )n n n nF x y F x y 

 for all n . 

 

3. Reparametrized Mapping and Its Properties 

Consider the mapping in (4). For =1 , we solve the equation ( , ) = 0F x y  for   to derive:  
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 
 

2 2

2 2

1
( , ) = .

x y
x y

x y





                                                                        (6) 

Substituting (6) into (4), we derive a new mapping:  

 ˆ( , ) = ( , ) = , ,x y f x y y x                                                                    (7) 

with integral  

 
 

2 2

2 2

1
ˆ ( , ) = .

x y
F x y

x y




                                                                       (8) 

 

Note that the integral (8) is nothing but the function ( , )x y  in (6). The new map, ˆ( , )f x y , has 

the following properties: 

 The orbits of ˆ( , )f x y  is 4-periodic.  This is simple to show that the linear map in (7) is 

trivial, its second iterate leads to    , = ,x y x y     thus all the results are immediate (the 

fourth iterate is the identity function).  

 ˆ( , )f x y  is area preserving. A two-dimensional map is area preserving (also called 

conservative) when its Jacobian determinant  | , |J x y  is equal to 1 in all the points  ,x y  

of the plane, which for the linear map in equation (7) is immediate (the Jacobian determinant is 

constant and equal to 1), as well as the so-called "reverse symmetry", since 
1ˆ ˆ( , ) = ( , )f u v f u v  . Alternatively, we can use different procedure to show that an integrable 

map is measure preserving (Roberts et al., 2002). For our map, ˆ( , )f x y , the procedure can be 

followed as shown below. 

 

The mapping ˆ( , )f x y  is measure preserving (area preserving) because there is the density 

ˆ ( , )x y  such that  

ˆ( , )ˆ ( , ) = =1
ˆ( , )

x y
Df x y

x y



  
 

when the density ̂  is given by  

1

2 2

1 ( , ) 1
ˆ( , ) = = .

F x y
x y

xy x y






 
 

  
 

 

 Consider  1( , ) = ,G x y y x . Note that 1 1 1( ( , )) = ( , ) = ( , )G G x y G y x x y . This implies that: 

1

1 1=G G
. Since 

1 1

1 1 =G f G f 
 then 1G is a reversing symmetry for f̂ . 

 There exists a symmetry  1( , ) = ,S x y x y   such that 
1

1 1
ˆ ˆ= .S f S f

 

 

The dynamics of the mappings in (7) for =1  on every level set ˆ =F c  is basically identical to 

the dynamics of the mappings in (4) on the level set = 0F  for = c . Furthermore, this provides 
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us with the existence of a 4-periodic points of the mappings: (7) for =1  for every  . The 

locations of these points are in the level set = 0F .  

 

Still fixing the value of =1 , let us now, reparametrize the parameter in (4) by 0 1a a   . It 

follows immediately that the map is given by 

  
  

2

0 1

2

0 1

1
( , ) = , .

a a x
f x y x

y x a a





  
 
  
 

                                                         (9) 

 

Consequently, we transform the integral (5) to  

 0 1

1
( , ) = .

x y
F x y a a xy

y x xy


   
      

   
                                                (10) 

 

For the case where: 1 0a  , let us add a constant in (10) which takes a special form: 0 1b b  , i.e.  

   0 1 0 1

1
( , ) = ,

x y
F x y a a xy b b

y x xy
 

   
        

   
                                   (11) 

 

Note that ( , )F x y  is linear in  . Furthermore:  

  
  

2

0 1

2

0 1

1
= , ( , ).

a a x
F f F x F x y

y x a a





  
  
  
 

 

 

This implies that we can look at the zero level curve of F  and solve it for  :  

2 2 2 2

0 0 0

2 2

1 1 1

1
( , ) = .

x y x a y a xyb
x y

x a y a xyb
 

   


 
                                              (12) 

 

Substituting this expression of ( , )x y  into f  in (9) gives:  

   
   

4 3 2

1 0 0 1

4 2

1 0 0 1

1ˆ
( , ) = , .

1

a y x y x b x x a b
f x y x

a x xyb xy x a b

    
 
     
 

 

It is interesting to note that  ˆ
( , ) = ( , )f x y x y   which implies that ( , )x y  is an integral for 

the system: 

ˆ
( , ) = ( , ).x y f x y                                                                            (13) 

 

The mapping (13) has some properties:  

 
ˆ
f  is measure preserving and orientation-reversing (or anti-measure preserving), which means 

(Roberts et al., 2002)   
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   
   

4 3 2

1 0 0 1

4 2

1 0 0 1

ˆ ( , )ˆ
| |

1
ˆ ,

1

x y
Df

a y x y x b x x a b
x

a x xy b xy x a b





 
    
 
     
 

. 

Note that from the right-hand side, the determinant of the Jacobian of 
ˆ
f  is 

 

       

    

2 2 2 2 4 2 2 2 4 2 2 4 8

1 0 0 1 0 1 0 1 0

2
2 4

1 0 1 0

1 2 1 2 1

1

b x a x a x x a b b x a x x a b x x

b xy x a a b xy x

          

   

. 

    Meanwhile, from the right-hand side, we have     

   
    

  
    

   
    

2 2
4 2 4

2

2

1 0 0 1 1 0 0 1

2
4 2

1 0 0

2 2 2 2 2 4

1 0 0 1 0 1 0

2 2 4 8

1 0

1

1 2

1 1

1

1

2 1

a x xyb xy x a b a x x

b x a x a x a b b x a x x

a b x

yb xy x a b

a x xyb xy x b

x

a

 
 

          





  

   

  

 


 

where the so-called density ̂ is given by   

    
1

2 2

1 1

1 1
ˆ( , )

( )
x y F

x y a x y b x y


          
. 

 

 The function  1
ˆ ( , ) = ,G x y y x  , is a reversing symmetry for 

ˆ
f . 

 

4. Critical Point and Base Point of the Integral 
There are two important elements in analyzing the dynamics of system (13), i.e. Fixed Point (FP) 

and Base Point (BP). FP can be obtained by finding the critical point of the integral function, while 

BP is defined as the point where the integral function is singular. At the BP, level sets for various 

values of the integral function intersect each other. 

 

4.1 The Critical Point 
The critical points of the integral function (12) are solutions of  

 

       
  

       
  

4 2 2 2 2 2 2

1 0 0 1

2
2 2

1 1

4 3 2 2 2 2 2

1 0 0 1

2
2 2

1 1

2 1 1ˆ
= 0,

2 1 1ˆ
= 0.

a x y y x y b y x y x y a b

x x y a xyb

a y x x xy b x x y x y a b

y x y a xyb





       


  

       


  
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To obtain the solutions, we can do as follow:  
 

         
 

2 2 2 2 2 2 2 2

1 0 0 1

2 2

1 1

ˆ ˆ
= 0

2
0

x y x y a xy b x y x y a
y x

b

x y a xy ybx

   


      


 


 
 

 

From the left-hand side in the last equation, we have two lines, =y x  and =y x  as solutions. 

By substituting these into 
ˆ

0
x





 or 

ˆ
0

y





 and then solve it, we have  

     , = 1, 1  and 1, 1x y                                                                (14) 

 

It is easy to verify that: (1,1)  and ( 1, 1)   are two fixed points while (1, 1)  and ( 1,1)  are 

two 2-periodic points. 

 

4.2 The Base Point 
Apart from the critical points, the so-called base points also play a crucial role in the dynamics of 

(13). Note that the invariant (12) can be written as a rational function. A point  0 0,x y  is a base 

point if it is a common zero of the numerator and denominator of  ,x y  equal to zero. In our 

case, we will discuss two conditions,  
1 0a   and 

1 0a  .  

For 
1 0a  , the base points are 

0 0

0 0 0 0

1 1 1 1
( , ) 0, , 0, , ,0 , ,0x y

a a a a

         
                 

        

                                (15) 

 

Note that the points in eq. (15) are base points of the system (13) when the parameter 1 0a  . Two 

base points, 
0

1
,0

a

 
  
 

, are directly mapped to infinity by the mapping 
ˆ
f , in the sense that one 

of both of the component of 
ˆ
f  blows up at these points. And then the other points, 

0

1
0,

a

 
  

 
, 

are base points in which they are mapped to other base points after one iterate of 
ˆ
f . 

 

For 1 0a  , the base points can be obtained by solving  2 2 2 2

0 0 01 0x y x a y a xyb       

and  2 2

1 1 1 0x a y a xyb   . Based on our computations, the base points are 

          0 0 10 10 10 10 20 20 20 20, ,, , , ,,,x y x y x y x y x y        

where 



International Journal of Mathematical, Engineering and Management Sciences                                 

Vol. 5, No. 2, 363-377, 2020 

https://doi.org/10.33889/IJMEMS.2020.5.2.030 

370 

     
 

2 2 2 2

0 0 0 0 0 0

10 2

8 2

2 2

d b a d d d a d a d b b d
x

d d

   



        
 

 
; 

 

 

 

 

 

 

 

      

  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. The level sets, the fixed points, the 2-periodic points, and the real base points of the integral (12) for 

parameter values  0 1 0 1, , , =a a b b  1.5,0.475,0.5,1  (the diagram in the first row-left),  0 1 0 1, , , =a a b b

 1.5,0.5,0.5,1  (the diagram in the first row-right), and  0 1 0 1, , , =a a b b  1.5,0.55,0.5,1  (the diagram in 

the second row). 
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 10
10

2

x
y d    ; 

   

 

2 2 2 2

0 0 0 0 0 0

20 2

8 8 16

2 2

d b a d d d a d a d b b d
x

d d

   



        
 

  
; 

 20
20

2

x
y d    ; 1

1

1

, 0
b

d a
a

  ; 
2 4d   . 

 

All base points depend on the parameters 0 1 0 1, , ,  and a a b b . To obtain the real base points for 

      0 0 10 10 10 10, , , ,x y x y x y    , the parameters should satisfy the following conditions  

 

2

0
0 0 22

2 2 4 2
2 0 2 0 2

b d d
b a d d d

d dd d


 



   
                   

. 

 

And then to obtain the real base points for        0 0 20 20 20 20, , , ,x y x y x y    , the 

parameters should satisfy the following conditions 

 

 

 

2

0
0 0 22

2 2

0
0 22

2 2 4
2 0 2

2 2 2 4
2 0 2

b d d
b d a

d d d

bd d d
d a

d d d d











  
          
  

   
         
  

 

 

Figure 1 shows the base points (red-circle) together with fixed points and 2-periodic points 

(blue-circle). Three diagrams in Figure 1 are some level sets of integral (12) together with the fixed  

points, the 2-periodic points, and the base points for 0 =1.5.a  The diagram has fixed parameter 

values 1 0 1( , , ) = (0.475,0.5,1.0)a b b (up-left diagram), 1 0 1( , , ) = (0.5,0.5,1.0)a b b (up-right 

diagram) and 1 0 1( , , ) = (0.55,0.5,1.0)a b b  (down diagram).  

 

4.3 Preimages of the Base Points 

A base point is mapped to infinity by the mapping 
ˆ
f . Furthermore, there are two base points 

which do not refer to a base point. But after one iteration they are mapped to base points. This 

means that if we start at those points, the iteration of 
ˆ
f  will be sent to infinity after two iterations. 

Let us name the set of points which are mapped by 
ˆ
f  to a base point by 1P . We can then look at 

the set of points which are mapped by 
ˆ
f  into 1P , or the preimage of 1P  under 

ˆ
f ; and name the 
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set 2P . Continuing in a similar way, we constructed 3P , 4P  and so on. Thus, the dynamical 

system (13) is well defined if we exclude the points in 
1 kP


.  

Let us present a few explicit computations of , =1,2,3kP k  as examples. 

Consider the situation where 

0

1
( , ) = ,0x y

a

 
 
 
 

 for 0 > 0a  and denote the system (13) by  

    
   

2 2

4 3 2

1 0 0 1

4 2

1 0 0 1

ˆ
:

1 1
( , ) , .

1

f

a y x x b x x a b
x y x

a x xyb xy x a b



     
 
    
 

                                     

(16) 

 

The preimage of 

0

1
( , ) = ,0x y

a

 
 
 
 

 by (16) is the solution of the following system  

    
   

4 3 2

1 0 0 1

4 2

1 0 0 1 0

= 0

1 1 1
= .

1

x

a y x x b x x a b

a x xyb xy x a b a

    


   

 

 

The solution is  

1

1 0

0 0

1 1ˆ
,0 0, | > 0P f a

a a


          
                       

.                                         (17) 

 

For the preimages 2P  and 3P , we have  

3
1 0

2 04

0

1ˆ
0, , |

1

b
P f b

a







         
                  

, 

  
 

2
4 4 2

3 3 0
1 0 0

3 024 4
4 8 2

0

1
ˆ

, , > 0,
1 1 1

b
b b

P f b
b

   
 

   



           
                      

  

, 

where 

0

1
= > 0

a
 . 

 

The graphs of 2P  to 6P  for 0 = 4a  are presented in Figure 2. The graph of 2P , 3P , 4P , 5P , and 

6P  are plotted using green, red, blue, orange, and black, respectively. It is interesting to note that if 
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we fix to one of the level sets of the integral, an preliminary observation shows an indication that 

there are only finitely many intersection points between 
6

1 kP . Whether it is true when 
1 kP


 is 

a subject of future investigation. 

 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 2. Plotting of the curves 
2 6...P P  for 

0 = 4a . We see that all curves pass through all base points (left).  

Enlarged view of the left image around a point (1 2,0)  to see the finer structure of the graph (right). 

 

 

 

 

4.4 Generic Situation 
To study the dynamics of the system (13), we have plotted some of the level sets of the integral (see 

Figure 3). These level sets contain solution of the system (13). Furthermore, by studying how the 

level sets deformed as we vary the value parameter, the bifurcations in the system can be studied. 

This is however beyond the scope of this paper. 

 

The two diagrams in the upper part of Figure 3 are some the level sets of integral (12) for 𝑎0 = 4. 

The diagram on the left-hand side has fixed (𝑎1, 𝑏0, 𝑏1) = (0.7,0.5,1.0), while for the diagram on 

the right-hand side is (𝑎1, 𝑏0, 𝑏1) = (−0.875,0.5,1.0).  In the Figure 3 (down), we plot 𝑎0 = 4, 

(𝑏0, 𝑏1) = (0.5,1.0), and 𝑎1 ∈ (−3,0) around a fixed point (𝑥, 𝑦) = (−1,1) (left); and we plot 

𝑎0 = 4, (𝑏0, 𝑏1) = (0.5,1.0), and 𝑎1 ∈ (−1,2) around the fixed point (𝑥, 𝑦) = (1,1) (right). 

 

By setting 𝑎0 = 4 and 𝑎1 = 0.7, we have all of the curves around the fixed points, (1,1) and 

(-1,-1), are of hyperbolic type. On the other hand we have all of the curves around the 2-periodic 

points, (-1,1) and (1,-1), are of elliptic type. But for 𝑎0 = 4 and 𝑎1 = −0.875, the situation is 

reverse, i.e. all of the curves around the fixed points are of elliptic type while all of the curves 

around the 2-periodic points are of hyperbolic type.  
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Figure 3. The level set forms of the integral (12) for the parameter value 𝑎0 = 4 (up). Bifurcation situation 

corresponds with its (down).  

 

 

4.5 Stability 
The stability of the system in the vicinity of the fixed points can be extracted from the integral 

function (see Kulenovic and Merino, 2002). In this case, we use the concept of Lyapunov stability 

to obtain the information of the stability of system (13). Note that the Hessian matrix evaluated at 

the fixed point    *, * = 1, 1x y    is 
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=
A B

H
B A

 
 
 

 

where  

 

  
 

    
 

1 0 0 1

2

1 1

1 0 0 1

2

1 1

2 1
= ;

2

2 4 1
= .

2

a b a b
A

a b

a b a b
B

a b

 



    



 

 

The determinant of the Hessian matrix H is  

 

 
  
 

1 0 0 1

3

1 1

4 8 4 4
Det =

2

a b a b
H

a b

 



 

 

If the determinant of Hessian matrix H is positive then the integral (12) attains a minimum at 

   *, * = 1, 1x y   . In Table 1, we have listed the condition for the value of the parameters of the 

system, so that the determinant of H is positive. Consequently, the fixed points of (13), 

   *, * = 1, 1x y   , are the centre points (stable). 

 

 

Table 1. The conditions for the value of the parameters so that the determinant of H is positive 
 

No. 
0a  1b  0b  1a  

1. 
0 > 0a  1 > 0b  0 02 2 < < 2a b  

0 1 1
1

0

< <
2 2

a b b
a

b


 
 

2. 
0 > 0a  1 > 0b  0 0< 2 2b a  

0 11
1

0

< <
2 2

a bb
a

b


 
 

3. 
0 > 0a  1 > 0b  0 > 2b  

0 11
1 1

0

< >
2 2

a bb
a a

b
 

 
 

4. 
0 < 0a  1 > 0b  0 02 < 2 2b a   

0 11
1 1

0

> <
2 2

a bb
a a

b
 

 
 

5. 
0 < 0a  1 > 0b  0 0> 2 2b a  

0 1 1
1 1

0

> <
2 2

a b b
a a

b
 

 
 

6. 
0 < 0a  1 > 0b  0 < 2b  

0 11
1

0

< <
2 2

a bb
a

b


 
 

7. 
0 > 0a  1 < 0b  0 02 2 < < 2a b  

0 11
1

0

< <
2 2

a bb
a

b


 
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Table 1 continued… 
 

8. 
0 > 0a  1 < 0b  0 > 2b  

1
1 >

2

b
a   

9. 
0 > 0a  1 < 0b  0 0< 2 2b a  

0 1 1
1

0

< <
2 2

a b b
a

b


 
 

10. 
0 < 0a  1 < 0b  0 02 < 2 2b a   

0 11
1 1

0

< >
2 2

a bb
a a

b
 

 
 

11. 
0 < 0a  1 < 0b  0 0> 2 2b a  

0 11
1 1

0

> <
2 2

a bb
a a

b
 

 
 

12. 
0 < 0a  1 < 0b  0 < 2b  

0 1 1
1

0

< <
2 2

a b b
a

b
 
 

 

13. 
0 = 0a  1 < 0b  0 < 2b  

1
10 < <

2

b
a   

14. 
0 = 0a  1 < 0b  0 > 2b  

1
1 1> < 0

2

b
a a   

15. 
0 = 0a  1 > 0b  0 < 2b  

1
1< < 0

2

b
a  

16. 
0 = 0a  1 > 0b  0 > 2b  

1
1 1> 0 <

2

b
a a   

17. 
0a   1 = 0b  0 2b   1 > 0a  

18. 
0 < 0a  1 0b   0b   1 = 0a  

 

 

5. Conclusion 

After re-parametrizing the parameter in (9) and in (10) by 0 1a a    and 

0 1( )F F b b    , we have a new mapping 
ˆ
f . The properties of this mapping are integrable, 

measure preserving, and reversible. Furthermore, it has two fixed points and two 2-periodic points 

which are of an elliptic type and a hyperbolic type. It is interesting to underline the fact that we have 

the set of kP  consisting of points in 
2

 which is mapped to infinity after k -iterates of the map. 

Then we can consider the set of 
1

= kP


. For an arbitrary level set of the integral (12), the 

question should be whether the intersection between the set of  with the level set is finite or 

infinite (could it be dense on the level set). This is a subject to future investigation. 
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