Efficient Hydrolysis of Polysaccharides in Bagasse by in Situ Synthesis of an Acidic Ionic Liquid after Pretreatment

Heri Satria,†‡ Kosuke Kuroda,*† Takatsugu Endo,† Kenji Takada,† Kazuaki Ninomiya,§ and Kenji Takahashi*†

†Division of Natural System, Graduate School of Natural Science and Technology and §Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
‡Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Lampung, Jl. Soemantri Brojonegoro No. 1, Bandar Lampung 35145, Indonesia

Supporting Information

ABSTRACT: A highly efficient hydrolytic method using an acidic ionic liquid is proposed: pretreatment of biomass with H₂SO₄; simple in situ synthesis of an acidic ionic liquid, 1-(1-butylsulfonic)-3-methylimidazolium hydrosulfate ([HSO₃]₄C₄C₁imHSO₄), through addition of a zwitterion to the pretreated solution; and subsequent hydrolysis in the [HSO₃]₄C₄C₁imHSO₄ solution at 100 °C under microwave heating. The high yields of glucose and xylose (around 80 and 100%, respectively) were attributed to the pretreatment by H₂SO₄ and the efficient catalytic activity of the [HSO₃]₄C₄C₁imHSO₄. The high yields were comparable to the highest yields of acid hydrolysis at around 100 °C among previous literature, and the present method achieved more rapid hydrolysis. Decomposition of glucose and xylose was negligible because the reaction temperature was relatively mild. We also identified an electrodialysis method to separate [HSO₃]₄C₄C₁imHSO₄ into H₂SO₄ and the zwitterion for reuse. Almost all of the H₂SO₄ (97%) was transferred to the concentrate compartment, and 99% of the zwitterion remained in the dilute compartment during electrodialysis.

KEYWORDS: Acidic ionic liquid, Cellulose, Hydrolysis, Biomass, Zwitterion, Electrodialysis

INTRODUCTION

Carbohydrates represent 75% of the annual renewable biomass. Among the various carbohydrates, cellulose and xylan are the most attractive raw materials for producing critical building blocks such as succinic acid, 2,5-furandicarboxylic acid, gluconic acid, and xylitol, because they are inedible, inexpensive, and are available on a very large scale from biomass.¹ Efficient conversion of biomass to glucose and xylose has been studied extensively.¹,²

To obtain glucose and xylose from cellulose and xylan, acidic or enzymatic hydrolysis is used. Dilute acid hydrolysis is known as a simple and cost-effective method. However, the overriding problem with dilute acid hydrolysis is a poor sugar yield.³ To improve this situation, there is a strong requirement to develop efficient catalysts.

Ionic liquids (ILs) have been reported as useful agents for cellulose treatment.⁴⁻¹⁰ Because of their remarkable capacity to solubilize cellulose, ILs are used for decrystallization of cellulose before enzymatic hydrolysis.¹¹⁻¹⁵ Furthermore, acidic ILs, which have acidic parts in the IL structures, have been reported as catalysts for chemical reactions.¹⁶⁻¹⁸ Acidic ILs have also been used for cellulose hydrolysis and show a higher catalytic activity than that of sulfuric acid,¹⁹⁻²¹ although their glucose yields were only 22%, even after 3 h treatment at 170 °C.¹⁹ Thus, a combination of acidic ILs and microwave heating has been reported to improve the yield and reduce reaction time.²² Because ILs can absorb microwave energy,²³,²⁴ a synergistic effect between the high catalytic activity of acidic ILs and microwave heating was observed, resulting in a 40% glucose yield at 12 min at 160 °C. Nonetheless, 40% is not sufficient for efficient use of biomass.

Pretreatment of biomass to disrupt the rigid crystal structure of cellulose is a well-known method for obtaining high yields during hydrolysis by dilute acid. There are many pretreatment methods available, such as immersion in highly concentrated sulfuric²⁵ or phosphoric²⁶ acids. Whereas some ILs enable structural disruption of cellulose, as mentioned above, we have confirmed that the acidic IL we previously used,²² 1-(1-butylsulfonic)-3-methylimidazolium hydrosulfate ([HSO₃]₄C₄C₁imHSO₄, shown in Scheme 1), has no capability to disrupt structure (details later).
Scheme 1. Pretreatment of Biomass and Hydrolysis Performed in This Study

![Scheme 1](image)

Here, we focus on use of the innate sulfuric included in [(HSO₄)₄C₄C₄H][HSO₄] for pretreatment. As shown in Scheme 1, [(HSO₄)₄C₄C₄H][HSO₄] is composed of sulfuric acid and 3-{(1-methyl-3-imidazolio)propanesulfonate ([SO₄)₄C₄C₄H]} and can be synthesized simply by mixing the two components. Therefore, it was expected that we could obtain high glucose yields via pretreatment of biomass by concentrated H₂SO₄, followed by synthesis of [(HSO₄)₄C₄C₄H][HSO₄] in situ through the addition of [(SO₄)₄C₄C₄H], and finally hydrolysis by [(HSO₄)₄C₄C₄H]-H₂SO₄ with microwave heating. In this study, we investigated the efficiency of glucose production by this method, comprising pretreatment, in situ synthesis, and hydrolysis.

**EXPERIMENTAL SECTION**

**Biomass.** Bagasse powder (approximately 3 mm in particle diameter) was purchased from Sanwa Ceruciron. The biomass powder was ground by a mill and then sieved to obtain a powder, 250–500 μm in particle diameter. For microcrystalline cellulose, Avicel PH-101 (Aldrich) was used.

**Synthesis of [(SO₄)₄C₄C₄H]**. 1-Methylimidazole (25 g) and 1,4-butanediol sultone (41.5 g) were mixed with acetic acid under a dry argon atmosphere at room temperature, and the mixture was refluxed for 4 days at 50 °C. The insoluble zwitterion was separated by filtration. The product was washed with acetone several times and dried under reduced pressure. The resultant product was obtained as a white powder. ¹H NMR δ (400 MHz; DMSO-d₆, MeSi): 1.48 (2H, quin, J = 6.8, NCH₃CH₂CH₃CH₂SO₃), 1.83 (2H, quin, J = 6.8, NCH₃CH₂CH₃CH₂SO₃), 2.4 (2H, t, J = 6.8, NCH₃CH₂CH₃CH₂SO₃), 3.81 (3H, s, NCH₃), 4.13 (2H, t, J = 6.8, NCH₃CH₂CH₃CH₂SO₃), 7.66 (1H, J = 1.55 NCHCHN), 7.73 (1H, t, J = 1.55 NCHCHN), 9.09 (1H, s, NCH₃). ¹³C NMR δ (100 MHz; DMSO-d₆, MeSi): 22.77 (NCH₃CH₂CH₃CH₂SO₃), 29.13 (NCH₃CH₂CH₃CH₂SO₃), 36.27 (NCH₃), 49.08 (NCH₃CH₂CH₃CH₂SO₃), 50.94 (NCH₃CH₂CH₃CH₂SO₃), 70.93 (NCH₃CH₂CH₃CH₂SO₃), 122.86 (NCH₃CH₂CH₃CH₂SO₃), 124.13 (NCH₃CH₂CH₃CH₂SO₃), 124.13 (NCH₃CH₂CH₃CH₂SO₃), 137.07 (NCH₃CH₂CH₃CH₂SO₃). Elemental analysis: (Found: C, 43.9; H, 6.5; N, 12.8. Calc. for C₈H₁₄N₂O₃S: C, 44.0; H, 6.5; N, 12.8%)

**Preparation of Phosphoric Acid-Swollen Cellulose (PASC).** PASC was prepared as previously reported. Cellulose (8 g) was mixed with 24 mL of ultrapure water. Phosphoric acid (200 mL) was then slowly added with stirring. After 24 h stirring at 4 °C, ultrapure water (400 mL) was added. The solution was then centrifuged at 8,000 rpm for 10 min, and the supernatant was removed. The washing process was repeated five times. The resulting cellulose was dispersed in ultrapure water (500 mL). To adjust the pH value to 6, sodium carbonate aqueous solution (1 wt %) was added. The solution was centrifuged at 8,000 rpm for 10 min, and the supernatant was removed. The washing process was repeated three times. The resulting cellulose was stored in a refrigerator.

**Microwave-Assisted Hydrolysis of Cellulose.** Cellulose (8 g) was mixed with 24 mL of ultrapure water. Phosphoric acid (200 mL) was then slowly added with stirring. After 24 h stirring at 4 °C, ultrapure water (400 mL) was added. The solution was then centrifuged at 8,000 rpm for 10 min, and the supernatant was removed. The washing process was repeated three times. The resulting cellulose was stored in a refrigerator.

**Electrodialysis.** Electrodialysis was conducted using a Selemion ED-2420 electrodialyzer (DW-Lab, AGC Engineering, Co., Ltd.) comprising a membrane stack, three compartments (dilute, concentrate, and electrolyte compartments), and a DC power supply (PMC18-3A; Kikusui Electronics Co.). During the electrodialysis, ions were transported from the dilute compartment to the concentrate compartment via cation and anion exchange membranes under a potential of 8 V. The membrane stack was composed of five pairs of Selemion EV cation exchange membranes and an AMV anion exchange membranes. The initial concentration of the [(HSO₄)₄C₄C₄H][HSO₄] solution (250 g) in dilute compartment was 0.05 M. The final concentration of the concentrate compartment was 20 μL. All solutions were treated at 4 L/min using pumps (RD-05 V24; Iwaki Co., Ltd.). The concentrations of H₂SO₄ or [(SO₄)₄C₄C₄H] in dilute or concentrate compartments were analyzed with HPLC. The setup of HPLC was the same as used for the analysis of glucose yield described above.

**RESULTS AND DISCUSSION**

Effect of Pretreatment by H₂SO₄ on Hydrolysis of Cellulose by [(HSO₄)₄C₄C₄H][HSO₄]. To investigate the efficiency of pretreatment, we initially confirmed the effect of
cellulose crystallinity on hydrolysis by [(\(\text{HSO}_3\))\(_4\)\(\text{C}_4\text{C}_1\text{im}\)]\(\text{HSO}_4\). Microcrystalline cellulose (Avicel, crystallinity index: 0.82, the datum of X-ray scattering is shown in Figure S2) and partially amorphous cellulose (PASC, crystallinity index: 0.00, the datum of X-ray scattering is also shown in Figure S2) were subjected to hydrolysis in a 1.0 M [(\(\text{HSO}_3\))\(_4\)\(\text{C}_4\text{C}_1\text{im}\)]\(\text{HSO}_4\) solution under microwave heating at 100 °C without pretreatment. While Avicel was hydrolyzed with a yield of 8% at 90 min (entry 1 in Table 1, and the time course is shown in Figure S3, see the SI), PASC was hydrolyzed with a yield of 46% (entry 2). Cellulose crystallinity was confirmed to prevent efficient hydrolysis by the [(\(\text{HSO}_3\))\(_4\)\(\text{C}_4\text{C}_1\text{im}\)]\(\text{HSO}_4\) solution. [(\(\text{HSO}_3\))\(_4\)\(\text{C}_4\text{C}_1\text{im}\)]\(\text{HSO}_4\) however does not have the decrystallization ability to cellulose. Entry 3 in Table 1 shows the glucose yield via the hydrolysis of the Avicel after pretreatment with [(\(\text{HSO}_3\))\(_4\)\(\text{C}_4\text{C}_1\text{im}\)]\(\text{HSO}_4\). The yield was 10%, and the value was almost the same as that for the unpretreated Avicel (entry 1). [(\(\text{HSO}_3\))\(_4\)\(\text{C}_4\text{C}_1\text{im}\)]\(\text{HSO}_4\) does not have the decrystallization ability, and thus the pretreatment with \(\text{H}_2\text{SO}_4\) followed by hydrolysis with [(\(\text{HSO}_3\))\(_4\)\(\text{C}_4\text{C}_1\text{im}\)]\(\text{HSO}_4\) is required to achieve efficient hydrolysis.

We performed pretreatment of Avicel with a 72 wt % \(\text{H}_2\text{SO}_4\) solution and then directly added an equimolar amount of [(\(\text{SO}_3\))\(_4\)\(\text{C}_4\text{C}_1\text{im}\)] and water to the pretreated solution. After pretreatment for 1 h, Avicel was dissolved, and therefore Avicel was confirmed to be decrystallized completely. The resulting [(\(\text{HSO}_3\))\(_4\)\(\text{C}_4\text{C}_1\text{im}\)]\(\text{HSO}_4\) solution (1.0 M) was then heated by microwave at 100 °C for hydrolysis. Entry 4 in Table 1 shows the yield was 73% and thus 9 times higher than that of the untreated Avicel. In addition, the hydrolysis was also accelerated from a viewpoint of reaction time as shown in Figure S3. The reaction time was shortened from over 90 to 30 min, also compared to the untreated Avicel. In addition, higher glucose yield in the hydrolysis of the pretreated cellulose with \(\text{H}_2\text{SO}_4\) compared to PASC, should be due to homogeneous reaction (PASC was reacted in undissolved state). The present method was found to be a remarkably effective hydrolytic method.

**Hydrolysis of Bagasse via Pretreatment by \(\text{H}_2\text{SO}_4\) and *in Situ* Synthesis of [(\(\text{HSO}_3\))\(_4\)\(\text{C}_4\text{C}_1\text{im}\)]\(\text{HSO}_4\)** Figure 1 shows the time course for glucose yield during hydrolysis of bagasse with 1.0 M [(\(\text{HSO}_3\))\(_4\)\(\text{C}_4\text{C}_1\text{im}\)]\(\text{HSO}_4\) or \(\text{H}_2\text{SO}_4\) at 100 °C, after pretreatment with concentrated \(\text{H}_2\text{SO}_4\). [(\(\text{HSO}_3\))\(_4\)\(\text{C}_4\text{C}_1\text{im}\)]-\(\text{HSO}_4\) was synthesized *in situ* in the same way as used for cellulose hydrolysis. The glucose yield from hydrolysis with \(\text{H}_2\text{SO}_4\) increased with reaction time and reached 60% at 60 min. The glucose yield from hydrolysis with [(\(\text{HSO}_3\))\(_4\)\(\text{C}_4\text{C}_1\text{im}\)]\(\text{HSO}_4\) also increased with reaction time and reached 77% at 40 min (error bars are shown in Figure S4). Decomposition of glucose was not observed beyond 40 min. The results show that hydrolysis with [(\(\text{HSO}_3\))\(_4\)\(\text{C}_4\text{C}_1\text{im}\)]\(\text{HSO}_4\) gave a higher glucose yield, with a shorter reaction time compared with that using \(\text{H}_2\text{SO}_4\). From the viewpoint of xylose yield, there was little difference: 102% with [(\(\text{HSO}_3\))\(_4\)\(\text{C}_4\text{C}_1\text{im}\)]-\(\text{HSO}_4\) and 100% with \(\text{H}_2\text{SO}_4\) (Figure S5). It is noted that [(\(\text{HSO}_3\))\(_4\)\(\text{C}_4\text{C}_1\text{im}\)]\(\text{HSO}_4\) gave a yield of over 100% because we detected the xylan content of bagasse using the NREL method. The NREL method is conventional and generally reliable, but it involves hydrolysis with \(\text{H}_2\text{SO}_4\) at 121 °C, and little xylan decomposition is possible. However, we stress here that this is not a critical result, pointing to the inaccuracy of the NREL method.

The efficient hydrolysis of bagasse was owing to the high catalytic activity of [(\(\text{HSO}_3\))\(_4\)\(\text{C}_4\text{C}_1\text{im}\)]\(\text{HSO}_4\) and the efficient absorption of the microwave energy by [(\(\text{HSO}_3\))\(_4\)\(\text{C}_4\text{C}_1\text{im}\)]-\(\text{HSO}_4\) in addition to the pretreatment with \(\text{H}_2\text{SO}_4\). ILSs are reported to show effective absorbance of microwave energy based on both ion conduction and dipole relaxation mechanisms, resulting in efficient reaction in this study.

Among the previous reports, the highest yields of glucose and xylose were 90% each in the case of dilute acid hydrolysis, using concentrated acid pretreatment below 100 °C.\(^{29}\) The yield of xylose obtained in this study was higher than the highest yields previously reported in the literature. While glucose yield in this study was slightly lower than the highest reported yield, the reaction time used in this study was considerably shorter than the method giving the highest yield (40 min vs 4 h).

The hydrolysis displayed almost no decomposition of sugars. In general hydrolysis, sugars generated by hydrolysis are immediately decomposed to particular products such as 5-(hydroxymethyl)furfural (HMF).\(^{30}\) Even during hydrolysis with acidic ILSs, it has been reported that “unpretreated” cellulose hydrolysis using [(\(\text{HSO}_3\))\(_4\)\(\text{C}_4\text{C}_1\text{im}\)]\(\text{HSO}_4\) requires over 160 °C and the harsh conditions significantly decompose glucose (glucose yield: 40% at 12 min to 23% at 30 min).\(^{31}\) In contrast, glucose was not decomposed by the present method, probably because of the relatively mild conditions. Xylose was slightly decomposed during the present method (yield: 102% at 30 min to 99% at 60 min). In terms of degraded products, no 5-(hydroxymethyl)furfural and very little furfural (yield: 6%) were confirmed even at 90 min (Figure S6). Thus, the present method almost completely avoided decomposition of sugars, leading to high sugar yields.

**Figure 1.** Time courses of glucose yield during hydrolysis of bagasse in 1.0 M [(\(\text{HSO}_3\))\(_4\)\(\text{C}_4\text{C}_1\text{im}\)]\(\text{HSO}_4\) or \(\text{H}_2\text{SO}_4\) solutions at 100 °C under microwave heating, after pretreatment with 72% \(\text{H}_2\text{SO}_4\) solution. [(\(\text{HSO}_3\))\(_4\)\(\text{C}_4\text{C}_1\text{im}\)]\(\text{HSO}_4\) was synthesized *in situ*. Table 1. Glucose Yield after Hydrolysis of Cellulose for 90 min in [(\(\text{HSO}_3\))\(_4\)\(\text{C}_4\text{C}_1\text{im}\)]\(\text{HSO}_4\) Aqueous Solution (1.0 M) at 100 °C with or without Pretreatments

<table>
<thead>
<tr>
<th>entry</th>
<th>cellulose species</th>
<th>pretreatment</th>
<th>glucose yield (%) at 90 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Avicel</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>PASC</td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>3</td>
<td>Avicel (72 wt % [((\text{HSO}_3))(_4)(\text{C}_4\text{C}_1\text{im})](\text{HSO}_4))</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Avicel (72 wt % (\text{H}_2\text{SO}_4))</td>
<td></td>
<td>73</td>
</tr>
</tbody>
</table>

DOI: 10.1021/acssuschemeng.6b02055
As mentioned above, the glucose yield at 100 °C was 77% at 40 min. At 90 °C, hydrolysis proceeded to give a yield of 58% at 90 min. At 110 and 120 °C, similar yields were obtained (73% and 77%) at 30 and 10 min, respectively, but a decrease in glucose yield was confirmed, caused by the relatively harsh conditions.

Figure 2 (b) shows time courses for the yield of xylan during hydrolysis of pretreated bagasse at various temperatures in 1.0 M [(HSO₄)₄C₄C₁im]HSO₄ solution, synthesized in situ. The xylene yield at 0 min was 20% because xylan was partly hydrolyzed during pretreatment of the bagasse. At all temperatures, a high hydrolysis rate was observed, and over 90% was obtained within 10 min. At 90 and 100 °C, about 100–120% yields were obtained, and significant decomposition of xylene was not confirmed. The decomposition caused by high temperature was observed at 110 and 120 °C. From these results, both high yields of saccharides and elimination of significant decomposition were simultaneously achieved at 90 and 100 °C.

**Separation of [(HSO₄)₄C₄C₁im]HSO₄ into H₂SO₄ and [(SO₄)₄C₄C₁im] by Electrodialysis.** If synthesized [(HSO₄)₄C₄C₁im]HSO₄ can be separated to [(SO₄)₄C₄C₁im] and H₂SO₄, the hydrolytic process suggested in this study would be repeatable. We therefore searched for methods to separate [(HSO₄)₄C₄C₁im]HSO₄ into [(SO₄)₄C₄C₁im] and H₂SO₄ and chose electrodialysis. Electrodialysis is a technique for ion transport using ion-exchange membranes under an applied potential gradient. Electrodialysis has been applied to separate neutral compounds from organic and inorganic salt solutions and achieved recovery of ILs from mixtures of ILs and neutral compounds.31–36 [(HSO₄)₄C₄C₁im]HSO₄ is composed of the zwitterion and the acid moieties. While the acid is expected to be transported as ions, we assumed that the zwitterion would not move under an applied potential field because the net charge of zwitterion is neutral.37 The separation of mixtures of the acid and zwitterion has not been investigated previously, so we attempted to separate [(HSO₄)₄C₄C₁im]-HSO₄ into [(SO₄)₄C₄C₁im] and H₂SO₄ using electrodialysis.

Figure S7 (a) shows the time courses for the concentration of H₂SO₄ in the dilute and concentrate compartments during electrodialysis of [(HSO₄)₄C₄C₁im]HSO₄. The concentration of H₂SO₄ in the dilute compartment decreased with the elapsed time, and the desalination ratio was 99% at 60 min. The concentration of H₂SO₄ in the concentrate compartment increased with time, and the recovery ratio was 97% at 60 min. Therefore, we recovered almost all of the H₂SO₄. Note, there was a slight difference between the desalination ratio and the recovery ratio, caused by fouling of the negatively charged species on the electrodialysis membrane.38

Figure S7 (b) shows the time course for concentration of [(SO₄)₄C₄C₁im] in the dilute and concentrate compartments during electrodialysis of [(HSO₄)₄C₄C₁im]HSO₄. In contrast to the H₂SO₄ behavior, the concentration of [(SO₄)₄C₄C₁im] did not change in either compartment: 99% of [(SO₄)₄C₄C₁im] remained in the dilute compartment after 60 min. These results clearly show that most of the H₂SO₄ was recovered in the concentrate compartment, and most of the [(SO₄)₄C₄C₁im] remained in the dilute compartment. Thus, we successfully separated [(HSO₄)₄C₄C₁im]HSO₄ into [(SO₄)₄C₄C₁im] and H₂SO₄ components.

Although the hydrolyzed sample includes sugars and lignin in addition to the [(HSO₄)₄C₄C₁im]HSO₄ aqueous solution, the sugars and lignin can be separated by adding alcohol because neither species dissolves in alcohol. Thus, the [(HSO₄)₄C₄C₁im]HSO₄/hydrolyzate aqueous solution can be readily separated into [(SO₄)₄C₄C₁im], H₂SO₄, and the hydrolyzate products as follows: addition of alcohol, filtration of sugars and lignin, electrodialysis for separation of [(HSO₄)₄C₄C₁im]HSO₄ into [(SO₄)₄C₄C₁im] and H₂SO₄.

**CONCLUSION**

High yields of glucose and xylose, 77% and 102%, were obtained from bagasse using the following process: pretreatment of bagasse with H₂SO₄, addition of [(SO₄)₄C₄C₁im] for in situ synthesis of [(HSO₄)₄C₄C₁im]HSO₄ and hydrolysis under microwave heating at 100 °C. The hydrolysis was rapidly completed, within 40 min, and the yield was comparable to the highest yield obtained with acid hydrolysis at around 100 °C. To reuse H₂SO₄ and [(SO₄)₄C₄C₁im], a method to separate [(HSO₄)₄C₄C₁im]HSO₄ into H₂SO₄ and [(SO₄)₄C₄C₁im] components is required, and electrodialysis was identified as a suitable method. While 97% of the H₂SO₄ was transferred from the dilute compartment to the concentrate compartment during electrodialysis, 99% of the [(SO₄)₄C₄C₁im] remained in the dilute compartment.

**ASSOCIATED CONTENT**

**Supporting Information**

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acssuschemeng.6b02055.

Figures S1–S7 (PDF)
AUTHOR INFORMATION

Corresponding Authors
*Phone: +81 76 234 3067. Fax: +81 76 234 3067. E-mail: kkuroda@staff.kanazawa-u.ac.jp (K.K.).
*Phone: +81 76 234 4828. Fax: +81 76 234 4828. E-mail: ttkennji@staff.kanazawa-u.ac.jp (K.T.).

Author Contributions
H.S. and K.K. contributed equally.

ACKNOWLEDGMENTS

The authors declare no competing financial interest.

REFERENCES

(17) Zhao, G.; Jiang, T.; Gao, H.; Han, B.; Huang, J.; Sun, D. Mannich reaction using acidic ionic liquids as catalysts and solvents. Green Chem. 2004, 6, 75−77.
(26) Zhang, Y. H.; Cui, J.; Lynd, L. R.; Kuang, L. R. A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: evidence from enzymatic hydrolysis and supramolecular structure. Biomacromolecules 2006, 7, 644−648.


(33) Li, H.; Meng, H.; Li, C.; Li, L. Competitive transport of ionic liquids and impurity ions during the electrodialysis process. Desalination 2009, 245, 349−356.


