PROCEEDINGS OF
11th International Conference
The East and Southeast Asia Federation of Soil Science Societies

LAND FOR SUSTAINING FOOD AND ENERGY SECURITY

21-24 October, 2013
IPB International Convention Center - Bogor, Indonesia

ISBN 978-979-19904-1-7
Land for Sustaining Food and Energy Security

Editor-in-Chief
Suwardi

Associate Editors
M. Nurcholis
Fahmudin Agus
Syaiful Anwar
Budi Indra Setiawan
Didi Ardi

INDONESIAN SOCIETY OF SOIL SCIENCE
Panel of Reviewers:
Prof. Supiandi Sabiham (Bogor Agricultural University)
Prof. Sudarsono (Bogor Agricultural University)
Prof. Santun R.P. Sitorus (Bogor Agricultural University)
Prof. Iswandi Anas (Bogor Agricultural University)
Dr. Suwardi (Bogor Agricultural University)
Prof. Kukuh Murtilaksono (Bogor Agricultural University)
Dr. Muhrizal Sarwani (IAARD, Ministry of Agriculture)
Prof. Santun R.P. Sitorus (Bogor Agricultural University)
Prof. Iswandi Anas (Bogor Agricultural University)
Dr. Suwardi (Bogor Agricultural University)
Prof. Kukuh Murtilaksono (Bogor Agricultural University)
Dr. M. Nurcholis (UPN Yogyakarta)
Prof. Muhajir Utomo (University of Lampung)
Prof. Dian Fiantis (Andalas University)
Dr. Sri Utami Rahayu (Brawijaya University)
Prof. Cristianoto Lopulisa (Hasanuddin University)
Prof. Priyono Prawito (University of Bengkulu)
Prof. Saeri Sagiman (University of Tanjungpura)
Dr. Napoleon (Sriwijaya University)
Dr. A. Kurnain (Lambung Mangkurat University)
Prof. Mahfud Arifin (Padjadjaran University)
Dr. Sartji Taberima (Papua University)
Dr. Nurwadjedi (Geospatial Information Agency)
Prof. Mansur Ma’shum (University of Mataram)
Prof. K. Inubushi (Chiba University, Japan)
Prof. Ryusuhe Hatano (Hokkaido University, Japan)
Dr. Lulie Melling (Dep. of Agriculture Sarawak, Malaysia)
Dr. Petrus Gunarso (Tropenbos International)

Organized by:
- Indonesian Society of Soil Science
- East and Southeast Asia Federation of Soil Science Societies

Sponsored by:
- Bogor Agricultural University (IPB)
- Indonesian Agency for Agricultural Research and Development (IAARD)
- Food Agricultural Organization (FAO)
- International Union of Soil Science (IUSS)
- PT. Riau Andalan Pulp and Paper
- Sinarmas Forestry
- PT. Adaro Indonesia
- PT. Astra Agro Lestari
- Pura Group
- PT. Pupuk Kaltim

Country Presidents/Representatives
Soil science society of Bangladesh: Dr. S.M. Imamul Huq (President)
Soil Science Society of China: Prof. Dr. Shen Renfang (President)
Indonesian Society of Soil Science: Dr. Yuswanda A. Temenggung CES. DEA (President)
Japanese Society of Soil Science and Plant Nutrition: Prof. Dr. Takashi Kosaki (President)
The Malaysian Society of Soil Science: Prof. Dr. Shamshuddin Jusop (Representative)
Korean Society of Soil Science and Fertilizer: Prof. Dr. Kim Jeong Gyu (President)
Philippine Society of Soil Science and Technology, Inc: Nenita E De La Cruz (President)
Soil Science Society of Sri Lanka: Prof. Dr. Priyantha Weerasinghe (Vice President)
Chinese Society of Soil and Fertilizer Sciences (Taiwan): Prof. Dr. Yuan Seng (President)
Soil and Fertilizer Society of Thailand: Dr. Chawalit Hongprayoon (President)
Vietnam Society of Soil Science: Prof. Dr. Le Thai Bat (Vice President)
A SOIL RESPIRATION ON CASSAVA PLANTATION SUBJECTED BY SOIL AMENDMENT AND ANTAGONIST PLANT FOR WHITE ROT FUNGI ON ULTISOLS TULANG BAWANG, LAMPUNG

Ainin Niswati*, Dayana Oktia, Sri Yusnaini and Sutopo Ghani Nugroho
Soil Science Division, Agro-technology Department, Faculty of Agriculture, University of Lampung, Jl. Sumantri Brojonegoro No. 1 Bandarlampung 35145.
*Corresponding author: ainin.niswati@fp.unila.ac.id ;niswati@yahoo.com.

Introduction
Tulang Bawang District at Lampung Province is covered by Ultisols soil to which have been incienced by White Rot Fungi (*Rigidiporus microporus*) at rubber plantation since long time ago. Beside it attacked rubber tree, it also attacked cassava, so that cassava tree can be using as an indicator for controlling its disease. For controlling White Rot Fungi diseases, application of soil amendment and antagonist plant was inhibited the growth of soil borne diseases, especially which is caused by fungi. Soil biological properties, such as soil respiration could be used as indicator for soil health, biodiversity, and ecological balance. The principal objective of this study was to examine the White Rot Fungi incidence and soil respiration samples collected from the cassava plantation on the Ultisols soil subjected by soil amendment and antagonist plant.

Keywords. Antagonist plant, soil amendment, soil respiration, white rot fungi

Materials and Methods
Field experiment had been started on April 2009 at Penumangan Baru Village, Tulang Bawang District, Lampung Province. Before the land was planted by cassava, the land had been planted by rubber in which attacked by White Rot Fungi diseases. The experiment were arranged in a completely random block design with four replications. The treatments were consisted of : K0= control, Cm: Cow dung compost with a dose of 1.6 kg plant\(^{-1}\), Sf = Sulfur element with a dose of 45 g plant\(^{-1}\), Do = Dolomite ((CaMg(CO\(_3\))\(_2\)) with a dose of 45 g plant\(^{-1}\), L= ‘Lengkuas’ (*Alpinia galanga*) with 2 nurseries at the side of cassava plant, G = ‘Garut’ (*Marantha arundinacea*) with 2 nurseries at the side of cassava plant and Lm= ‘Lidah Mertua’ (*Sansieviera trifasciata*) with 2 nurseries at the side of cassava plant. Soils in the cassava row were sampled two times (3 and 6 month after application). Soil samples (0–15 cm) from individual plots per treatment were collected for the analysis of chemical properties and microbial parameters. Soil respiration was analyzed using Jenkinson Methods (*Jenkinson and Powlson (1976)*)

Results and Discussion
The results showed that the application of soil amendment and antagonist plant significantly decreased soil respiration in soil that was incienced by soil borne fungus both on 3 month and 6 month after application (Figure 1 and Table 1). Application of antagonist plant significantly decreased soil respiration on 3 month after application and it more decreased on 6 month after application compared to the application of soil amendment materials (compost, dolomite, and sulfur) with percentage of differences around 2.89% on 3 month after application (Table 1). Application of soil amendment such as dolomite and sulfur could decrease soil respiration on 3 month after application compared to application of compost with percentage of differences around 11.57% (Table 1). It was indicated that compost supported the activity of soil microorganism. However, on the 6 month after application of dolomite and sulfur, soil respiration increased compared to compost. Planting of *A. Galanga* and *M. Arundinacea* between row of cassava plantation decreased soil respiration compared to *S. Trifasciata*. The highest of soil respiration on control was in concomitant with the highest incidence of White Rot fungi in the cassava plantation. The low soil respiration because of soil amendment and antagonist plant application is likely to be suprresed the activity of soil microorganism, especially the activity of white rot fungi, consequently, the soil borne fungi decreased.
Figure 1. Soil respiration in the cassava plantation caused by soil amendment and antagonist plant application. (K0 = control, Cm = compost, Sf = sulfur, Do = dolomite, Lk = A. Galanga, Gr = M. Arundinacea, and Lm = S. Trifasciata).

Table 1. The contrast orthogonal effect of application of soil amendment and antagonist plant application on 3 and 6 month after application.

<table>
<thead>
<tr>
<th>Contrast</th>
<th>F</th>
<th>Differences</th>
<th>% differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Month</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1 : Do, Sf, Cm, Lk, Gr, Lm vs K0</td>
<td>443.34**</td>
<td>-7.88</td>
<td>-1.58</td>
</tr>
<tr>
<td>C2 : Do, Sf, Cm vs K0</td>
<td>247.28**</td>
<td>-5.34</td>
<td>-8.15</td>
</tr>
<tr>
<td>C3 : Lk, Gr, Lm vs K0</td>
<td>560.11**</td>
<td>-9.47</td>
<td>-8.60</td>
</tr>
<tr>
<td>C4 : Lk, Gr, Lm vs Do, S, Cm</td>
<td>126.14**</td>
<td>-3.18</td>
<td>-2.89</td>
</tr>
<tr>
<td>C5 : Do, Sf vs Cm</td>
<td>212.18**</td>
<td>-6.18</td>
<td>-11.57</td>
</tr>
<tr>
<td>C6 : Gr, Lk vs Lm</td>
<td>10.97**</td>
<td>-1.405</td>
<td>-2.99</td>
</tr>
<tr>
<td>6 Month</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1 : Do, Sf, Cm, Lk, Gr, Lm vs K0</td>
<td>304.15**</td>
<td>-9.23</td>
<td>-2.25</td>
</tr>
<tr>
<td>C2 : Do, Sf, Cm vs K0</td>
<td>192.90**</td>
<td>-8.34</td>
<td>-16.99</td>
</tr>
<tr>
<td>C3 : Lk, Gr, Lm vs K0</td>
<td>351.13**</td>
<td>-10.6</td>
<td>-11.78</td>
</tr>
<tr>
<td>C4 : Lk, Gr, Lm vs Do, S, Cm</td>
<td>47.04**</td>
<td>-2.74</td>
<td>-3.05</td>
</tr>
<tr>
<td>C5 : Do, Sf vs Cm</td>
<td>36.40**</td>
<td>3.62</td>
<td>6.49</td>
</tr>
<tr>
<td>C6 : Gr, Lk vs Lm</td>
<td>72.25**</td>
<td>-5.1</td>
<td>-15.36</td>
</tr>
</tbody>
</table>

Conclusions

Soil amendment had significant effect to decreasing soil respiration on the soil incidence with soil born disease. Antagonist plant were more effective to decrease soil respiration than that of soil amendment.

References