

TAE 2019

Proceeding of 7th International Conference on Trends in Agricultural Engineering 2019

17th - 20th September 2019 Prague, Czech Republic

Proceeding of 7th International Conference on Trends in Agricultural Engineering 2019

September 17 th 2019 – September 20 th 2019						
Publisher:	Czech University of Life Sciences Prague Kamýcká 129, Prague,					
	Czech Republic					
Editor in chief:	David Herák					
Printing house:	Powerprint s.r.o.					
Number of copies:	130					
Number of pages:	640					
Issue:	First					
Year:	2019					

All manuscripts in conference proceedings have been reviewed by peer review process

ISBN 978-80-213-2953-9

The authors shall be solely responsible for the technical and linguistic accuracy of the manuscripts

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE

Faculty of Engineering

Czech University of Life Sciences Prague Faculty of Engineering

7th International Conference on Trends in Agricultural Engineering 2019

Proceeding of 7th International Conference on

Trends in Agricultural Engineering 2019

September 17th 2019 – September 20th 2019

Prague

Czech Republic

Editor in chief: David Herák

Online version is available at http://proceedings.tae-conference.cz/

ISBN 978-80-213-2953-9

7th International Conference on Trends in Agricultural Engineering 2019

September 17th 2019 – September 20th 2019

Conference TAE 2019 publishes research in engineering and physical sciences that represent advances in understanding or modelling of the performance of biological and physical systems for sustainable developments in land use and the environment, agriculture and amenity, bioproduction processes and the food chain, logistics systems in agriculture, manufacturing and material systems in design of agriculture engineering.

Conference venue:

Faculty of Engineering, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6, Prague, 16521, Czech Republic

The 7th TAE conference is organized under the auspices of dean of Faculty of Engineering doc. Ing. Jiří Mašek, Ph.D.

Chairman of the conference: David Herák, Czech Republic

Scientific committee:

Nikolay Aldoshin – Russia Vigen Arakelyan – France Feto Berisso - Ethiopia Jiří Blahovec - Czech Republic Volodymyr Bulgakov - Ukraine Roberto D'Amato - Spain Luis Caicedo - Equador Richard Godwin - UK Gurkan Gurdil - Turkey Rostislav Chotěborský - Czech Republic Jaime Janairo - Philipine Vytenis Jankauskas - Lithuania Algirdas Jasinskas - Lithuania Manoj Karkee - USA Marián Kučera - Slovakia František Kumhála - Czech Republic Martin Libra - Czech Republic José Machado - Portugal Simon Popescu - Romania Alessandro Ruggiero - Italy John Schueller - USA Riswanti Sigalingging - Indonesia Willi Toisuta - Australia Sotos Voskarides - Cyprus Stavros Yanniotis - Greece

All manuscripts in conference proceedings have been reviewed by peer review process.

Reviewers:

Z. Aleš, V. Arakelyen, A. Brunerová, O. Dajbych, G. Gurdil, D. Herák, P. Hrabě, R. Chotěborský, J. Chyba, V. Jurča, A. Kabutey, A. Kešner, P. Kic, M. Kroulík, F. Kumhála, J. Kumhalová, M. Libra, M. Linda, J. Mašek, Č. Mizera, M. Müller, R. Napitupulu, P. Neuberger, P. Novák, S. Pandiangan, M. Petrů, M. Pexa, K. Selvi, R. Sigalingging, E. Simanjuntak, P. Šařec

Warm Welcome to Trends in Agriculture Engineering 2019

The progressive prestige that Trends in Agriculture Engineering international conference has reached during the last 25 years has made it as a world-wide reference about fast development of agriculture from its engineering point of view, and the meeting point for professionals with responsibilities in the improvement of this essential area of whole nations. 108 scientific papers have been selected for TAE 2019 through the Scientific committee of the conference to be presented in a wide thematic spectrum, to promote and to share the newest and the most relevant aspects of agricultural engineering area. Trends in Agriculture Engineering conference become the scientific hub of the global agricultural engineering research and a forum for the future of agri-food production.

The Faculty of Engineering, Czech University of Life Sciences Prague, organizer of this 7th TAE conference, welcomes you in this event. Prague, capital and the largest city of the Czech Republic, welcomes you with its cordiality for making you stay with us the most pleasant possible.

Sincerely

Assoc. prof. Ing. Jiří Mašek, Ph.D. Dean of Faculty of Engineering Czech university of Life Sciences Prague

CONTENTS

Rudolf Abrahám, Tomáš Zubčák, Radoslav Majdan	
DRAWBAR PULL OF SMALL TRACTOR WITH SPECIAL LUG WHEELS	2
Radomír Adamovský, Pavel Neuberger	
HORIZONTAL GROUND HEAT EXCHANGERS – LOW-TEMPERATURE ENERGY	0
SOURCE	8
Olaosebikan Layi Akangbe, Jiří Blahovec, Radomír Adamovský, Miloslav Linda,	
Monika Hromasová	
A DEVICE TO MEASURE WALL FRICTION DURING UNIAXIAL COMPRESSION OF BIOMATERIALS	14
	14
Nikolay Aldoshin, Otari Didmanidze, Bakhadir Mirzayev, Farmon Mamatov HARVESTING OF MIXED CROPS BY AXIAL ROTARY COMBINES	20
	20
Zdenek Ales, Jindrich Pavlu, Marian Kucera, Vaclav Legat <i>RELIABILITY CHARACTERISTICS OF MECHANICAL OBJECTS OF AGRICULTURAL</i>	
MACHINES	26
	26
Marek Angelovič, Koloman Krištof, Michal Angelovič, Ján Jobbágy THE EFFECT OF POST-HARVEST PROCESSING IN MODEL LINE AT FOOD MAIZE	
	22
GRAINS EXTERNAL AND INTERNAL QUALITY	32
Sergey Antonov, Gennady Nikitenko	40
SIMULATION OF LINEAR ELECTRIC MOTOR FOR ELECTROMECHANICAL PRUNER	40
Vigen Arakelian	
GRAVITY COMPENSATION IN ROBOTICS – A REVIEW	45
Dainis Berjoza, Ilmars Dukulis, Vilnis Pirs, Inara Jurgena	
TESTING AUTOMOBILE BRAKING PARAMETERS BY VARYING THE LOAD WEIGHT	51
Matúš Bilčík, Monika Božiková, Martin Malínek, Patrik Kósa, Marián Kišev,	
Juraj Baláži, Ana Petrović, Ján Csillag	
THE TIME-TEMPERATURE DEPENDENCIES OF POLYCRYSTALLINE PHOTOVOLTAIC	
MODULE DIFFERENT PARTS	59
Jiří Blahovec, Pavel Kouřím	
THERMAL ANALYSIS OF POTATO AND CARROT TISSUES AFTER PROCESSING BY	
PULSED ELECTRIC FIELD	65
Sylwester Borowski	
THE EFFECT OF THE CHANGE IN THE COMPOSITION OF THE SUBSTRATE IN THE	
AGRICULTURAL BIOGAS PLANT ON THE LOGISTICS OF MAIZE CHAFF	71
Marián Bujna, Paweł Kiełbasa	
OBJECTIFICATION OF FMEA METHOD PARAMETERS AND THEIR	
IMPLEMENTATION ON PRODUCTION ENGINEERING	75
Volodymyr Bulgakov, Valerii Adamchuk, Volodymyr Nadykto, Volodymyr Kyurchev	
INFLUENCE OF MACHINE-TRACTOR SET CONSTRUCTIONAL PARAMETERS ON	
KINEMATIC DISCREPANCY IN TRACTOR WHEELS	81
Patrik Burg, Alice Čížková, Vladimír Mašán, Jana Burgová, Bożena Gładyszewska	
THE IMPACT OF MULCHING MATERIALS ON THE SOIL MOISTURE DYNAMICS IN	
CENTRAL EUROPEAN VINEYARDS	87
Nikola Čermáková, Petr Šařec, Oldřich Látal	
IMPACT OF MANURE AND SELECTED CONDITIONNERS ON PHYSICAL PROPERTIES	
OF CLAY SOIL	93
Peter Čičo, Róbert Drlička, Radovan Šoška, Zdenko Róna	
SOIL TESTS OF RENOVATED PLOUGHSHARE POINTS	99
Ján Csillag, Ana Petrović, Vlasta Vozárová, Matúš Bilčík, Monika Božiková,	
Tomás Holota	
COMPARISON OF RHEOLOGICAL PROPERTIES OF NEW AND USED	
BIOLUBRICANTS	103

Metin Dağtekin, Gürkan A. K. Gürdil, Bahadır Demirel	
BIO-ENERGY POTENTIAL FROM LEMON ORCHARDS	109
Oldřich Dajbych	
ULTIMATE TENSILE STRENGTH OF THE STRING DETERMINATION USING	
SPECTRAL ANALYSIS	113
Milan Daneček, Ivan Uhlíř	
FAST AND RELIABLE POWER MEASUREMENT FOR ENERGY SOURCES TO ENHANCE	
DISTRIBUTION GRID STABILITY	117
Šárka Dvořáková, Josef Zeman	
ELLIPSE ROTATION UNDER A PRESSURE	123
Vítězslav Fliegel, Petr Lepšík, Rudolf Martonka	
INNOVATION MEASUREMENT DEVICE OF CAR SEATS	127
Richard Godwin, Paula Misiewicz, David White, Edward Dickin, Tony Grift,	
Emily Pope, Anthony Millington, Rayhan M. Shaheb, Magdalena Dolowy	
THE EFFECT OF ALTERNATIVE TRAFFIC SYSTEMS AND TILLAGE ON SOIL	
CONDITION, CROP GROWTH AND PRODUCTION ECONOMICS - EXTENDED	
ABSTRACT	133
Ioannis Gravalos, Theodoros Gialamas, Avgoustinos Avgoustis, Dimitrios Kalfountzos, M	lartin
Libra	
A PORTABLE ROVER AS A TOOL FOR SOIL WATER MONITORING	135
Gürkan A. K. Gürdil, Metin Dağtekin, Bahadır Demirel, Çimen Demirel,	
Vaclav Novak, Mahmut Dok	1.41
DETERMINING PELLETING PARAMETERS FOR ORANGE PRUNING RESIDUES	141
Ondřej Hadač, Petr Lepšík	1 45
DESIGN OF A CMM ACTUATION SYSTEM	147
Jan Hart, Veronika Hartová, Martin Kotek, Veronika Štekerová ANALYSIS OF WIRELESS TRANSMISSION LATENCY IN THE 2.4 GHZ	
ANALISIS OF WIRELESS TRANSMISSION LATENCI IN THE 2.4 GHZ AND 5 GHZ ISM UNDER LOAD OF NETWORK WITH DATA STREAM	153
Petr Heřmánek, Adolf Rybka, Ivo Honzík	133
QUALITY OF HOPS AT DIFFERENT DRYING TEMPERATURES IN CHAMBER DRYER	159
Peter Hlaváč, Monika Božiková, Zuzana Hlaváčová	139
SELECTED RHEOLOGICAL PROPERTIES OF SOME TOMATO KETCHUPS	165
Michal Holúbek, Jakub Čedík, Hien Vu, Martin Pexa	100
INFLUENCE OF DIESEL – BUTANOL FUEL BLENDS ON PRODUCTION OF SOLID	
PARTICLES BY CI ENGINE	171
Lukáš Jan Hrabánek	
THE COMBINATION OF RETROREFLECTIVE MATERIALS ON ROAD SIGNS	177
Ľubomír Hujo, Štefan Čorňák, Zdenko Tkáč, Michaela Jánošová	
LABORATORY RESEARCH OF TRANSMISSION – HYDRAULIC FLUID	183
Bohumil Chalupa, Josef Zeman	
THE TIDAL COMPONENT OF NATURAL RADIATION BACKGROUND	189
Ladislav Chládek, Pavel Kic, Petr Vaculík, Pavel Braný	
THE IMPACT OF USED DIFFERENT COLORED RAW MATERIALS ON COLOUR OF	
PRODUCED BEER	193
Rostislav Chotěborský	
WEAR RESISTANT HIGH BORON STEEL FOR AGRICULTURE TOOLS	199
Shigeru Ichiura, Tomohiro Mori, Ken-Ichi Horiguchi, Mitsuhiko Katahira	
EXPLORING IOT BASED BROILER CHICKEN MANAGEMENT TECHNOLOGY	205
Dewi Agustina Iryani, Agus Haryanto, Wahyu Hidayat, Amrul, Mareli Telaumbanua,	
Udin Hasanudin, Sihyun Lee	
TORREFACTION UPGRADING OF PALM OIL EMPTY FRUIT BUNCHES BIOMASS	
PELLETS FOR GASIFICATION FEEDSTOCK BY USING COMB (COUNTER FLOW	
MULTI-BAFFLE) REACTOR	212

Juraj Jablonický, Peter Opálený, Daniela Uhrinová, Juraj Tulík, Lazar Savin INFLUENCE OF ECOLOGICAL FLUID ON THE WET DISC BRAKE SYSTEM OF THE **TRACTOR** 218 Ivan Janoško, Patrícia Feriancová THE EFFECT OF DIESEL ADDITIVE ON EMISSIONS AND ENGINE PERFORMANCE 225 Algirdas Jasinskas, Jonas Čėsna, Nerijus Pašvenskas, Rolandas Domeika, Kestutis Romaneckas, Jiří Mašek STRAW PELLETS UTILIZATION FOR REDUCTION OF LIQUID MANURE HARMFUL GAS EMISSIONS 231 **Petr Jindra** STUDY OF HHO GAS INFLUENCE ON OPERATING PARAMETERS IN CI ENGINE 237 Onder Kabas, K. Cagatay Selvi, Ilker Unal DETERMINATION OF SOME ENGINEERING PROPERTIES OF KUMOUAT RELATED TO DESIGN PARAMETERS 241 Abraham Kabutey, Cestmir Mizera, David Herak, Petr Hrabe PRELIMINARY EXPERIMENT ON COMPRESSION AND RELAXATION BEHAVIOUR OF BULK SESAME SEEDS AT VARYING FORCES AND SPEEDS 245 Ingrid Karandušovská, Jana Lendelová, Štefan Bod'o, Štefan Mihina, Štefan Pogran PRODUCTION OF POLLUTANTS FROM ORGANIC LITTER FOR DAIRY COW 251 Jerzy Kaszkowiak, Marietta Markiewicz, Paweł Krzaczek IMPACT OF THE APPLICATION OF BIOESTERS' ADDITION TO DIESEL OIL ON THE COURSE OF TURNING MOMENT AND POWER WITHIN THE SCOPE OF LOW ROTATIONAL SPEED AT VARIABLE SETTINGS OF FUEL INJECTION 257 Mariia Khrapova, Lukáš Jan Hrabánek, David Marčev THE DEGRADATION RATE OF RETROREFLECTIVE MATERIALS 263 Ján Kosiba, Juraj Jablonický, Rastislav Bernát, Zoltán Záležák FLOW CHARACTERISTICS OF THE TRACTOR HYDRAULIC CIRCUIT BY APPLICATION OF THE BIODEGRADABLE SYNTHETIC FLUID 269 **Martin Kotek** ANALYSIS OF PARTICULATE MATTER PRODUCTION DURING DPF SERVICE REGENERATION 275 Pavel Kouřím, Bohumil Chalupa, Josef Zeman VARIATION OF THE STERILISATION BOTTLE FOR SOLAR WATER DISINFECTION 281 Pavel Kovaříček, Josef Hůla, David Hájek, Marcela Vlášková SURFACE WATER RUNOFF DURING RAINFALL AFTER COMPOST INCORPORATION INTO SOIL 287 Václav Křepčík, František Kumhála, Jakub Lev MEASUREMENT THE VOID OF WOODEN CHIPS BY GAS DISPLACEMENT METHOD 293 Marian Kučera, Milan Kadnár, František Tóth, Jozef Rédl, Jozef Nosian EFFECT OF LOAD CONDITIONS ON THE SIZE AND PRODUCTS OF WEAR 299 František Kumhála DEVELOPMENT OF CAPACITIVE THROUGHPUT SENSOR FOR PLANT MATERIALS 305 Jitka Kumhálová, Miroslav Růžička, Elena Castillo Lopéz, Martin Chyba LOGISTICS SPRAWL IN PRAGUE'S SUBURB FROM SATELLITE IMAGES 319 Jiří Kuře, Rostislav Chotěborský, Monika Hromasová, Miloslav Linda DATA COLLECTION FOR NON LINEAR SOIL MODEL OF DEM 325 Martin Kůrka, Michal Hruška ASSESSMENT OF THE WAY HOLDING STEERING WHEEL IN DIFFERENT TRAFFIC **SITUATIONS** 331 Ján Lilko, Martin Kotus, Peter Dobiaš, Ondrej Ponjičan HARDFACING ELECTRODES RESISTANCE IN LABORATORY CONDITIONS 337 Miroslav Macák, Vladimír Rataj, Marek Barát, Ján Kosiba, Jana Galambošová DETERMINING SOIL COMPACTION AT TRAFFIC LINES WITH PROXIMAL SOIL SENSING 341

Daniel Mader, Martin Pexa, Jakub Čedík, Bohuslav Peterka, Zbyněk Vondrášek	
INFLUENCE OF OPERATING PARAMETERS OF THE VEHICLE ON THE ROLLING	
RESISTANCE SIZE WITH THE VARIABLE DIAMETER OF THE TEST ROLLER	347
Jakub Mařík, Veronika Hartová, Martin Kotek	
INFLUENCE OF BIOFUELS ON SKODA RAPID 1.6 TDI ENGINE'S EMISSIONS AND	
FUEL CONSUMPTION	355
Marietta Markiewicz, Jerzy Kaszkowiak	
RESEARCH ON ENGINE POWERED WITH A MIXTURE OF DIESEL OIL AND	
BIOCOMPONENT AT CHANGE OF FUEL INJECTION SETTINGS	361
Marietta Markiewicz, Łukasz Muślewski	
ANALYSIS OF TOXIC COMBUSTION COMPONENTS OF THE DIESEL ENGINE	
POWERED WITH A BLEND OF DIESEL FUEL AND BIODIESEL	368
Ivan Mašín	
EVOLUTIONARY ANALYSIS OF AUTONOMOUS AGRICULTURAL VEHICLES	375
Adéla Melicharová, Jiří Mašek, Stanislav Kovář	
INFLUENCE OF SOIL TILLAGE ON WATER INFILTRATION IN LIGHT SOIL	
CONDITIONS OF CENTRAL BOHEMIA	379
Miroslav Mimra, Miroslav Kavka, Petr Markytán	
EVALUATION OF ECONOMIC RISKS IN PRODUCING WINTER OILSEED RAPE	385
Bakhadir Mirzayev, Farmon Mamatov, Nikolay Aldoshin, Mansur Amonov	
ANTI-EROSION TWO-STAGE TILLAGE BY RIPPER	391
Jaroslav Mlýnek, Michal Petrů, Tomáš Martinec	
DESIGN OF COMPOSITE FRAMES USED IN AGRICULTURAL MACHINERY	396
Tomohiro Mori, Mitsuhiko Katahira	570
EVALUATING THE PERFORMANCE OF AI FOR SORTING GREEN SOYBEAN	402
Pavel Neuberger, Radomír Adamovský	402
VERTICAL GROUND HEAT EXCHANGERS – LOW-TEMPERATURE ENERGY SOURCES	407
Ha Nguyen Van, Ladislav Sevcik	-107
OPTIMIZATION OF THE GROOVE CAM MECHANISM	413
Václav Novák, Kateřina Křížová, Petr Šařec, Ondřej Látal	413
EFFECTIVE DOSE OF BIOCHAR WITHIN THE FIRST YEAR AFTER APPLICATION	422
Alexander Pastukhov, Evgeny Timashov, Olga Sharaya, Dmitry Bakharev	422
CAE-JUSTIFICATION OF THE LEADING SHAFT OF THE TEST STAND	420
	429
Jindrich Pavlu, Vaclav Legat, Zdenek Ales	
ESTIMATION TRENDS IN THE MAINTENANCE OF A MANUFACTURING EQUIPMENT	425
RELATION TO THE INDUSTRY 4.0 CHALLENGE	435
Ana Petrović, Vlasta Vozárová, Ján Csillag, Matúš Bilčík	4 4 1
SOME PHYSICAL PROPERTIES OF BIODIESEL BLENDS WITH GASOLINE	441
Martin Polák	
BEHAVIOUR OF 3D PRINTED IMPELLERS IN PERFORMANCE TESTS OF	
HYDRODYNAMIC PUMP	447
Jozef Rédl, Marian Kučera	
RAIN-FLOW ANALYSIS OF PLOUGH FRAME BEAM	453
Kęstutis Romaneckas, Aida Adamavičienė, Edita Eimutytė, Jovita Balandaitė,	
Algirdas Jasinskas	
THE IMPACT OF WEED CONTROL METHODS ON SUGAR BEET CROP	459
Adolf Rybka, Petr Heřmánek, Ivo Honzík	
HOP DRYING IN BELT DRYER USING COOLING CHAMBERS	464
Martina Ryvolová	
THE EFFECT OF MOISTURE ON THE MECHANICAL PROPERTIES OF FLAX	
PREPREG	470
Jana Šafránková, Václav Beránek, Martin Libra, Vladislav Poulek, Jan Sedláček	
CONSTRUCTION AND MONITORING OF THE UNIQUE ROOF PHOTOVOLTAIC	
SYSTEM IN PRAGUE	476

Jan Sailer, Tomáš Hladík	
CONSISTENT MAINTENANCE MANAGEMENT MODEL	482
Ondřej Šařec, Petr Šařec	
TILLAGE SYSTEMS OF WINTER OILSEED RAPE (BRASSICA NAPUS L.) PRODUCTION	
WITH RESPECT TO COSTS, ENERGY AND LABOUR CONSUMPTION	488
Petr Šařec, Václav Novák, Kateřina Křížová	
EFFECT OF ORGANIC FERTILIZERS, BIOCHAR AND OTHER CONDITIONERS ON	
MODAL LUVISOL	494
Kemal Çağatay Selvi, Önder Kabaş, Mehmet Karataş	
FORCE REQUIREMENTS OF DIFFERENT MANUAL PRUNING SHEARS WHEN	
CUTTING ABELIA (ABELIA GRANDIFLORA) BRANCHES	500
Anna Oktavina Sembiring	
UTILIZATION OF ENVIRONMENTAL ENGINEERING TECHNOLOGY IN PALM OIL	
INDUSTRY: CURRENT STATE	506
Ladislav Ševčík	
PROTECTIVE ELEMENTS OF AGRICULTURAL ELECTRIC VEHICLES	510
Antonín Sirotek, Jan Hart	
COMPARISON OF GSM AND GPS TECHNOLOGIES FOR TRACKING PEOPLE	514
Vladimír Sojka, Petr Lepšík, Petra Hendrychová	
MINIMIZING OF SETUP ATTEMPTS ON KILNFORMING PROCESS WITH DOE	518
Jiří Souček, Radek Pražan, Jan Velebil	
EFFECT OF NITROGEN FERTILIZATION ON THE COLOUR OF WHEAT LEAVES AS AN	
INDICATOR OF APPLICATION DEFICIENCY	524
Karel Stary, Zdeněk Jelínek, Jan Chyba	-
STRESS FACTORS IDENTIFICATION USING THERMAL CAMERA	529
Veronika Štekerová	
RELIABILITY OF SELECTED BIOMETRIC IDENTIFICATION SYSTEMS	534
Dai Tanabe, Shigeru Ichiura, Ayumi Nakatsubo, Takashi Kobayashi, Mitsuhiko	
Katahira	
YIELD PREDICTION OF POTATO BY UNMANNED AERIAL VEHICLE	540
Tomáš Tesař, Petr Vaculík, Rui Melicio, Victor M. F. Mendes	
ZIGBEE PROTOCOL AND MICROCONTROLLER ON A PV SYSTEM FOR A MILKING	
CATTLE ROBOT	547
Martin Tichý, Viktor Kolář, Miroslav Müller	
STATIC AND DYNAMIC MECHANICAL PROPERTIES OF COMPOSITE FROM TYRE	
WASTE MICROPARTICLES/EPOXY RESIN	553
Eva Urbanová, Vlastimil Altmann	
USING MOTIVATIONAL SYSTEMS TO SORT WASTE EFFECTIVELY IN CZECH	
MUNICIPALITIES	560
Lukáš Vaštík, Vladimír Mašán, Patrik Burg, Jakub Sikora	200
ENERGY RECOVERY OF WASTE FROM THE VINEYARD AND WINERY	568
Ivan Vitázek, Radoslav Majdan, Rudolf Abrahám	200
ISOTHERMAL KINETIC ANALYSIS OF THE THERMAL DECOMPOSITION OF SPRUCE	
WOOD	573
Jaromír Volf, Viktor Novák, Vladimír Ryženko	515
METHOD OF PATTERN RECOGNITION OF BIOCHIPS IN GENETIC ENGINEERING	577
Jiří Vomáčka, Petr Novák, Josef Hůla, Zdeněk Kvíz	511
QUALITY ASSESSMENT OF SELECTED TILLAGE MACHINES FOR SECONDARY SOIL	
UVALITT ASSESSMENT OF SELECTED TILLAGE MACHINES FOR SECONDART SOIL TILLAGE	583
Zbyněk Vondrášek, Martin Polák	303
MEASUREMENT OF PERFORMANCE PARAMETERS IN SYSTEMS WITH FREQUENCY	
INVERTERS	587
	507

Zdeněk Votruba, Marek Pačes	
ANALYSIS OF THE EFFICIENCY OF ELECTRONIC MULTIMEDIA EDUCATION AT TH	ΉE
TECHNICAL FACULTY	593
Ling Sze Yee, Intan Fazreenna Bt Mohd Redzuan	
MATHEMATICAL DESCRIPTION OF NORMAL CONVECTIVE AND VACUUM DRYING	ł
PROCESS OF RAPESEEDS	601
Mikhail N. Yerokhin, Otari N. Didmanidze, Nikolay Aldoshin, Ramil T. Khakimov	
THE COMBUSTION PROCESS AND HEAT RELEASE IN THE GAS ENGINE	607
Iwona Żabińska, Zbigniew Matuszak	
COMMENTS ON THE DEVELOPMENT OF PROSUMER ENERGY IN POLAND	612
Marcin Zastempowski, Andrzej Bochat	
THE BEATER SHREDDING ASSEMBLY – CLASSIC AND NEW CONSTRUCTION	618
Josef Zeman, Jan Sedláček	
PROPERTIES OF FRESH AND FROZEN FISH SKIN AT CYCLIC LOAD	622
Retta Zewdie, David Marčev, Martin Halberštát	
AN ANALYSIS OF NOISE POLLUTANTS IN CITY SUBWAY TRANSPORTATION	626

TORREFACTION UPGRADING OF PALM OIL EMPTY FRUIT BUNCHES BIOMASS PELLETS FOR GASIFICATION FEEDSTOCK BY USING COMB (COUNTER FLOW MULTI-BAFFLE) REACTOR

Dewi Agustina IRYANI^{1,6}, Agus HARYANTO^{2,6}, Wahyu HIDAYAT^{3,6}, AMRUL^{4,6}, Mareli TELAUMBANUA^{2,6}, Udin HASANUDIN^{5,6}, Sihyun LEE⁶

¹Department of Chemical Engineering, Faculty of Engineering, University of Lampung, Indonesia
²Department of Agricultural Engineering, Faculty of Agriculture, University of Lampung, Indonesia
³Department of Forestry, Faculty of Agriculture, University of Lampung, Indonesia
⁴Department of Mechanical Engineering, Faculty of Engineering, University of Lampung, Indonesia
⁵Department of Agro-industrial Technology, Faculty of Agriculture, University of Lampung, Indonesia
⁶ Research and Development Center for Tropical Biomass, University of Lampung, Indonesia
⁷Climate Change Research Division, Korea Institute Energy Research, Republic of Korea

Abstract

The paper is focused on upgrading of Palm oil empty fruit bunches (EFB) pellets by using rapid torrefaction process. This study aims to evaluate the effects of torrefaction on the main energy properties of EFB pellets. The torrefaction process was conducted on range temperature of 250-350 °C by using COMB (Counter Flow Multy-Baffle) Reactor with 3 minutes of residence time. The properties of raw pellets and torrefied pellets such as the caloric value, energy density, ash content and mineral compositions, fixed carbon, volatile materials, lignin, holocellulose, extractives, and water immersion of pellets were analyzed in order to study the effect of torrefaction process on the pellets properties changes. The analytical results showed that the initiating heating value and carbon content of raw EFB pellet are 15.82MJ/kg, and 47 .24 % increased up to 16.20 MJ/kg. 17.90 MJ/kg, 47.70 and 62,06 wt%d.b, subsecquentially for brown and black pellets. In case of moisture content, the initial EFB pellets has 9.21% decreased up to 8.97, and 7.80 %, subsecquentially for brown and black pellets. The obtained results revealed significant differences for all of main physical and energy properties of pellets. The torrefaction is able to upgrade the EFB pellets which having higher caloric value, carbon content, and lower water adsorption.. Therefore, the torrefied EFB pellets are potential to apply as a solid fuel for gasification feedstock or others thermal applications.

Key words: Pellet biomass, Palm oil solid waste, Torrefaction, Biomass pellets, Solid biofuel

INTRODUCTION

The production of palm oil in the world is dominated by Indonesia and Malaysia, with the account for around 85 to 90 percent of total global palm oil production. Indonesia is the largest producer and exporter of palm oil worldwide. Palm oil production in Indonesia has increased dramatically over the past decade. The data Indonesian Palm Oil Association (Gapki) stated that Indonesia would able produce 40 million tons of crude palm oil per year starting from 2020.

Production of crude palm oil consist of several stages from the sterilization of the EFB to the digestion, threshing and clarification of the oil cooking. In palm oil industry, to produce 1 ton of crude palm oil required five tonnes of fresh fruit bunches (FFB) (*Hambali*, & *Rivai*, 2017). Alongside palm oil production, the industry also produce several different form of waste as well, such as liquid palm oil mill effluent (POME), empty fruit bunches (EFB), mesocarp fibres, shell, and kernel . Presently, the solid waste such as fibres and shell are used as boiler fuel to produce high pressure steam for turbines in power generation of energy in palm oil mill. While, another solid waste such as EFB and shell are not being utilized.

In the palm oil mill with plantation, EFB mainly utilized as mulch or compost for palm oil plantation. The EFB which placed around the young palms is able to control weeds, prevent erosion and maintain the soil moisture (*Oviasogie, et al., 2010*). However, in the mill with no plantation, the EFB is untilized properly. Whereas, in the palm oil mill, the utilization of EFB as a source of energy is avoided due to hydrophilic nature, high moisture content and low bulk density, low calorific value. Moreover, the EFB also contains high alkali metal especially potassium and silica (*Stemann, et al., (2013*).

Therefore, in order to improve the fuel properties of EFB, the combination of pelletization and torrefaction were performed in order to alleviate the issues. Torrefaction was also known as mild form of pyrolysis that is carried out at temperatures range between 200 °C and 30 °C in a non-oxidising environment (*Nyakuma, et al., 2015; Uemura, et al., 2011; Prins, et al., 2006*). The purpose of torrefaction is for drying and partial devolatization of biomass without affecting the energy content. Torrefaction is able to changes the properties to provide a better fuel quality for combustion and gasification applications (*Prins, et al., 2006*). In this study, the effects of torrefaction on the main energy and the properties of the EFB pellets such as the caloric value, ash content and mineral compositions, fixed carbon, volatile materials, lignin, holocellulose, extractives, and water immersion of pellets were evaluate. In addition, torrefaction process was conducted on the temperature range of 250-300 °C by using COMB (Counter Flow Multy-Baffle) Reactor with 3 minutes of residence time.

MATERIALS AND METHODS 2.1 Material

Palm oil (*Elaeis guineensis*) empty fruit bunch (EFB) pellets from one of pellet producer which is located in Tebing Tinggi, south Sumatra (Toba Hijau Sinergy Corp.) was used for torrefaction feedstock. Prior torrefaction and drying by using COMB Reactor, the samples are characterized by using several analyst methods such as the caloric value, carbon content, energy density, ash content and mineral compositions, fixed carbon, volatile materials, lignin, holocellulose, extractives, and water immersion of pellets. The calorific value of pellets were analyzed using a Parr bomb calorimeter according to ASTM D240. The functional groups of feedstock and products were analyzed by using a Fourier Transform Infrared (FT-IR) spectrophotometer model Perkin Elmer 2000. All of characterization method were conducted in order to understand the effect of torrefaction treatment into the material. Therefore, the raw and the torrefied pellet were dried at 105°C until constant weight.

2.2. Methods

2.2.1. Torrefaction Process

The experiment on the EFB pellets torrefaction was mainly focusing on the determination of process parameters to produce torrefied pellet (black pellet) with optimum yield. Prior the torrefaction experiment, EFB pellets were sieved to separate find dusts and sorted/grouped based on pellet size, particularly its length. The sample of pellets was then torrefied in several experiment attempts, at least 5 runs for each biomass pellets were conducted prior to a successful black pellet production. The target temperature applied during torrefaction of pellets biomass was $\pm 300^{\circ}$ C with a column difference between column-in and colum-top was $\pm 50^{\circ}$ C. While, the other process parameters such as column pressure (flow rate), and feedstock feeding rate was varying depend on the feedstock characteristics such as pellet size, weight, and density. Prior to torrefaction process, feeding test was performed to determine the feedstock feeding rate during the torrefaction.

2.2.2. Characterization of Pellets

The moisture content of samples was determined through the air-dry and oven dry weights measurement using an analytical balance (Sartorius AZ6101,Göttingen, Germany) with a sensitivity of 0.01 g. The density of samples were evaluated by measuring their air-dry weight and volume. The composition of raw and torrefied pellets were determined following the method adapted from *Datta, et al.* (1981) with some modification. Before analyzing the composition of the EFB pellets as the raw material, a sample was extracted using ethyl alcohol to determine the wax content using a soxhlet extractor over 8 h at 80 °C. 150 mg of the de-waxed sample was then dried and treated with 1.5 ml of 72 wt% H₂SO₄ at 30 °C for 1 h. 42 ml of water was added to the treated sample and hydrolyzed for 1 h in an autoclave at 121°C. The hydrolyzed sample was cooled, and then filtered and washed several times with hot water. The residue was noted as a Klason lignin (i.e. acid insoluble solid residue) and was dried at 105°C overnight. The composition of polysaccharide such as hemicellulose and cellulose were determined by using the method which adapted from *Datta* (1981). The raw and torrefied pellets were further characterized by several methods. Proximate analysis was performed following ASTM standard E-870-06. The ash content was determined by measuring the weight of sample before and after heating a 1.0 g sample at 575°C

for 5 h. The EAS Vario EL cube CHN elemental analyzer was used to measure the elemental composition of the solid products. The caloric value or energy content was determined by using Milne Bomb Calorimeter CAL2K ECO.In addition, for the purpose to identify the chemical structure and functional groups of the raw and torrefied pellets, the Fourier transforms infrared (FTIR) spectrometer (100 Perkin Elmer, MID IR spectrometer) was also performed by using the KBr disk technique (1 mg of sample/100 mg of KBr). The samples were recorded in the range of 400 - $4,000 \text{ cm}^{-1}$.

RESULTS AND DISCUSSION

The Appearance of torrefaction feedstock and products

Figure 1 shows the alteration colors of pellets before and after the torrefaction. The samples are denoted; $\mathbf{a} - \text{Raw}$ (un-torrefied) EFB pellets; $\mathbf{b} - \text{Brown}$ torrefied pellets; $\mathbf{c} - \text{Black}$ torrefied. The alteration color of torrefied EFB pellets from brown to black is mainly attributed to chemical compositions of biomass changes (*Salca, et al., 2016*).

a. un-torrefied pellets b. Brown Pellets Fig.1 The apperance of raw and torrefied samples of EFB pellets

c. Black Pellets

Ultimate and Proximate Properties

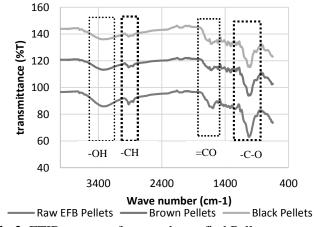
Table 1 presents the results of the ultimate and proximate values of raw EFB pellets and torrefied. The content of carbon (C) of the torrefied pellets was enhanced by 1.3 times higher than raw EFB pellets, while oxygen (O) and hydrogen (H) content were drastiscally decreases. The reduction of H and O content leads to the dehydration and deoxigenation reactions occurred during the treatment, thus significantly enhancing the heating value (HV) of the torrefied products. The values of atomic H/C and O/C ratios in raw sample were 0.14 and 0.96, respectively. After the torrefaction, the values were changed into 0.12–1.10 and 0.95–0.49, respectively. This result implies that the H/C and O/C values decreased due to the deoxygenation, dehydration and carbonization reactions occurred during the processes. The reaction occurs due to the oxygen-containing functional groups with high activity, moreover low activation energy were easy to crack or recombine to release the CO and CO₂ (*Chen, et al., 2011*). Moreover, as it was state in the previous paper (*Prins, et al., 2006*) that the solid fuel with low O/C ratios produce the higher gasification efficiencies than fuels with high O/C ratio. Furthermore, the biofuels with highly oxygenated are not perfect fuels for gasifiers from an exergetic point of view. Therefore, the modification of the properties of biomass are more attractive than gasifying these biomass as fuel directly (*Prins, et al., 2006*).

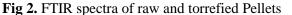
Pellets Sample	С	Н	N	O (diff)	MC	VM	FC	AC	HV (MU/ha)
Sample									(MJ/kg)
Raw	47.24	6.63	0.82	45.32	9.21	27.08	63.61	9.0	15.82
Brown	47.70	6.35	0.99	45.54	8.97	22.21	69.84	13.0	16.20
Black	62.06	5.76	0.63	30.96	7.81	18.05	72.84	11.0	17.90

Tab. 1 Ultimate and proximate properties of raw and torrified EFB pellets (% d.b)

d.b dry basis, *diff*. difference, *VM* volatile matter, *FC* fixed carbon, *AC* ash content, *HV heating value*

Chemical Composition Analysis Results of EFB Pellets


The chemical compositional changes were measured by gravimetric quantification of each component, as indicated in Tab. 2. The fraction of each component in the raw and torrefied samples is presented based on 100 g of the initial biomass. The result shows those hemicelluloses fractions are more easily degraded by thermal treatment compared with cellulose and lignin. The hemicellulose was easier to be decomposed than other polymers due to its branched structure and lower degree of polymerization (*Iryani, et al., 2017*). Differ with hemicellulose, the cellulose has a greater thermal stability due to their structure which is consist of a long glucose polymer without branches, linked by strong β -(1,4)-glycoside bonds. In case of lignin, the analytical result shows that, the content of lignin tends to increase after the torrefaction. The lignin content increased due to char, re-polymerization products, condensation reactions, and saccharide decomposition products of hemicellulose attached on the surface of the solid material which then leads the dark solid color. This result is in line with the previous research (*Salca, et al., 2016*) which was stated that the alteration of biomass color after torrefaction is related to the degradation of hemicellulose during the process.


Tab. 2 Chemicals	composition of	pellets ((%)	d.b))

No	Sample	Hemicellulose	Cellulose	Lignin	others
1	Raw EFB Pellets	26	35	17	22
2	Brown Pellets	17	35	21	27
3	Black Pellets	15	35	31	19

Fourier Transforms Infra Red (FTIR) Results Analysis

The FTIR spectroscopy was used to investigate the change of chemical structure before and after the torrefaction. The spectral data provides a simple characteristic comparison between the raw and the torrefied pellets. All of the peaks were confirmed with literature data (Iryani, et al., 2017; Pastorova, et al., 1993). The FTIR spectral data showed a peak around 3300 cm⁻¹ that is attributed to an –OH group. Comparing the FTIR spectra of the raw and torrefied pellets, the –OH group peak tend to decreased after the treatment. This result is in line with the data of MC presented in Tab. 1. This result indicates that the hydrogen-bonded -OH groups of hemicellulose of wood was gradually degraded. The peak changes were most apparent in black pellets. The peak in the range of 2928–2940 cm⁻¹ is attributed to the aliphatic CH_n groups and also weakens indicating fragmentation and decomposition of the polymer chains. The peak in the range of 1720–1740 cm⁻¹ represents C=O stretching vibrations of un-conjugated ketone, carbonyls, ester groups; and C=O of acetyl group in xylan (hemicellulose) become weaker after the torrefaction. The peak of the C–O–C aryl–alkyl ether linkages was detected around 1247 cm⁻¹. The peak of the β -glycosidic linkages between glucose in cellulose was observed in the range of 874–897 cm⁻¹. The peaks around 1608, 1500, and 1408 cm⁻¹ correspond to the C=C linkages of aromatic groups in the lignin. The peaks around 1608 and 1408 cm⁻¹suggest that lignin in the feed material was almost stable during the torrefaction and remained in the torrefied product.

Sample
of
pelletsBefore
imersion5 min30 min1 h2 h12 hRawImage: Image: Image

Hygroscopic property of EFB pellets

Fig. 3 Water absorption test of the raw and torrefied pellets.

The hygroscopic property of biomass pellets was tested by water absorption test (**Fig. 3**). The water immersion test which was conducted for 5 min, 30 min, 1 h, 2 h, and 12 h showed that the raw pellets fully disintegrated after 30 min. The Black pellets showed no significant disintegration even after 12 h test which is an advantage for long period storage of pellets. The results showed that the hygroscopic property of the raw pellets altered from hydrophilic into hydrophobic after torrefaction. The hydrophobic property of the torrefied pellet is one of their main advantage because moisture uptake by torrefied pellets is almost negligible even under severe storage conditions. It is generally known that the uptake of water by raw biomass is due to the presence of OH groups. Torrefaction produces a hydrophobic product by destroying -OH groups and causing the biomass to lose the capacity to form hydrogen bonds (*Pastorova, et al., 1993*). Due to these chemical rearrangement reactions, non-polar unsaturated structures are formed, which preserve the biomass for a long time without biological degradation, similar to coal (*Prins, et al., 2006; Chen, et al., 2011*).

The mineral Compositions Comparison of Raw and Torrefied Pellets

Tab. 3 presented the comparison of the mineral compositions of raw and torrefied pellets. The minerals compositions were analyzed using the X-ray fluorescence (XRF) analysis. The results confirmed the presence of K_2O , CaO, SiO₂, Al₂O₃ and Fe₂O₃ in the sample the result shows that the torrefaction can be slightly reduced the mineral content such as SiO₂, P₂O, CaO and K₂O.

Element	Unit	Raw	Brown Pellet	Black Pellet
MgO	%	1.21	1.35	1.44
Al_2O_3	%	0	10.06	10,36
SiO ₂	%	10.45	0	0
P_2O_5	%	2,457	1,292	0
SO ₃	%	3.57	2,418	2.34
Cl	%	6.60	6.62	5.97
K ₂ O	%	51.58	44.25	46.19
CaO	%	17.71	14,87	14.83
TiO ₂	%	0.19	1.03	1.03

Tab. 3 The mineral composition of raw and torrefied pellets

Cr_2O_3	%	0.31	0.48	0.68
MnO	%	0.35	0.83	0,869
Fe_2O_3	%	5.08	15.94	15.76
ZnO	%	0.733	0.19	0.18
Rb ₂ O	%	0.22	0.45	0.500

CONCLUSIONS

The torrefied pellets or the black pellets of EFB was succesfully produced with good main energy properties. The results showed the reduction of moisture content after the torrefaction of biomass pellets. The improvement in the hygroscopic behaviour was also observed, showing a more hydrophobic product after torrefaction. The heating value of pellets remarkably increased after the torrefaction with COMB. The results proposed that torrefaction by using COMB technology could produce could produce friable, hydrophobic, and energy-rich fuel which ideal for gasification feedstock.

ACKNOWLEDGMENT

This study was supported by the Indonesian Oil Palm Estate Fund (*BPDPKS*) organize Palm Oil Grant *Research* Program 2019.

REFERENCES

- 1. Hambali, E. & Rivai M. (2017). The Potential of Palm Oil Waste Biomass in Indonesia in 2020 and 2030. IOP Conf. Series: Earth and Environmental Science 65 012050, 1-10.
- Oviasogie, P.O., Aisueni, N.O., & Brown, G. E. (2010). Oil Palm Composted Biomass: A Review of the Preparation, Utilization, Handling and Storage. African Journal of Agricultural Research 5(13), 1553-1571.
- Stemann, J., Erlach, B., & Ziegler, F. (2013). Hydrothermal carbonisation of empty palm oil fruit bunches: Laboratory trials, plant simulation, carbon avoidance, and economic feasibility, Waste and Biomass Valorization 4(3), 441–454.
- Nyakuma B.B, Ahmad, A. Johari, A, Abdullah, A.T., & Oladokun, O. (2015). Torrefaction of Pelletized Oil Palm Empty Fruit Bunches, Proceeding of The 21st International Symposium on Alcohol Fuels – 21st ISAF, Gwangju, Korea.
- Uemura, Y., Omar, W.N., Tsutsui, T., & Yusup S.B. (2011) Torrefaction of Oil Palm Wastes, Fuel 90, 2585–2591.
- Prins. M.J, Ptasinski, K.J., & Jansen F.J.J.G. (2006). More efficient biomass gasification via torrefaction, Energy 31, 3458-3470.

- Datta, R. (1981). Acidogenic Fermentation of Lignocellulose-Acid Yield and Conversion Of Components, Biotech. and Bioeng. 23(9): 2167-2170.
- Salca, E. A., Kobori, H., Inagaki, T., Kojima, Y., & Suzuki, S. (2016). Effect of heat treatment on colour changes of black alder and beech veneers. J. Wood Sci. 62(4): 297-304.
- Chen Q., Zhou J.S., Liu B., Mei Q.F., & Luo Z.Y. (2011). Influence of Torrefaction Tretreatment on Biomass Gasification Technology, Energy Science & Technology 56(14), 1449–1456.
- Iryani, D.A., Kumagai, S., Nonaka, & M., Sasaki, K., Hirajima, T. (2017). Characterization and production of solid biofuel from sugarcane bagasse by hydrothermal carbonization. Waste Biomass Valor. 8:1941–1951.
- Pastorova, I., P.W. Arisz, & J.J. Boon. (1993) Preservation of d-glucose oligosaccharides in cellulose chars. Carbohydrate Research. 248:151–165.

Corresponding author:

Dr. Eng. Dewi Agustina Iryani, Department of Chemical Engineering, Faculty of Engineering, University of Lampung, Indonesia phone: +6281293638980, e-mail: dewi.agustina@eng.unila.ac.id