ISBN 978-602-17165-0-2



21 - 22 November 2012 | Aston Tropicana Hotel, Bandung, Indonesia

# PROCEEDINGS

Organized By:



AUN/SEED-Net





Sponsored By:



## Proceedings of The 5<sup>th</sup> AUN/SEED-Net Regional Conference on Global Environment

"Toward a Sustainable ASEAN"

21-22 November 2012 Aston Tropicana Hotel Bandung, Indonesia

Copyright © 2012. All rights reserved

Centre for Environmental Studies – Institut Teknologi Bandung Jalan Sangkuriang No. 42 A Bandung 40135 Jawa Barat - Indonesia









## FOREWORD

The seminar is strategic and prospective efforts to publish scholarly experimental works produced by researchers from universities, research institutions, industries, and other institutions. As part of the cutting edge research activities, seminar has been proven to play an important role in giving significant contribution to the researchers, creating discussion and providing an exchange of experience, as well as bridging the further collaboration among participants. The seminar is also an instrument in guiding the development of science and technology from the continuously research activities. In the international community windows, the seminar also reflects human dignity that demonstrates knowledge and technology.

Realizing the importance and benefits of the seminar, the Center for Environmental Studies (PSLH) Institut Teknologi Bandung (ITB) in collaboration with the College of Engineering University of the Phillippines-Diliman, which is also supported by AUN / SEED-Net, will host 5<sup>th</sup> Regional Conference on Global Environment (RCGE) on the theme "Toward a Sustainable ASEAN". The seminar will be held for two days from 21 to 22 November 2012, consisting of RCGE seminars and meetings of delegates of AUN/SEED-Net. In this conference, four plenary lectures will be given by eminent professor: Prof. Mitsuru Osaki, Director, Sustainability Governance Project (SGP), Hokkaido University; Prof. Yasushi Kiyoki, Faculty of Environment and Information Studies, Keio University; Prof. Naoyuki Funamizu, Graduate School of Engineering, Hokaido University; and Assoc. Prof. Shinjiro Kanae, Env. and Water Res. Eng. Group, Tokyo Institute of Technology, which will be continued by presentation of five invited speakers and parallel sessions. In total, we present 94 papers, which come from various countries in ASEAN. This book is a result of scientific and communicative papers compilation, which is presented in 5<sup>th</sup> Regional Conference on Global Environment (RCGE) on November 21-22, 2012, in Bandung, Indonesia.

Hopefully this conference would become a means of intensive communication between the community in pursuing the global environment in Indonesia and abroad, as well as industry and government, and could open up opportunities for cooperation for mutual benefit.

Last but not least, we gratefully acknowledge all participants, AUN/SEED-Net, and sponsors for their valuable contribution.

Bandung, 15 November 2012

Tjandra Setiadi Head Centre for Environmental Studies, Institut Teknologi Bandung

## ORGANIZING COMMITTEE

#### **International Advisory Board**

Prof. Tjandra Setiadi (Institut Teknologi Bandung, Indonesia)
Prof. Enri Damanhuri (Institut Teknologi Bandung, Indonesia)
Prof Dr. Aura C. Matias (University of the Philippines-Diliman, The Philippines)
Assoc. Prof. Dr. Maria Antonia Tanchuling (University of the Philippines-Diliman, The Philippines)
Prof. Naoyuki Funamizu (Hokaido University, Japan)
Prof. Dr. Kiyohiko Nakasaki (Tokyo Institute of Technology, Japan)
Assoc. Prof. Dr. Y.P. Ting (National University of Singapore, Singapore)
Assoc. Prof. Dr. Petchporn Chawakitchareon (Chulalongkorn University, Thailand)
Assist. Prof. Dr. Wiratni (Universitas Gadjah Mada, Indonesia)

#### **Organizing Committee**

| Chairman     | Assoc. Prof. Dr. Yogi Wibisono Budhi  |
|--------------|---------------------------------------|
| Program      | Assoc. Prof. Dr. Agus Jatnika Effendi |
|              | Dr. Retno Gumilang Dewi               |
|              | Assist. Prof. Dr. Tri Wahyu Hadi      |
| Logistic     | Assist. Prof. Dr. Arief Sudrajat      |
| Secretariate | Dr. Ardiyan Harimawan                 |
|              | Vita Wonoputri, MSc.                  |

## **CONFERENCE PROGRAM**

| 20 November 2012 |                                               |  |  |
|------------------|-----------------------------------------------|--|--|
| 18.00 - 20.00    | Early Registration (at Hotel Aston Tropicana) |  |  |

|               | Day 1, 21 November 2012 |                                    |                  |                  |               |
|---------------|-------------------------|------------------------------------|------------------|------------------|---------------|
| 07.00 - 08.30 |                         |                                    | Registration     |                  |               |
|               | Opening Cere            | Opening Ceremonies and Performance |                  |                  |               |
|               | Assoc. Prof. D          | r. Yogi Wibisor                    | no Budhi         |                  |               |
|               | Chairman of T           | the 5th AUN/SE                     | EED-Net Regior   | al Conference o  | n             |
|               | Global Enviror          | nment Organizir                    | ng Committee     |                  |               |
| 08.30 - 09.00 | Mr. Toshiyuki           | Okui                               |                  |                  |               |
|               | AUN/SEED-N              | let Representativ                  | ve               |                  |               |
|               | Prof. Dr. Waw           | an Gunawan A.                      | Kadir, MS        |                  |               |
|               | Vice Rector fo          | r Research and 1                   | Innovation       |                  |               |
|               | Institut Teknol         | ogi Bandung, Ir                    | ndonesia         |                  |               |
|               | Plenary Lectu           | ire 1                              |                  |                  |               |
| 09.00 - 09.30 | Prof. Mitsuru (         | <u> Osaki</u>                      |                  |                  |               |
| 09.00 - 09.30 | Director of Sus         | stainability Gov                   | ernance Project, | Hokkaido Univ    | ersity, Japan |
|               | Theme: Carbon           | n Management i                     | n Peat Forest    |                  |               |
|               | Plenary Lectu           | ire 2                              |                  |                  |               |
| 09.30 - 10.00 | Assoc. Prof. Sl         | hinjiro Kanae                      |                  |                  |               |
| 09.30 - 10.00 | Env. And Wate           | er Res. Eng. Gro                   | oup, Tokyo Insti | tute of Technolo | ogy, Japan    |
|               | Theme: Global           | l Hydrology and                    | l Climate Chang  | e                |               |
| 10.00 - 10.30 |                         | Photo Se                           | ession and Coff  | ee Break         |               |
| 10.30 - 12.05 |                         | I                                  | Parallel Session | I                | 1             |
| 10.00 12.00   | Room 1                  | Room 2                             | Room 3           | Room 4           | Room 5        |
| 10.30 - 10.50 | WP-1                    | PW-1                               | SC-1             | AP*              | CC-1          |
| 10.50 - 11.05 | WP-2                    | PW-2                               | SC-2             | AP-1             | CC-2          |
| 11.05 - 11.20 | WP-3                    | WP-6                               | SC-3             | AP-2             | CC-3          |
| 11.20 - 11.35 | WP-4                    | WP-7                               | SC-4             | AP-3             | CC-4          |
| 11.35 - 11.50 | WP-5                    | WP-8                               | SC-5             | AP-4             | CC-5          |
| 11.50 - 12.05 |                         | Quest                              | ion & Answer S   | ession           |               |
| 12.05 - 13.05 |                         |                                    | Lunch            |                  |               |
| 13.05 - 14.20 |                         | Р                                  | arallel Session  | II               | 1             |
|               | Room 1                  | Room 2                             | Room 3           | Room 4           | Room 5        |
| 13.05 - 13.20 | WP-9                    | PW-3                               | SC-6             | AP-5             | CC-6          |
| 13.20 - 13.35 | WP-10                   | PW-4                               | SW-1             | AP-6             | CC-7          |
| 13.35 - 13.50 | WP-11                   | WP-14                              | SW-2             | WP-17            | CC-8          |
| 13.50 - 14.05 | WP-12                   | WP-15                              | SW-3             | WP-18            | GT-1          |
| 14.05 - 14.20 | WP-13                   | WP-16                              | SW-4             | WP-19            | GT-2          |
| 14.20 - 14.35 |                         | Quest                              | ion & Answer S   | ession           |               |

| 14.35 - 15.05 |        |                      | <b>Coffee Break</b> |         |        |  |  |
|---------------|--------|----------------------|---------------------|---------|--------|--|--|
| 15.05 - 16.50 |        | Parallel Session III |                     |         |        |  |  |
| 15.05 - 10.50 | Room 1 | Room 2               | Room 3              | Room 4  | Room 5 |  |  |
| 15.05 - 15.20 | CC-9   | SW-5                 | SS-1                | GT-3    | CE-1   |  |  |
| 15.20 - 15.35 | CC-10  | SW-6                 | SS-2                | GT-4    | CE-2   |  |  |
| 15.35 - 15.50 | CC-11  | SW-7                 | WP-20               | EE-1    | CE-3   |  |  |
| 15.50 - 16.05 | CC-12  |                      | WP-21               | EE-2    | CE-4   |  |  |
| 16.05 - 16.20 |        |                      |                     | SW-8    | CE-5   |  |  |
| 16.20 - 16.35 |        |                      |                     | SW-9    | CE-6   |  |  |
| 16.35 - 16.50 |        |                      |                     | SW-10   | CE-7   |  |  |
| 19.00 - 22.00 |        | Welcor               | ne Party (Gala      | Dinner) |        |  |  |

| Day 2, 22 November 2012 |                                                                                                                                                                                                      |                     |                   |                  |          |  |  |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------|------------------|----------|--|--|
| 08.00- 09.00            |                                                                                                                                                                                                      | Parallel Session IV |                   |                  |          |  |  |
| 08.00- 09.00            | Room 1                                                                                                                                                                                               | Room 2              | Room 3            | Room 4           | Room 5   |  |  |
| 08.00 - 08.15           | EE*                                                                                                                                                                                                  | WP-22               | WP-26             | WP-30            | WP-34    |  |  |
| 08.15 - 08.30           | EE-3                                                                                                                                                                                                 | WP-23               | WP-27             | WP-31            | WP-35    |  |  |
| 08.30 - 08.45           | EE-4                                                                                                                                                                                                 | WP-24               | WP-28             | WP-32            | WP-36    |  |  |
| 08.45 - 09.00           | EE-5                                                                                                                                                                                                 | WP-25               | WP-29             | WP-33            | WP-37    |  |  |
| 09.00 - 09.30           |                                                                                                                                                                                                      | ·                   | Coffee Break      |                  |          |  |  |
| 09.30 - 10.30           | AUN/SH                                                                                                                                                                                               | EED-Net update      | and discussion of | on collaborative | research |  |  |
| 10.30 - 11.00           | Plenary Lecture 3Prof. Yasushi KiyokiFaculty of Environment and Information Studies, Keio University, JapanTheme: A Multimedia Data Mining System for Environmental and Cross-<br>Cultural Computing |                     |                   |                  |          |  |  |
| 11.00 - 11.30           | Plenary Lecture 4<br><u>Prof. Naoyuki Funamizu</u><br>Graduate School of Engineering, Hokkaido University, Japan<br>Theme: Sustainable Sanitation                                                    |                     |                   |                  |          |  |  |
| 11.30 - 12.00           | Closing Ceremony                                                                                                                                                                                     |                     |                   |                  |          |  |  |
| 12.00 - 13.30           |                                                                                                                                                                                                      |                     | Farewell Lunch    |                  |          |  |  |

## LIST OF PAPER

|       | Water Pollution Control                                                                                 |                                                                                                                                          |             |             |  |  |
|-------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|--|--|
| Code  | Writers                                                                                                 | Abstract title                                                                                                                           | Affiliation | Country     |  |  |
| WP 1  | Guanglei Qiu & Yen-<br>Peng Ting                                                                        | Osmotic Membrane Bioreactor for<br>Municipal Wastewater Treatment:<br>System Performance, Flux Stability<br>and Membrane Fouling         | NUS         | Singapore   |  |  |
| WP 2  | Mohd Nordin Adlan,<br>Puganeshwary<br>Palaniandy, Hamidi<br>Abdul Aziz, & Helen<br>Jong Wan Ting        | The Effect of Media Configurations<br>on the Treatment of Landfill<br>Leachate Using Horizontal<br>Roughing Filter                       | USM         | Malaysia    |  |  |
| WP 3  | Florencio Ballesteros<br>Jr., Trina Listanco &<br>Manny A.M. Taguba                                     | Concocting local "BMP's" in<br>Agriculture for Non Point Pollution<br>Reduction in Laguna de Bai,<br>Philippines                         | UP          | Phillipines |  |  |
| WP 4  | Junel B. Borbo, Mark<br>Daniel G. de Luna                                                               | Adsorption studies on The Removal<br>of Reactive Blue 19 and Reactive<br>Yellow 145 using Putsan(tiwi) Clay                              | UP          | Philippines |  |  |
| WP 5  | Oeurng Chantha, Ly<br>Sarann, Mok Sokun<br>Vichet, Keo<br>Soksamnang                                    | Sediment Load Assessment in a<br>Tropical Monsoon Catchment of<br>Tonle Sap Lake Basin, Cambodia:<br>Monitoring and Modelling            | ITC         | Cambodia    |  |  |
| WP 6  | Wawan Budianta                                                                                          | Soil Cadmium Remediation by<br>Yogyakarta Natural Zeolite                                                                                | UGM         | Indonesia   |  |  |
| WP 7  | Ratchanan<br>Chamnanmor, Pisut<br>Painmanakul,<br>Chaiyaporn                                            | Study of In-line Coagulation and<br>Flocculation Processes for<br>Turbidity Removal: Experimental<br>Approaches                          | CU          | Thailand    |  |  |
| WP 8  | Thanakorn<br>Ermukdakul,<br>Benjaporn<br>Boonchayaanant,<br>Wiboonluk Pungrasmil<br>& Pisut Painmanakul | Treatment of Wastewater from<br>Aquacultural Pond by Two Step<br>Processes (Rapid Sand and Slow<br>Sand Filter)                          | CU          | Thailand    |  |  |
| WP 9  | Siska Widya Dewi<br>Kusumah & Heto Dwi<br>Ariesyady                                                     | Identification of Microbiological<br>Pollution Source in Upper Citarum<br>River by Antibiotic Resistance<br>Analysis of Escherichia coli | ITB         | Indonesia   |  |  |
| WP 10 | Barti Setiani Muntalif,<br>Indah Rahmatia S.S.,<br>Arwin, Lieza Corsita                                 | Analysis of Phytoplankton<br>Diversity and Water Quality in<br>Aquatic Ecosystems of the Jatiluhur<br>Reservoir                          | ITB         | Indonesia   |  |  |

| Water Pollution Control |                                                                                                                                     |                                                                                                                                                                            |                                      |             |  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------|--|
| Code                    | Writers                                                                                                                             | Abstract title                                                                                                                                                             | Affiliation                          | Country     |  |
| WP 11                   | Fadjari Lucia<br>Nugroho, Setiati, Anni<br>Rohaeni, Sri Wahjuni,<br>Dwi Sobirachman,<br>Adhita Abdillah, Siti<br>Maryam Khoirunnisa | Removal of Colour Index Reactive<br>Blue 5 (CIRB5) Anthraquinone<br>Dye by Live Trichoderma<br>asperellum TNC52 Isolated from<br>the Soil of a Cacao Plantation in<br>Riau | Universitas<br>Pasundan              | Indonesia   |  |
| WP 12                   | Witawat Jangiam &<br>Sarayut Petra                                                                                                  | Biodegradation of Linear<br>Alkylbenzene Sulfonate by AOS-15<br>Microorganism                                                                                              | BUU                                  | Thailand    |  |
| WP 13                   | Phong Nguyen Tan,<br>Luan Mai Thanh                                                                                                 | Study on Fish Processing<br>Wastewater Treatment by Swim-<br>bed and Stick-bed Processes                                                                                   | HCMUT                                | Vietnam     |  |
| WP 14                   | Krittita<br>Lertpocasombut &<br>Maruay Kiewsa-ard                                                                                   | The Properties of the Ash if the<br>Vetiver Grass Roots as a Filter<br>Material                                                                                            | Thammasat<br>University              | Thailand    |  |
| WP 15                   | Sri Puji Saraswati,<br>Bambang Agus<br>Kironoto, Suwarno<br>Hadisusanto                                                             | Comparison of Some Water Quality<br>Indices in Determining A River<br>Quality Status (A Case Study of<br>Gadjah Wong Stream)                                               | UGM                                  | Indonesia   |  |
| WP 16                   | Mohd Suffian Yusoff,<br>Ming Rui Lo, Hamidi<br>Abdul Aziz                                                                           | Semi-aerobic Landfill Leachate<br>Treatment Using Oil Palm Trunk<br>Waste-Derived Coagulant                                                                                | USM                                  | Malaysia    |  |
| WP 17                   | Ahmad Shukri<br>Yahaya, Nor Azam<br>Ramli, Ahmad Zia Ul-<br>Saufie, Hazrul Abdul<br>Hamid, Fauziah<br>Ahmad                         | Prediction of Daily Average PM10<br>Concentration 3 Days in Advance<br>for Melaka, Malaysia                                                                                | USM                                  | Malaysia    |  |
| WP 18                   | Bambang Hari P. and<br>Hendriyana                                                                                                   | Batch and Continuous Processes of<br>Electrocoagulation on Industrial<br>Wastewater                                                                                        | Universitas<br>Jendral<br>Ahmad Yani | Indonesia   |  |
| WP 19                   | Doni Sugiyana, Marisa<br>Handajani &<br>Suprihanto<br>Notodarmojo                                                                   | Degradation of Textile Dyeing<br>Wastewater Through Photocatalytic<br>Treatment by Using Immobilized<br>TiO2 Nanofibers Composite<br>Catalyst                              | ITB                                  | Indonesia   |  |
| WP 20                   | Nguyen Duy Hung,<br>Herman D. Mendoza,<br>Nghiem Trung Dung                                                                         | A Proposed Establishment of Lam<br>River Basin's Water Monitoring<br>System Using Passive Sampling<br>Techniques                                                           | UP                                   | Philippines |  |
| WP 21                   | Bui Xuan Thanh &<br>Nguyen Phuoc Dan                                                                                                | Performance of Membrane<br>Bioreactor Coupling With<br>Ozonation at Different<br>Recirculation Rate for Dyeing and<br>Textile Wastewater Treatment                         | HCMUT                                | Vietnam     |  |
| WP 22                   | Thipaporn<br>Sirinukulwattana,<br>Wiboonluk Pungrasmi<br>& Chaiyaporn<br>Puprasert                                                  | Treatment of Low Strength<br>Wastewater by Rubber Granules<br>Media AFB Reactors Without<br>Internal Recirculation                                                         | CU                                   | Thailand    |  |

| Water Pollution Control |                                                                                                                                                         |                                                                                                                                                                                                 |                                |           |  |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------|--|
| Code                    | Writers                                                                                                                                                 | Abstract title                                                                                                                                                                                  | Affiliation                    | Country   |  |
| WP 23                   | Inneke F.M.<br>Rumengan                                                                                                                                 | Quantitative Assessment of Benthic<br>Community in Buyat Bay, North<br>Sulawesi                                                                                                                 | Sam<br>Ratulangi<br>University | Indonesia |  |
| WP 24                   | Yonik Meilawati<br>Yustiani                                                                                                                             | Study on BOD Decay Rate of<br>Urban Rivers in Bandung City,<br>Indonesia                                                                                                                        | Universitas<br>Pasundan        | Indonesia |  |
| WP 25                   | Misri Gozan, Fita<br>Sefriana, Stephan<br>Stauder, Jutta Eggers                                                                                         | Challenges in Treatment of<br>Ciliwung River Waters                                                                                                                                             | Universitas<br>Indonesia       | Indonesia |  |
| WP 26                   | Nontiya Chothong &<br>Petchporn<br>Chawakitchareon                                                                                                      | Adsorption of Methylene Blue By<br>Spent Coffee Grounds                                                                                                                                         | CU                             | Thailand  |  |
| WP 27                   | Narapong<br>Hongprasith, Tawan<br>Chareonpittaya, Daiki<br>Fusamae, Jin Tanaka,<br>Yuta Hikiji, Maliwan<br>Kutako, Tsuyoshi Imai<br>& Pisut Painmanakul | Study of Alternative Aeration<br>System Applied in Aquaculture<br>Ponds                                                                                                                         | CU                             | Thailand  |  |
| WP 28                   | Desiana Prilia, Herto<br>Dwi Arisyady &<br>Katharina Oginawati                                                                                          | Analysis of Mercury in Water and<br>Sediment Distribution and Its<br>Bioaccumulation Potential in Fish<br>in the Small Scale Gold Mining<br>Area (Case study: Ciberang River,<br>Lebak, Banten) | ITB                            | Indonesia |  |
| WP 29                   | Qomarudin Helmy,<br>Syarif Hidayat, Luhur<br>A. Devianto,<br>Mochammad Chaerul                                                                          | Municipal Landfill Leachate<br>Treatment: Common Practices in<br>Indonesia                                                                                                                      | ITB                            | Indonesia |  |
| WP 30                   | David Andrio, Marisa<br>Handajani &<br>Mindriany Syafila                                                                                                | The Potential of Ethanol Production<br>from High Strength Organic<br>Wastewater on Acidogenic Phase:<br>A Preliminary Study                                                                     | ITB                            | Indonesia |  |
| WP 31                   | Dita Amalia, Indah<br>Rachmatiah S. Salami<br>& Dwina Roosmini                                                                                          | Improving Water Quality of Rivers<br>Receiving Landfill Waste Through<br>Utilization of Pistia stratiotes L.<br>Plants                                                                          | ITB                            | Indonesia |  |
| WP 32                   | Rudy L. Widiyatno,<br>Munawar Ali,<br>Bambang Wahyudi,<br>Qomarudin Helmy                                                                               | Degradation of Textile Industry's<br>Effluent Using Integrated<br>Chemical-Biological Process                                                                                                   | UPN-<br>Veteran<br>Surabaya    | Indonesia |  |
| WP 33                   | Tazkiaturrizki,<br>Prayatni Soewondo,<br>Marisa Handajani                                                                                               | Removal Nitrogen and Phosphate<br>in Effluent of Bojongsoang<br>Wastewater Treatment Using<br>Subsurface Horizontal Wetland<br>with Continuous Feed                                             | ITB                            | Indonesia |  |

|       | Water Pollution Control                                                                             |                                                                                                                                                                         |             |           |  |
|-------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|--|
| Code  | Writers                                                                                             | Abstract title                                                                                                                                                          | Affiliation | Country   |  |
| WP 34 | Prismita Nursetyowati,<br>Prayatni Soewondo and<br>Marisa Handajani                                 | Influence of the Influent Organic<br>Loading on Organic Removal of<br>Liquid Phase Biowaste in an Upflow<br>Anaerobic Fixed Bed Reactor with<br>Pumice Supporting Media | ITB         | Indonesia |  |
| WP 35 | Jaber M.A. Alkasseh,<br>Mohd Nordin Adlan, Hj.<br>Ismail Abustan, and<br>Abu Bakar Mohamad<br>Hanif | Minimum Night Flow Analysis to<br>Estimate Water Loss: A Case Study<br>in Kinta Valley, Malaysia                                                                        | USM         | Malaysia  |  |
| WP 36 | Irawan Sugoro,<br>Dwiwahju Sasongko, D.<br>Indriani, P. Aditiawati                                  | Biosolubilization of Gamma<br>Irradiation Lignite by Penicillium sp                                                                                                     | ITB         | Indonesia |  |
| WP 37 | Syarif Hidayat and<br>Edwan Kardena                                                                 | Removal of Organic Compounds<br>from Oilfield Produced Water in<br>Batch Suspended Growth Bioreactor<br>Using Endogenous Bacteria                                       | ITB         | Indonesia |  |

|      | Air Pollution Control                                                        |                                                                                                                                        |                                           |           |  |  |
|------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------|--|--|
| Code | Writers                                                                      | Abstract title                                                                                                                         | Affiliation                               | Country   |  |  |
| AP*  | Driejana                                                                     | Science and Policy in Air Quality<br>Management in Indonesia                                                                           | ITB                                       | Indonesia |  |  |
| AP 1 | Tran Thi Thu Huong,<br>Nguyen Duc Khanh,<br>Pham Hoang Luong, Le<br>Anh Tuan | A Computational Study of The<br>Effects of Injection Strategies on<br>Performance and Emissions of A<br>Syngas/Diesel Dual-Fuel Engine | HUST                                      | Vietnam   |  |  |
| AP 2 | Kania Mayang Lestari &<br>Driejana                                           | Performance of Alternate<br>Absorbents in the Application of<br>Ambient-NO2 Passive Tube<br>Sampler in Indonesia                       | ITB                                       | Indonesia |  |  |
| AP 3 | Endah Saptutyningsih                                                         | Impact of Air Pollution on Property<br>Values: A Hedonic Price Study for<br>Daerah Istimewa Yogyakarta                                 | Universitas<br>Muhammadiyah<br>Yogyakarta | Indonesia |  |  |
| AP 4 | Vita Wonoputri,<br>Mohammad Effendy,<br>Yogi Wibisono Budhi,<br>Subagjo      | Abatement of Fugitive Methane<br>Emission by Catalytic Oxidation:<br>Study on Rate Parameter<br>Estimation                             | ITB                                       | Indonesia |  |  |
| AP 5 | Saripah Sobah, Hary<br>Sulistyo, Siti Syamsiah                               | Romoval of CO2 from Ammonia<br>Industry through Coal Gasification<br>as an Effort for Minimizing Global<br>Warming                     | UGM                                       | Indonesia |  |  |

|      | Air Pollution Control                 |                                                                                                                                                   |                                                                                                            |           |  |  |
|------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------|--|--|
| Code | Writers                               | Abstract title                                                                                                                                    | Affiliation                                                                                                | Country   |  |  |
| AP 6 | Esrom Hamonangan,<br>Jetro Situmorang | Monitoring of Ambient Air<br>Quality in 288 Locations of<br>Province, City and Regency to<br>Support National Air Quality<br>Management Indonesia | Pusat Sarana<br>Pengendalian<br>Dampak<br>Lingkungan<br>(Pusarpedal)-<br>Kementrian<br>Lingkungan<br>Hidup | Indonesia |  |  |

|      | Climate Change                                                                    |                                                                                                                                                                                                |                                                                                                                                                              |             |  |  |
|------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|
| Code | Writers                                                                           | Abstract title                                                                                                                                                                                 | Affiliation                                                                                                                                                  | Country     |  |  |
| CC 1 | Udin Hasanudin,<br>Amalia Julfi R.,<br>Rahmawati<br>Nurmalasari, Agus<br>Haryanto | Greenhouse Gases Emission<br>Reduction Potential through<br>Bioethanol Industry Wastewater<br>Utilization                                                                                      | University of<br>Lampung                                                                                                                                     | Indonesia   |  |  |
| CC 2 | Deni Bram                                                                         | The Paradox of National Climate<br>Justice (Indonesia Emission Quota<br>as Case Study)                                                                                                         | Universitas<br>Indonesia                                                                                                                                     | Indonesia   |  |  |
| CC 3 | Watt Botkosal, Chhuon<br>Kong, Chea Chanthou                                      | The State of Climate Change in Cambodia                                                                                                                                                        | UGM                                                                                                                                                          | Indonesia   |  |  |
| CC 4 | FX. Hermawan<br>Kusumartonoirst                                                   | Women Role on Adaptation to<br>Face Water Crisis Impact of<br>Climates Change: Study Case in<br>Palue Island                                                                                   | Research and<br>Development<br>Center for<br>Social,<br>Economic,<br>Environment,<br>Board of<br>Research and<br>Development,<br>Ministry of<br>Public Works | Indonesia   |  |  |
| CC 5 | Inna Marlina, Puji<br>Lestari, Juli Soemirat                                      | The Impact of Global Warming to<br>the Incidence of Dengue<br>Hemorrhagic Fever (DHF) and<br>The estimation of Its Burden of<br>Disease Using Daly Parameter in<br>Bandung City From 2005-2010 | ITB                                                                                                                                                          | Indonesia   |  |  |
| CC 6 | Mohd Syarif Hidayat                                                               | The Thermal Environment of<br>Urban Open Spaces in Jakarta                                                                                                                                     | Universitas<br>Mercu Buana                                                                                                                                   | Indonesia   |  |  |
| CC 7 | Haryanto Wardoyo                                                                  | Risk Versus Potency of the Natural<br>Anaerobic Methane Emission                                                                                                                               | Papua Sagosia<br>PT, Molindo<br>Raya Industrial<br>PT                                                                                                        | Indonesia   |  |  |
| CC 8 | Jeark A. Principe,<br>Ariel C. Blanco                                             | Climate Change Impact Assessment<br>on Soil Loss Rate in a Large River<br>Basin Using SWAT Model, RS and<br>GIS                                                                                | UP                                                                                                                                                           | Philippines |  |  |

|       | Climate Change                                                            |                                                                                                                                     |                                          |           |  |
|-------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------|--|
| Code  | Writers                                                                   | Abstract title                                                                                                                      | Affiliation                              | Country   |  |
| CC 9  | Djoko Suwarno, Budi<br>Widianarko, Ansje<br>Lohr, Carolien Kroeze         | Climate Change and Nutrient<br>Export, A Scenario for<br>Bengawan Solo River, Java                                                  | Soegijapranata<br>Catholic<br>University | Indonesia |  |
| CC 10 | Ishak Tan                                                                 | Forest Governance in Autonomy<br>Era: A Study of Administration<br>of Controlling at West Java<br>Province, Indonesia               | Bitari<br>Institution,<br>Cimahi         | Indonesia |  |
| CC 11 | Yeni Rahmawati,<br>Sanggono Adisasmito,<br>Tjandra Setiadi, I G<br>Wenten | CO2 Removal Using Membrane<br>Contactor in Transversal Modul                                                                        | ITB                                      | Indonesia |  |
| CC-12 | Budi Kamulyan,<br>Johan Syafri Mahathir<br>Ahmad, Rachmad<br>Jayadi       | Adapting Climate Change by<br>Using Roof Garden with Closed<br>Cycle Water Utilization for<br>Creating Micro Climate<br>Improvement | UGM                                      | Indonesia |  |

|      | Coastal Environments and Vulnerability                                                                                  |                                                                                                                                              |                     |             |  |
|------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------|--|
| Code | Writers                                                                                                                 | Abstract title                                                                                                                               | Affiliation         | Country     |  |
| CE 1 | Aung Kyaw                                                                                                               | Geographical Analysis on the<br>Vulnerability of Myanmar Coastal<br>Area to Natural Disaster                                                 | Dagon<br>University | Myanmar     |  |
| CE 2 | Irwan Gumilar, H.Z.<br>Abidin, T.P. Sidiq, H.<br>Andreas, R. Maiyudi,<br>M. Gamal, Y. Fukuda                            | Mapping and Evaluating the<br>Impact of Land Subsidence in<br>Semarang (Indonesia)                                                           | ITB                 | Indonesia   |  |
| CE 3 | Bryan Clark B.<br>Hernandez, Tolentino B.<br>Moya, Ariel C. Blanco,<br>Maria Antonia N.<br>Tanchuling, Kazuo<br>Nadaoka | Investigation of Saltwater<br>Intrusion into the Coast of<br>Guimaras Island, Philippines<br>Using Geophysical and<br>Geochemical Methods    | UP                  | Philippines |  |
| CE 4 | Arni Rahmawati Fahmi<br>Sholihah, Achmad<br>Sjarmidi                                                                    | Environmental Analysis of Post<br>Sand and Andesite Mining Land in<br>Cimalaka and Paseh, Sumedang,<br>West Java                             | ITB                 | Indonesia   |  |
| CE 5 | Tan Lay Hui Ivy                                                                                                         | Understanding the Risk and<br>Impact of Natural Disasters Along<br>a Shipping Network                                                        | NTU                 | Singapore   |  |
| CE 6 | Achmad Sjarmidi,<br>Anzilni Fathia Amasya,<br>Lerry Martina, Sarah<br>Saqina                                            | Coral Reef Condition in<br>Pangandaran Marine Nature<br>Reserve and Tourism Park in<br>Relation with Human Activities<br>and Tsunami in 2006 | ITB                 | Indonesia   |  |
| CE 7 | Eka Wardhani                                                                                                            | Damage Analysis of Lake Bulakan<br>Tangerang Municipal                                                                                       | Itenas              | Indonesia   |  |

|      | Energy Efficiency                                                                                    |                                                                                                                                             |                                                                                          |                    |  |
|------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------|--|
| Code | Writers                                                                                              | Abstract title                                                                                                                              | Affiliation                                                                              | Country            |  |
| EE 1 | Yogi Wibisono Budhi,<br>Hari Rionaldo, Allan<br>Abraham B. Padama,<br>Hideaki Kasai, Irwan<br>Noezar | The Challenge of Process<br>Intensification for Improved<br>Hydrogen Production as Clean<br>and Sustainable Energy Carrier<br>in the Future | ITB                                                                                      | Indonesia          |  |
| EE 2 | Edi Iswanto Wiloso,<br>Reinont Heijungs                                                              | Key Issues in Conducting Life<br>Cycle Assessment of Bioenergy<br>Systems                                                                   | Research<br>Center for<br>Chemistry,<br>Indonesian<br>Institute of<br>Sciences<br>(LIPI) | Indonesia          |  |
| EE 3 | Conrad Allan Jay R.<br>Pantua                                                                        | Life Cycle Assessment of Fiber<br>Reinforced Composite Materials<br>in A Solar Powered Racing Car                                           | DSLU                                                                                     | Philippines        |  |
| EE 4 | Jefry A. Torhis<br>Simanjuntak, Muhammad<br>Alfalah Fauzi                                            | Turbine Application Analysis<br>Based on Ocean Current<br>Characteristics under Suramadu<br>Bridge                                          | ITB                                                                                      | Indonesia          |  |
| EE 5 | Erna Subroto, R.<br>Manurung, H.J. Heeres,<br>A.A. Broekhuis                                         | Solvent Assisted Hydraulic<br>Pressing of Jatropha curcas<br>Kernel                                                                         | Rijks<br>Universiteit<br>Groningen                                                       | The<br>Netherlands |  |

|      | Green Technology                                         |                                                                                                                                                                                                                             |                                  |           |  |
|------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------|--|
| Code | Writers                                                  | Abstract title                                                                                                                                                                                                              | Affiliation                      | Country   |  |
| GT 1 | Aviasti                                                  | Efforts of Industrial Estate in<br>Indonesia to Create the Eco Industrial<br>Park (Case Study: Industrial Zone in<br>District of Karawang and Bekasi                                                                        | Bandung<br>Islamic<br>University | Indonesia |  |
| GT 2 | Sarah Balfas, Arief<br>Sudradjat                         | Rainfall Depth Determination for<br>Green Infrastructure Development in<br>the Context of Water Resources<br>Sustainability (Case Study:<br>Cikapundung, Cisangkuy, and<br>Ciwidey Sub Watershed)                           | ITB                              | Indonesia |  |
| GT 3 | Yanita Hanastasia<br>Sinaga, Arief<br>Sudradjat          | Initial Study on Determination of Low<br>Impact Development<br>Technology/Green Infrastructure for<br>Managing Stormwater using<br>Geographic Information System (Case<br>Study: Upstream Citarum River Basin<br>Non Urban) | ITB                              | Indonesia |  |
| GT 4 | Rachman Setiawan,<br>Adi Ekaputra, Nanang<br>Ali Sutisna | Study on Noise Behaviour of<br>Passenger Car Tyre for "Green Tyre"<br>Design                                                                                                                                                | ITB                              | Indonesia |  |

|      | Sustainable Consumption and Production                                                                                                 |                                                                                                                                                                                   |                      |           |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------|--|
| Code | Writers                                                                                                                                | Abstract title                                                                                                                                                                    | Affiliation          | Country   |  |
| SC 1 | Petchporn<br>Chawakitchareon,<br>Titima Wongaree                                                                                       | Ethanol Production from Cellulosic<br>Materials by Simultaneous<br>Saccharification and Fermentation                                                                              | CU                   | Thailand  |  |
| SC 2 | Vilandri Astarini,<br>Pingkan Aditiawati,<br>Achmad Sjarmidi                                                                           | Sustainable Production and<br>Consumption Response Healthy Sugar<br>Isomaltulose Fermented by<br>Protaminobacter rubrum in Bandung,<br>West Java                                  | ITB                  | Indonesia |  |
| SC 3 | Martha Aznury, Azis<br>Trianto, Adi Pancoro,<br>Tjandra Setiadi                                                                        | Effect of Feeding Time of Volatile<br>Fatty Acids from Palm Oil Mill<br>Effluent on Production<br>Polyhydroxyalkanoates by Ralstonia<br>eutropha JMP 134 in Batch<br>Fermentation | ITB                  | Indonesia |  |
| SC 4 | Ying-Wen Chang,<br>Ching-Hwa Lee, Ching-<br>Hua Liao, Xiang-Ren<br>Lin, Wan-Chi Chang,<br>Li-Jie Yu, Shih-Zong<br>Syu, Jain-Jhong Wong | Leaching of Scrap Silicon Wafer by<br>Nitric Acid                                                                                                                                 | Da-Yeh<br>University | Taiwan    |  |
| SC 5 | Silvi Octavia, I.D.G.<br>Arsa P., Ronny Purwadi,<br>Tatang H. Soerawidjaja                                                             | Determining the Enzyme Accessibility<br>of Pretreated Lignocellulosic<br>Substrates by Simon's Stain Method<br>Compared to Enzymatic Hydrolysis                                   | ITB                  | Indonesia |  |
| SC 6 | Supaknapar<br>Rattanagumpol and<br>Thidarat Bunsri                                                                                     | Development of Light Fermentative<br>Biohydrogen Process for Treatment of<br>Starch Wastewater                                                                                    | KMITL                | Thailand  |  |

|      | Sustainable Sanitation                                                               |                                                                                                                                      |                       |           |  |
|------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|--|
| Code | Writers                                                                              | Abstract title                                                                                                                       | Affiliation           | Country   |  |
| SS 1 | Dwipayanti N.M.U,<br>Suandi I.K.R, Akbar, S.,<br>Zonni, H.                           | The Implementation of Community<br>Led Total Sanitation in Muntigunung,<br>Tianyar Barat Village, Karangasem-<br>Bali                | Udayana<br>University | Indonesia |  |
| SS 2 | Adithyanti Febriana,<br>Prayatni Soewondo,<br>Marisa Handajani,<br>Mayrina Firdayati | Effect of Glucose Addition on<br>Lactofermentation Process in Faeces<br>Treatement Based on Terra Preta<br>Sanitation System Concept | ITB                   | Indonesia |  |

| Sustainable Waste Management |                                                                                                                                                               |                                                                                                                                                                             |                                         |             |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------|
| Code                         | Writers                                                                                                                                                       | Abstract title                                                                                                                                                              | Affiliation                             | Country     |
| SW 1                         | Vu Duc Thao, Cao Xuan<br>Mai, Vu Kiem Thuy, Ta<br>Quang Tuyen Hung                                                                                            | Testing Adsorption Capacity of<br>Rice Husk Carbon Produced by a<br>New Method                                                                                              | HUST                                    | Vietnam     |
| SW 2                         | Aye Aye Thant                                                                                                                                                 | Analysis of Solid Waste<br>Composition and Disposal Systems<br>for Mandalay City, Myanmar                                                                                   | Mandalay<br>Technological<br>University | Myanmar     |
| SW 3                         | Jonathan Rivera<br>Dungca, Faustino J.,<br>Misa J. F., Napa R. D.,<br>Ramos D.J.R                                                                             | Triaxial Shear Strength of Fly Ash<br>and Bottom Ash as Structural Fill                                                                                                     | DSLU                                    | Philippines |
| SW 4                         | Maria Antonia<br>Tanchuling, Augustus<br>Resurreccion, Leah<br>Diola, Camille Morales,<br>Adrian Patacsil, Manuel<br>Sy, Christine Razon,<br>Stephanie Bundoc | Assessing the Solid Waste<br>Management System of the<br>University of the Philippines<br>Diliman                                                                           | UP                                      | Philippines |
| SW 5                         | Le Van Khoa, Tran<br>Minh Chi, Pham Minh<br>Chi                                                                                                               | Assessment of E-Waste Collection<br>Model in Ho Chi Minh City                                                                                                               | HCMUT                                   | Vietnam     |
| SW 6                         | El Khobar M. Nazech,<br>Irma Gusniani S., Aisha<br>Sean J.                                                                                                    | Study on Soil-Compost Mixture to<br>Cover Landfill                                                                                                                          | Universitas<br>Indonesia                | Indonesia   |
| SW 7                         | Dissayapong Hoksuwan,<br>Nattawin<br>Chawaloesphonsiya,<br>Patiparn Panyapalakul,<br>Pisut Painmanakul                                                        | Effect of Various Operating<br>Conditions on Preliminary<br>Treatment of Waste Containing<br>Aluminium Dross                                                                | CU                                      | Philippines |
| SW 8                         | Reo Audi & Emenda<br>Sembiring                                                                                                                                | Effect of Provision of Shopping<br>Bag and Information on Plastic Bag<br>Waste Reduction in Bandung City                                                                    | ITB                                     | Indonesia   |
| SW 9                         | Emenda Sembiring,<br>Listra Endenta Sitorus                                                                                                                   | The Effect of Compost Application<br>on Soil Organic Carbon and CO2<br>emission                                                                                             | ITB                                     | Indonesia   |
| SW 10                        | Vivi Novianti, Devi N.<br>Choesin, Didik<br>Suprayogo, Djoko T.<br>Iskandar, Huzen<br>Suryawardana                                                            | Accelerating Primary Succession<br>on Coal Mine Overburden<br>Dumping Sites in Satui, South<br>Kalimantan, Indonesia: Plants<br>Species Selection and Growth<br>Performance | ITB                                     | Indonesia   |

|      | Peat Water Management                                    |                                                                                                                           |             |           |  |
|------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------|-----------|--|
| Code | Writers                                                  | Abstract title                                                                                                            | Affiliation | Country   |  |
| PW 1 | I Gede Wenten,<br>Khoiruddin                             | Electrodeionization (EDI): A Review                                                                                       | ITB         | Indonesia |  |
| PW 2 | Putu Teta P.A.,<br>Khoiruddin, I Gede<br>Wenten          | The Role Of Various Additives on<br>Polysulfone-Based Ultrafiltration<br>Membrane Performance for Peat Water<br>Treatment | ITB         | Indonesia |  |
| PW 3 | Khoiruddin, I. S. Yunus,<br>J. Sucipto, I Gede<br>Wenten | Application of Electrodeionization (EDI)<br>for Humic Acid Removal                                                        | ITB         | Indonesia |  |
| PW 4 | Putu Teta P.A., I Gede<br>Wenten                         | Humic Substances removal by<br>Polysulfone-Based Ultrafiltration<br>Membrane: A Review                                    | ITB         | Indonesia |  |

### Green House Gases Emission Reduction Potential through Wastewater Utilization in Bioethanol Industry

Udin Hasanudin<sup>1</sup>, Amalia Julfi R.,<sup>1</sup> Rahmawati Nurmalasari,<sup>1</sup> & Agus Haryanto<sup>2</sup>

<sup>1</sup>Department of Agroindustrial Technology, Faculty of Agriculture, University of Lampung, Jl. Sumantri Brojonegoro No. 1, Bandar Lampung (35145). Telp/Fax. 0721-700682 <sup>2</sup>Department of Agricultural Engineering, Faculty of Agriculture, University of Lampung, Jl. Sumantri Brojonegoro No. 1, Bandar Lampung (35145). Email: udinha@unila.ac.id

Abstract. Bioethanol industry was developed to support renewable energy development. In other side, bioethanol industry has also potential to emit green house gases from their wastewater. Wastewater treatment in bioethanol industry used a conventional biological anaerobic process in an open lagoon that emitted methane to the atmosphere. Methane capturing and utilization as a renewable energy reduced green house gases emission. The objective of this study was to calculate the green house gasses emission reduction from wastewater treatment in bioethanol industries using cassava and molasses as raw materials. Complete Mixed Stirrer Tank Reactors with 50-litre working volume were used to evaluate the COD removal and biogas production potential from vinasse (wastewater from molasses based bioethanol) and thinslop (wastewater from cassava-based bioethanol). The averages of COD removal were 84,55% and 74,11%, respectively for vinasse and thinslop. Biogas production potentials from vinasse and thinslop were 542,12 m<sup>3</sup>/kL ethanol and 105,86 m<sup>3</sup>/kL ethanol, respectively. Methane concentration in the biogas was practically same for both wastewaters, namely 57,34% for vinasse and 57,0% for thinslop. The biogas from vinasse and thinslop treatment potentially reduces green house gases emission about 4,19 ton CO<sub>2</sub>e/kL etanol and 0,82 ton CO<sub>2</sub>e/kL etanol, respectively. Biogas utilization to replace coal in ethanol industry reduced GHG emission into 0,213 ton CO2e/kL ethanol and minus 0,81 ton CO2e/kL ethanol for cassava-based and molassesbased, respectively.

Keywords: bioethanol wastewater, biogas, emission, methane, and green house gases.

#### 1 Introduction

According to UNFCCC (United Nations Framework Convention on Climate Change), there are six greenhouse gases (GHGs) important to be considered including carbon dioxide (CO<sub>2</sub>), dinitro oxide (N<sub>2</sub>O), methane (CH<sub>4</sub>), sulphurhexafloride (SF6), perflourocarbons (PFCs), and hydroflourocarbons (HFCs) [1]. Main source of GHG emission is fossil fuels combustion. Recently, emission of these gases is of interest due to their relation to global warming effect. Accumulation of these gases in the atmosphere acts as a green house that

is allowing short waves from solar radiation but becomes a barrier for long waves reflected from earth surfaces. As a consequence, temperature of the earth is increasing globally (just like interior temperature of a car parked in open yard at a sunny day). Therefore, emission of GHGs should be reduced.

As told by the Second National Communication [2], total GHG emission from Indonesia was 1,38 Gton CO<sub>2</sub>e and 11% from it was released from waste. Indonesia has targeted to reduce the emission by 41% with increasing CO<sub>2</sub> absorption capacity by reforestation program, deforestation reduction, peat land management, mix energy program, and waste management. The last was performed with 3R (reuse, reduce, and recycle) principle. Waste becomes important source of GHG emission because it produces CH<sub>4</sub> during its anaerobic decomposition. Global Warming Potential (GWP) or global warming index of CH<sub>4</sub> is 21 meaning that every unit of CH<sub>4</sub> will affect 21 times as much effect of CO<sub>2</sub>. Methane has contributed to GHG effect of around 15-20%. On the other side, CH<sub>4</sub> has a great economic value due to its energy value that can be used as a renewable fuel. One of important methane sources is wastewater from many agriculture-based industries, including bioethanol industry.

Bioethanol industry was developed to support renewable energy development. To produce ethanol, the industry used either cassava or molasses feedstock. Bioethanol industry has potential to emit GHG from their wastewater. Every liter of ethanol being produced, 17-25 liter of wastewater is released. Wastewater treatment using a conventional biological anaerobic process in open lagoons emits methane to the atmosphere. This becomes environment problem if wastewater is improperly treated [3]. Generally speaking, agro-based industries use a lot of water for production process and therefore they also release a lot of wastewater [4]

Wastewater from bioethanol industry has a great potential to lower environment quality and to hassle biological ecosystem. This is caused by high COD value of the wastewater. Thinslop, that is wastewater generated by cassava-based bioethanol industry, has a chemical oxygen demand (COD) of around 35.000-50.000 ppm [5]. Using molasses as raw material, bioethanol industry produces wastewater, called vinasse, having Biochemical Oxygen Demand (BOD) of around 35.000-50.000 mg/L and COD of around 100.000-150.000 mg/L [6]. High COD value of vinasse and thinslop implicate high content of organic matter in the wastewater which is good source of carbon. In the anaerobic pond, organic compound will be decomposed into  $CH_4$  and  $CO_2$  that can be recognized with the decrease in COD value of wastewater.

This research was point out to evaluate the GHG emission reduction potential of wastewater treatment while producing biogas in bioethanol industry. The

research was also intended to investigate the possibility of using biogas digester as a mean to mitigate GHG emission in bioethanol industry.

#### 2 Materials and Methods

Thinslop and vinasse were received from PT. Medco Ethanol Lampung, an ethanol producer operated at North Lampung. The wastewaters were characterized by their pH and COD (chemical oxygen demand) values. The COD measurement was based on the SNI number 06-6989.2-2004. A stainless steel vessel of 50 L capacity equipped with a stirrer was used as anaerobic reactor to study COD removal and biogas production using different substrates: thinslop and vinasse.

Sludge of wastewater as much of 14,5 L was introduced into the vessel. Adaptation stage was performed by removing 1 L of wastewater in the vessel and replacing it with a new one. This was performed daily till the pH has already stable at 6,5-7,5. Methane forming is initiated by organic acids production. The acids tend to increase acidity of the substrate (lower the pH value). Methanogenic bacteria are highly sensitive to the pH changes and the optimum pH for the growth of methanogenic bacteria is aroud 6-8 [7]. For experiment using vinasse substrate, COD load was 2,0 g/L per day. However, to avoid shocks, the addition of wastewater was started from COD load of 0,5 g/L per day for a week and increased by 0,5 increment each week till COD load was 2,0 g/L per day. From this time forward, new substrate was added at an equal quantity to the substrate removing from the reactor. Similar experiment was performed using thinslop substrate.

Temperature of anaerobic process was measured daily. The same was done for pH measurement of spent sludge. COD measurement of spent substrate was done every another day. Gas analysis was performed every week. Methane fraction in the biogas analyzed using gas chromatograph (GC Shimadzu 2014) with TCD detector and Shincarbon column (ST 50-80 D-1794). Biogas production was estimated from methane fraction [CH<sub>4</sub>] using the following equation:

$$Biogas = \frac{0.35 \times COD_{r}}{[CH_{4}]}$$
(1)

where biogas production was presented in  $m^3$ , COD<sub>r</sub> is COD removal; 0,35 is a conversion factor of CH<sub>4</sub> yield ( $m^3$ ) per kg of COD removal [8].

Green house gas reduction potential (REP) of  $CH_4$  was calculated as the following:

$$REP = BP - PE$$
(2)

where BP is baseline emission, that is emission value without utilization, and PE is project emission, that is emission value with utilization. Baseline emission (in  $CO_2e$ ) is equivalent to emission potential of  $CH_4$ . The value of PE was calculated assuming that emission during anaerobic digester project is 10% [1].

#### **3** Results and Discussion

Table 1 showed wastewater characteristic using in our experiment. Even though there was no significant difference of pH value, a big different of COD value of the substrates was observed. Vinasse had a COD value of 105.000 mg/L, much higher as compared to 28.233 mg/L for thinslop. This implicated a high content of organic matter in the vinasse.

 Table 1
 Wastewater characteristic based on feedstock type used in bioethanol industry.

| Feedstock (Wastewater) | pН        | COD (mg/L) |
|------------------------|-----------|------------|
| Cassava (Thinslop)     | 4,30-4,80 | 28.233     |
| Molasses (Vinasse)     | 4,99-5,00 | 105.000    |

During experiment it was observed that outlet temperature was 28,5  $^{\circ}$ C and outlet pH was 7,53 using thinslop substrate. Using vinasse substrate, outlet temperature was 27  $^{\circ}$ C and outlet pH was 7,60. This condition was favorable for methanogenic bacteria which grow up best in the range of 25-40  $^{\circ}$ C and pH of 7-8.

Figure 1 showed the COD value of inlet and outlet of wastewater, both for thinslop and vinasse. Whilst, Figure 2 revealed COD load and COD removal during experiment, both using thinslop and vinasse. Chemical oxygen demand is defined as a quantity of oxygen required in order organic matter in the wastewater is oxidized chemically. The main products of fermentation process (acetate, hydrogen, and carbon dioxide) are precursor for methane formation. Vinasse was thicker with COD value of much higher than thinslop and therefore is more difficult to decompose. The COD outlet vinasse substrate was relatively high, 36.883 mg/L. At COD load of 2 g/L.day, average COD removal for vinasse was 1,48 g/L.day or 74,11%. High content of organic matter decreased the effectiveness of microorganism to degrade organic compound in the wastewater. On the contrary, COD value for thinslop outlet was 4.362 mg/L.

Average COD removal for thinslop substrate was 0,596 g/L.day or 84,55% at COD load of 0,706 g/L.day. The different of COD removal was also influenced by COD load. High COD value combined with high COD load of vinasse has resulted in a slightly lower COD removal as compared to those of thinslop. In both cases, optimum condition for anaerobic fermentation was achieved.

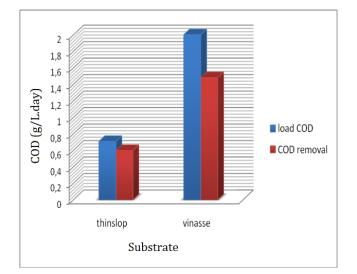



Figure 1 COD load and COD removal (g/L.day) for thinslop (0,706 and 0,596) and vinasse (2,00 and 1,48).

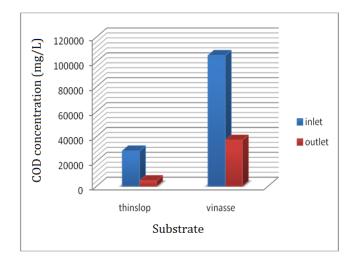



Figure 2 Average COD value (mg/L) of thinslop and vinasse at the inlet and outlet of wastewater treatment.

#### 3.1 Emission Reduction Potential

Emission reduction potential was calculated based on bioethanol industry working at a capacity of 180 KLPD (kilo liter per day) of ethanol. This industry may use cassava tuber at a rate of 1.200 ton/day or molasses, by product from sugar industry, at a rate of 700 ton/day [5]. It was observed that producing 1 kL ethanol required 6,48 ton of cassava tuber with 7,22 m<sup>3</sup> thinslop, or 3,89 ton of molasses with 11,40 m<sup>3</sup> vinasse. Table 2 demonstrated emission potential at bioethanol industry based on feedstock used. The first choice will generate 1.300 m<sup>3</sup> thinslop daily with COD load of 36.703 kg/day. Using COD removal of 84,4% and a factor of 0,35 m<sup>3</sup> CH<sub>4</sub> per kg COD removal, this thinslop is possible to produce CH<sub>4</sub> at a rate of 10.861 m<sup>3</sup>/day or 60,34 m<sup>3</sup>/kL of ethanol. The second option generates 2.053 m<sup>3</sup> vinasse with COD load of 215.565 kg/day having potential to produce CH<sub>4</sub> at a rate of 55.914 m<sup>3</sup>/day or 105,86 m<sup>3</sup>/kL of ethanol.

Table 2Calculation for emission potential from thinslop and vinasse treatment<br/>at a bioethanol industry with capacity of 180 KLPD.

| Description                                                            | Unit                                                | Type of w | astewater |
|------------------------------------------------------------------------|-----------------------------------------------------|-----------|-----------|
| Description                                                            | Unit                                                | Thinslop  | Vinasse   |
| Raw material (feedstock)                                               |                                                     | Cassava   | Molasses  |
| Flow rate                                                              | m <sup>3</sup> /day                                 | 1.300     | 2.053     |
| COD input                                                              | g/L                                                 | 28,23     | 105,00    |
| COD load                                                               | kg/day                                              | 36.703    | 215.565   |
| COD removal (COD <sub>r</sub> )                                        | %                                                   | 84,55     | 74,11     |
|                                                                        | kg/day                                              | 31.032    | 159.755   |
| Conversion factor of COD <sub>r</sub> to CH <sub>4</sub> <sup>d)</sup> | m <sup>3</sup> CH <sub>4</sub> /kg COD <sub>r</sub> | 0,35      | 0,35      |
| CH <sub>4</sub> potential                                              | m <sup>3</sup> /day                                 | 10.861    | 55.914    |
|                                                                        | m <sup>3</sup> /kL ethanol                          | 60,34     | 310,63    |
| CH <sub>4</sub> consentration                                          | %                                                   | 57,00     | 57,34     |
| Biogas potential                                                       | Nm <sup>3</sup> /day                                | 19.055    | 97.582    |
|                                                                        | Nm <sup>3</sup> /kL ethanol                         | 105,86    | 542,12    |
| CH <sub>4</sub> mass rate                                              | ton/day                                             | 7,76      | 39,94     |
| $GWP CH_4^{(e)}$                                                       |                                                     | 21,00     | 21,00     |
| Emission potential of CH <sub>4</sub> (BE)                             | ton CO <sub>2</sub> e/day                           | 162,96    | 838,74    |
|                                                                        | ton CO <sub>2</sub> e/kL ethanol                    | 0,91      | 4,66      |
| Emission project (PE)                                                  | %                                                   | 10        | 10        |
| Reduction emission potential (REP)                                     | ton CO <sub>2</sub> e/day                           | 146,63    | 759,95    |
|                                                                        | ton CO2e/kL ethanol                                 | 0,82      | 4,19      |

It was observed that methane concentration was almost same for both substrates, specifically 57% using thinslop and 57,34% using vinasse. This meant that equivalent biogas potentially produced from thinslop and vinasse was respectively 19.055 and 97.582  $\text{m}^3$ /day. Our calculation resulted that

GHG emission potential from thinslop and vinasse was 0,91 ton  $CO_2e/kL$  ethanol and 4,66 ton  $CO_2e/kL$  ethanol, respectively. It was surmised that producing bioethanol from molasses potentially emit GHG 5,14 times as much of those from cassava (Figure 3).

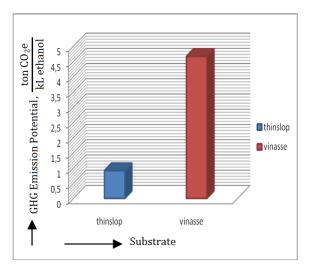



Figure 3 GHG potential emission (ton  $CO_2e/kL$  ethanol) from thinslop and vinasse treatment.

Project emission for anaerobic digester was assumed to be 10% [1]. Based on this assumption, proper thinslop treatment is capable to reduce GHG emission by 146,63 ton  $CO_2e/day$  or 0,82 ton  $CO_2e/kL$  ethanol in the cassava-based bioethanol industry with a capacity of 180 KLPD. Similarly, vinasse management is potentially reduce GHG emission by 759,95 ton  $CO_2e/day$  or 4,19 ton  $CO_2e/kL$  ethanol for molasses-based bioethanol industry. It is concluded that wastewater management is significant to reduce GHG emission.

#### 3.2 GHG Emission Reduction in Bioethanol Industry

Generally, bioethanol industry uses coal to generate electricity required in production process. Our observation noted that cassava-based bioethanol industry with 180 KLPD capacity required 3,1 MW electricity power. According to West and Marland [9], emission factor for coal-bsed power plant was 0,282 kg C/kWh or 1,034 kg CO<sub>2</sub>e/kWh. Thus, GHG from cassava-based ethanol industry was 76,93 ton CO<sub>2</sub>e/day or 0,427 ton CO<sub>2</sub>e/kL etanol. One way to reduce GHG emission is treating wastewater to produce biogas and subsequently utilize the biogas as fuel to generate electricity. Based on

calculation presented in Table 2, biogas from thinslop treatment was expected to replace coal of about 50% at a conversion efficiency of 35%. This meant GHG emission can be reduced to 38,46 ton  $CO_2e/day$  or 0,213 ton  $CO_2e/kL$  ethanol.

Producing ethanol from molasses required little lower energy, that was 2,1 MW for the same capacity. Similar calculation was performed for molasses-based ethanol industry. The results revealed that GHG emission was 52,10 ton  $CO_2e/day$  or 0,289 ton  $CO_2e/kL$  ethanol. The biogas potential from vinase, however, was higher and able to excess power of 5,87 MW. Hence, the utilization of biogas in the industry can entirely replace coal. The excess power potentially reduce GHG emission into minus 145,70 ton  $CO_2e/day$  or minus 0,81 ton  $CO_2e/kL$  ethanol (Figure 4).

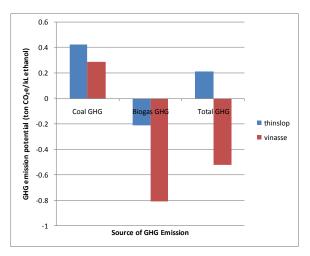



Figure 4 GHG emission comparison between cassava- and molasses-based ethanol industry.

Molasses-based ethanol industry required less power for production process than that of cassava-based one. Furthermore, utilization of vinasse to produce biogas had a great potential as renewable fuel and for reducing GHG emission. From this point of view, molasses-based ethanol industry was more attractive than cassava-based one.

#### 4 Conclusion

1. GHG emission potential from wastewater treatment in bioethanol industry was 4,19 ton  $CO_2e/kL$  ethanol with molasses feedstock and 0,82 ton  $CO_2e/kL$  ethanol with cassava feedstock.

2. Wastewater utilization to produce biogas as renewable fuel to replace coal in ethanol industry reduced GHG emission into 0,213 ton  $CO_2e/kL$  ethanol and minus 0,81 ton  $CO_2e/kL$  ethanol for cassava-based and molasses-based, respectively.

#### 5 Acknowledgements

First author thanked to PT. Medco Ethanol Lampung who provided valuable data.

#### 6 References

- [1] IPCC (The United Nations Framework Convention on Climate Change). 2006 IPCC Guidelines for national Greenhouse gas inventories. 2006.
- [2] UNFCCC. Indonesia Second National Communication. 29 August 2012. <u>http://forestclimatecenter.org/files/2009-11-14%20SNC%20-%20Indonesia%20Second%20National%20Communication%20un der%20The%20UNFCCC%20(Summary%20for%20Policy%20Ma kers).pdf.</u>
- [3] Meilany, D. and Setiadi, T. *Pengaruh pH Pada Produksi Asam Organik Volatil dari Stillage Bioetanol Ubi Kayu Secara Anaerobik.* Prosiding Seminar National Rekayasa Kimia dan Proses, Universitas Diponegoro, Semarang. 2008.
- [4] Kementrian Negara Lingkungan Hidup Republik Indonesia. Pedoman Pengelolaan Limbah Industri Pengolahan Tapioka. Kementrian Negara Lingkungan Hidup Republik Indonesia. Jakarta. 45 pages. 2009.
- [5] Medco Energy Chemicals. *Process Overview Multi Feedstock Ethanol Plant 190 KLPD.* 29 Halaman. 2007.
- [6] Kuiper, L., Burcu, E., Carlo, H., Willem, H., Sebastian, M. & Klass, K. *Bioethanol from Cassava*. Ecofys. 38 pages. 2007.
- [7] Savant, D.V., Shounce, Y.S. & Prakash, S. Methanobrevibacter acididurans sp. Nov., a novel methanogen from a sour anaerobic digester. International Journal of Systematic and Evolutionary Microbiology, 52, pp. 1081–1087, 2002.
- [8] Metcalf & Eddy Inc, Tchobanoglous, G., Burton, F.L. & Stensel, H.D. Wastewater Engineering: Treatment and Reuse (4<sup>th</sup> ed.). McGraw Hill Co. 1819 pages. 2003.

[9] West, T.O. & Maryland, G. A Synthesis Of Carbon Sequestration, Carbon Emissions, and Net Carbon Flux in Agriculture: Comparing Tillage Practices in the United States. Agriculture, Ecosystems and Environment, **91**. pp. 217–232, 2002.