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Abstract: The locating-chromatic number of a graph combines two graph concepts, namely coloring
vertices and partition dimension of a graph. The locating-chromatic number is the smallest k such
that G has a locating k-coloring, denoted by x1.(G). This article proposes a procedure for obtaining a
locating-chromatic number for an origami graph and its subdivision (one vertex on an outer edge)
through two theorems with proofs.

Keywords: locating-chromatic number; origami graphs; subdivision

MSC: 05C12; 05C15

check for 1. Introduction
dat . . . .
upcates The study of the partition dimension of connected graphs was introduced by
Citation: Irawan, A.; Asmiati, Chartrand et al. [1,2] with the aim of finding a new method for attacking the problem
Zakaria, L.; Muludi, K. The of determining the metric dimension in graphs. The application of these metric dimen-
Locating-Chromatic Number of sions can be seen in the navigation of a robot modeled by a graph [3,4], solving the problem

Origami Graphs. Algorithms 2021, 14,
167. https://doi.org/10.3390/
al14060167

of chemical data classification, and determining how to represent a set of chemical com-
pounds in such a way that different compounds have different representations [5,6]. The
concept of the locating-chromatic number was first introduced by Chartrand et al. in 2002,
with two obtained graph concepts, namely coloring vertices and partition dimensions of a
graph [7]. Finding the locating-chromatic number of a graph is one of the interesting (and
un-completely solved) problems of graph theory. Let G = (V, E) be a connected graph; the
distance d(x, y) between two of its vertices x and y is the length of the shortest path between
them. Let ¢ be a proper k-coloring of G with color {1,2,...,k}, and IT = {Cy,Cy, ..., Ci}
be a partition of V(G) that is induced by the coloring c. The color code cry(v) of v is the
ordered k-tuple (d(v,Cy),d(v,Cp), ...,d(v,Cy))), where d(v,C;) = min {d(v,x) : x € C;}
forany i € {1,2,3,...,k}. If all distinct vertices of G have distinct color codes, then c is
called a k-locating coloring of G. The locating-chromatic number denoted by x1 (G) is the
smallest k such that G has a locating k-coloring. Let ¢ be a locating k-coloring on graph
G(V,E). Furthermore, the locating-chromatic number has been determined for a few graph
classes; for example, if P, is a path of order n > 3 then the locating-chromatic number is
3; for a cycle Cy, if n > 31is odd, x.(C,) = 3 was obtained, and if n is even, x; (C,) = 4
was obtained; for a double star graph (S,;),1 <a <band b > 2, x1.(S;) = b+ 1 was
obtained. Let IT = {51, Sy, ..., S¢ } be the partition of V(G) induced by c. A vertex v € G is
called a dominant vertex if d(v,S;) = 1, where v ¢ S;. Chartrand et al. characterized all
graphs of order n with the locating-chromatic number n — 1 [8].

conditions of the Creative Commons The problem of determining the locating-chromatic number of any general graph is
Attribution (CC BY) license (https:// ~an NP-hard problem [9]. This means that to determine the locating-chromatic number of
creativecommons.org/ licenses /by / any given graph, we need a specific algorithm. In 2012, Baskoro and Purwasih proposed a
40/). procedure to obtain the locating-chromatic number of corona products of two graphs [9]. In
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2014, Asmiati obtained the locating-chromatic number of a non-homogeneous amalgamation
of stars [10]. Moreover, to determine the locating-chromatic number of disconnected graphs,
graphs with dominant vertices and graphs of two components have been discussed in [11-13].
In 2019, the characterization of the locating chromatic number of powers of paths and a
condition (sharp upper and lower bounds) for the locating chromatic number of powers of
cycles were discussed [14] (see [15] for a discussion of the necessary and sufficient conditions
for a pair of two specific start graphs to be an odd mean graph). Asmiati et al. determined
the locating-chromatic number of some Petersen graphs; P(n,1) four for odd n > 3 or five
for even n > 4 were obtained [16], and in [17] results were obtained for certain barbell graphs.
Syofyan et al. have succeed in determined the locating-chromatic number of homogeneous
lobsters [18]. In [19], Asmiati obtained the locating-chromatic number for non-homogeneous
caterpillar graphs and non-homogeneous firecracker graphs. Next, Irawan and Asmiati in
2018 determined the locating-chromatic number of subdivision firecrackers graphs [20] and
in [21] obtained the certain operation of generalized Petersen graphs sP(#,1). In 2014, Behtoei
and Anbarloei determined the locating-chromatic number of the joining of two arbitrary
graphs [22]. In addition to that, in this article we propose a procedure for obtaining the
locating-chromatic number for an origami graph and its subdivision (one vertex on an outer
edge). The following definition of an origami graph is taken from [23]. Let n € N with n > 3.
An origami graph O,, is a graph with V(O,,) = {u;,v;,w; : i € {1,..,n}} and E(O,) =
{ujw;, uv;, viw; i € {1,...,n}}y U{uwuiq, winiq i € {1,..,n—1}} U{uyug, wyug } (see
Figure 1 for an example). Meanwhile, a subdivision of an origami graph O;; is a graph with
V(O;,) = {uj,vi, xj,w; i € {1,..,n}} and E(O},) = {ujw;, ujv;, vix;, xjw; =i € {1,..,n}}U
{uui, wiuiq i€ {1,...,n—1}} U{uyuy, wyuq }} (see Figure 2 for an example).

1Aws vya2

Figure 2. A subdivision of an origami graph O3.
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2. Results and Discussions

Let ¢ be a locating coloring in a connected graph G and N(g) denote the set of neighbor
of a vertex g in G. If p and g are distinct vertices of G such that d(p,w) = d(q, w) for all
w € V(G) —{p,q}, then ¢(p) # c(q). In particular, if p and g are non-adjacent vertices
such that N(p) = N(q), then ¢(p) # ¢(q) [7].

In the following subsection, the locating-chromatic number of origami graphs O,, and
their subdivisions called O}, is described.

2.1. Locating-Chromatic Number of Origami Graphs
Theorem 1. Let Oy, be an origami graph for n > 3. Then, the locating-chromatic number of Oy,

4, forn=3
O =
X1(On) {5, otherwise .

Proof. Let n € N with n > 3. An origami graph O, is a graph with V(O,,) = {u;, v;, w; :
i € {l,.,n}} and E(Oy) = {ww;,uv;,v;w; : i € {1,.,n}} U {uuiq, wiuiq @i €
{1,..,n —1}} U {uuuy, wyus }. Next, to prove the theorem, we consider the following
two cases:

Case 1. x (03) =4

First, we determine the lower bound of x1(O3). In the origami graphs O, forn > 3,
there are three adjacent vertices (complete graph with three vertices, denoted by K3); we
then need at least 3-locating coloring. Without loss of generality, we assign three colors for
any Ks in Oy, for n > 3, and then the three vertices are dominant vertices. As a result, if
we use three colors it is not enough because there are more than one K3 in O, for n > 3.
Therefore, x1.(03) > 4.

Next, we determine the upper bound of x1(O3) < 4. To show that 4 is an upper
bound for the locating-chromatic number for the origami graph O3 we describe a locating
coloring c using four colors as follows:

c(u;)) =14,i=1,2,3.

2, fori=1,3
c(vj) = :

3, fori=2.
c(wj) =4,i=1,2,3.

The coloring ¢ will create the partition IT on V(O3). We shall show that the color codes
of all vertices in O3 are different. We have: cry(u1) = (0,1,1,1); err(u2) = (1,0,1,1);
cri(us) = (1,1,0,1); crn(vr) = (1,0,2,1); erp(vz2) = (2,1,0,1); crr(vs) = (2,0,1,1);
cri(wr) = (1,1,2,0); crn(wz) = (2,1,1,0); err(ws) = (1,1,1,0). Since the color codes
of all vertices O3 are different, c is a locating-chromatic coloring. Thus, x1.(03) < 4.

Case 2. x1.(0,) =5, forn > 4

To determine the lower bound, we will show that four colors are not enough. For
a contradiction, assume that there exists a 4-locating coloring ¢ on O, for n > 4. We
assign {c(u;), c(v;), c(w;), c(uir1)} = {1,2,3,4}, where c¢(v;) # c(u;1) because d(v;, x) =
d(ujyq,x), x € {u;,v;}. Observe that, on O, for n > 4, there are n vertices u; whose degree
is 5. As a result, at least two vertices wy, w;, k # | have the same color codes, which is a
contradiction. Therefore, x1 (O;) > 5, forn > 4.

To show the upper bound for the locating-chromatic number of origami graphs O, for
n > 4, let us differentiate some subcases.

Subcase 1. (Odd n), for [§] odd, n > 5

Let ¢ be a coloring of origami graph Oy, [%] odd, and n > 5; we make the partition IT
of V(Oy):

C1 = {w,-|1 < 1 < n};

Co ={u;|forodd i,3 <i<n}U{vforeveni,2 <i<n-—1};
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Cs = {uj| foreveni,2 <i < [4] —1} U {u;| foreveni, [§] +3 <i < n—1} U {v;] for
oddi, 1 <i<n};

Cy={m};

Co = g1k

For [ 4] odd, the color codes of all the vertices of V(O,) are:
C1 = {wl-|1 < 1 < 1’1}.
Fori =1, we have:

eri(wi) = (0,2,1,4, [5] —i+1).
For2 <i < [5],n > 5 we have:
er(wi) = (0,1,1,4, [5] —i+1).
Fori = [5] 41 we have:
cri(wi) = (0,1,2,n—i+1,i—[§]).
For {%1 +2<i<mn,n>>5wehave:

cr(wi) = (0,1,1,n—i+1,i—[§]).

Cy ={uj|forodd i,3 <i<n}U{v;|foreveni,2 <i<n-—1}.
Foriodd,3 <i < [4],n > 5wehave:

eri(ui) = (1,0,1,i =1, [5] —i+1).
Foriodd, [§]+2 <i<n,n>5wehave:
er(ui) = (1,0,L,n—i+1,i—[5] —1).
Forieven,2 <i< [4]|—1,1n> 5wehave:
cri(on) = (1,0,1,1,[4] — 1 +2).
Fori= (%W + 1, we have:
cri(v) =(1,0,3,n —i+2,1).
For i even, {%1 +3<i<n-—1,n>9wehave:
crr(v) = (L,0,,n—i+2,i— [5]).

Cs = {uj| foreveni,2 <i < [5] =1} U {u;| foreveni, [5]| +3 <i < n—1} U {v; for
oddi,1<i<n).
Fori =1, we have:

eri(vi) = (1,2,0,4, [ 5]).
Foriodd,3 <i < [4],n > 5wehave:
(o) = (1,1,0,4, [4] —i+2).

For i odd, {%1 +2<i<mn,n>9wehave:

er(vi) = (1,1,0,n—i+2,i— [5]).
Forieven,2 <i< [%w —1,n > 5 we have:

eri(ui) = (1,1,0,i =1, [5] —i+1).
For i even, {%1 +3<i<n-—1,n>9wehave:

() = (1,1,0n—i+1,i— [4] —1).
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For Cy = {u;}, we have:

Cn(ul) = (1,1,1,0, (%W — 1).

For Cs = {u[%] L1}, we have:

CH(M[%'|+1) = (1,1,2, [%-‘ —1,0).

Since for n odd all vertices have different color codes, c is a locating coloring of origami
graphs Oy, so that x1.(O,) < 5, for [§] odd, n > 5.

Subcase 2. (Odd n), for [5] even, n > 7.

Let c be a coloring of origami graph O,,, (%W even, and n > 7; we make the partition I of
V(Oy,) as follows:

C1 =A{wi|1 <i<n};

Co ={u;|forodd i,3 <i<n}U({vforeveni,2 <i<n-—1};

Cs = {uj| foreveni,2 <i < [5] —2} U {u;| foreveni, [§]| +2 <i<n—1} U {v;] for
oddi,1<i<n};

Cp={m};

Cs = Hupyh

For [ 4] even, the color codes of all the vertices of V(O,) are:
C1 = {wl-|1 < 1 < 1’1}.
Fori =1, we have:

crr(wi) = (0,2,1,4, [4] — ).
For2 <i < [5] —1,1n > 7 wehave:
eri(wi) = (0,1,1,4, [ 5] — ).
Fori = [%], we have:
err(wi) = (0,1,2,n—i+1,i— [§]+1).
For {%1 +1<i<mn,n>7wehave:

er(wi) = (0,1, 1,n—i+1,i—[§]+1).

Cy ={uj|forodd i,3 <i<n}U{v;|foreveni,2 <i<n-—1}.
Foriodd,3 <i < [4]—1,n>7wehave:

ern(ui) = (1,0,1,i =1, [5] —i).

Foriodd, [§]+1<i<n,n>7wehave:
err(ui) = (1,0,1,n—i+1,i—[5]).

Forieven,2 <i< [4]|—2,n>7wehave:

ern(vi) = (1,0,1,4, [5] —i+1).
Fori = (%W,we have:

(o) = (1,0,3,4,i— [5] +1).
For i even, {%1 +3<i<n-—1,n>7wehave:

er(vi) = (L,0,L,n—i+2,i— [5] +1).
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Cs = {u;| foreveni,2 <i < [4] —2} U {u;| foreveni, [4]| +2 <i<n—1} U {v] for
oddi,1<i<n).
For i = 1 we have:

(o) = (1,2,0,4, [4] —i+1).
Foriodd,3 <i < [4]—1,n>7wehave:

er(vi) = (1,1,0,4, [5] —i+1).
For i odd, {%1 +1<i<mn,n>7wehave:

er(v) = (L,L,0,nm—i+2,i— [5] +1).

Forieven,2 <i< [4]|—2,n>7wehave:

er(ui) = (1,1,0,i — 1, [ 3] — ).
Forieven, [5]+2<i<n,n>7wehave:

err(ui) = (1,1,0,n—i+1,i— [5]).

Cy = {u1}, we have:
Cn(lll) = (1, 1,1,0, ’V%-‘ - 1)

Cs = {u[ﬂ }, we have:

CH(M[%‘I) = (1,1,2, {%-I — 1,0).

Since for n odd all vertices have different color codes, c is a locating coloring of origami
graphs Oy, so that x1,(O,) <5, for [§] even, n > 7.

Subcase 3. (even n), for 5 odd, n > 6.

Let c be a coloring of origami graph O;, 5 odd, and n > 6; we make the partition IT of
V(On):

C :{wi|1 <i< %—1}U{w,‘|%+1 Sigi’l},‘

Cy ={uj|lforoddi,3<i<n—1}U{v;| foreveni,2 <i<n};

Cs = {u;| foreveni,2 <i<n}U{v;|foroddi, 1 <i<n-—1};

Cy=A{m};

C5 = {w%}

For % odd, the color codes of all the vertices of V(O,) are:
C :{wi|1 <i< %—1}U{wi|%+1 §z§n}
Fori =1, we have:

cri(wi) = (0,2,1,1,5 —i+1).
For2 <i< % —1,n> 6 wehave:

cr(wi) = (0,1,1,4, 5 —i+1).
For 7 +1<i <n,n> 6wehave:

cri(wi) = (0,1, L,n—i+1,i—5 +1).

Co ={u;|foroddi,3 <i<n—1}U {v;| foreveni,2 <i<n}.
Foriodd,3 <i < Z,n > 6 we have:

Cn(ui) = (1,0,1,i—1,% —i+1).
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Foriodd, 5 +2<i<n—1,n> 6 wehave:
cri(ui) = (1,0,1,n—i+1,i—%).
Forieven,2 <i< % —1,n > 6 we have:
cri(vi) = (1,0,1,4,5 —i+2).
Forieven, 5 +1<i<n—1,1n>6wehave:

cri(v;) = (1,0,1L,n —i42,i— 5 +1).

Cs = {u;| foreveni,2 <i<n} U {v;| foroddi, 1 <i<n-—1}.
Fori =1, we have:

cri(vi) = (1,3,0,4, 5 —i+2).
Foriodd,3 <i< % —2,n > 10 we have:
cri(vi) = (1,1,0,4, 5 —i+2)
Fori = 7, we have:
cri(v;) =(2,1,0,4,1).
Foriodd, 5 +2<i<n—1,n> 6 wehave:
cri(vi) = (1,1,0,n —i42,i — 5 +1).
Forieven,2 <i< % —1,n > 6 we have:
eri(ui) = (1,1,0,i =1, % —i+1).
Forieven, 5 +1<1i<mn,n > 6wehave:
cri(ui) = (1,1,0n—i+1,i—%).
For Cy = {u;}, we have:
cr(ug) = (1,2,1,0,5 —i+1).
For C5 = {w% }, we have:
en(wy) = (2,1,1,5,0).
Since for n even all vertices have different color codes, c is a locating coloring of

origami graphs Oy, so that x1(0,) < 5, for 5 odd, n > 6.

Subcase 4. (even n), for 5 even, n > 4.

Let c be a coloring of origami graph O, 5 even, and n > 4; we make the partition IT of
V(Oy) as follows:

G ={will<i<z}U{wiz+2<i<n};

Co ={u;|foroddi,3 <i<n—1} U {v;| foreveni,2 <i<mn};

Cs = {u;|foreveni,2 <i<n}U{v;|foroddi, 1 <i<n-—1};

Cyo=A{m};

Cs ={wy 1}

For 4 even, the color codes of all the vertices of V(O,,) are:
C = {w,-|1 <i< %}U{wi‘%+2 <i< 1’1}.
For i = 1 we have:

Cn(wi) = (0,2,1,i,% —i+2).
For2 <i< % n>4wehave:

> 3y
cr(wi) = (0,1,1,i, 5 —i+2).
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For 7 +2 <i <n,n > 4wehave:

en(wi) = (0,1, 1,n—i+1,i—1).

Cy ={u;|foroddi,3<i<n—1}U{v;| foreveni,2 <i<n}.
Foriodd,3 <i< 7 +1,n > 8 we have:

cri(ui) = (1,0,1,i =1, % —i+2).
Foriodd, 4 +3 <i<n—1,n> 8wehave:
eri(u) = (1,0,1,n —i+1,i— 2 —1).
Forieven,2 <i < 7,n >4 we have:
cri(vi) = (1,0,1,4, % —i+3).
Forieven, 5 +2 <i<mn,n > 8 we have:

ern(v) = (1,0, 1,n—i+2,i—1).

Cs = {u;| foreveni,2 <i<n}U{v;| foroddi, 1 <i<n-—1}
Fori =1, we have:

cri(v;) = (1,3,0,1, 5 +1).

Foriodd,3 <i< 7 —1,n > 8 we have:
cri(vi) = (1,1,0,4, % —i+3).
Fori = 5 +1, we have:
cri(v;) = (2,1,0,4,1).
Foriodd, 4 +3 <i<n—1,n> 8wehave:
cri(v;) = (1,1,0,n —i+2,i— 7).

Forieven,2 <i < 7,n >4 we have:

cri(ui) = (1,1,0,i — 1, %).
Forieven, 5 +2 <i < mn,n > 8 we have:

eri(u) = (1L,1,0,n—i+1,i— 5 —1).

For Cy = {u;}, we have:

er(ur) = (1,2,1,0,%).

For C5 = {w% }, we have:
Cn(w%) = (2,1,1, %,0).

Since for n even all vertices have different color codes, c is a locating coloring of
origami graphs Oy, so that x1(O,) < 5, for % even, n > 4. this completes the proof of
Theorem 1. O

Note that Figure 1 is an example locating coloring for origami graph Os.
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2.2. Locating-Chromatic Number for Subdivision Outer Edge of Origami Graphs

Theorem 2. Let O}, be a subdivision outer edge of origami graphs for n > 3. Then the locating-

4, =3

chromatic number of O}, x1(0}) = forn ,
5, otherwise .

Proof. Let O}, n > 3 be a subdivision of an origami graph; O}, is a graph with V(O},) =

{uj,vi,x;,w; : i € {1,..,n}} and E(O}) = {ww; uv;,vix;, x;w; : i € {1,.,n}} U

{ujujp, w2 i € {1,...,n—1}} U {upuy, wyuq }}. Next, to prove the theorem, we

consider the following two cases:

Case A. x1.(03) =4
First, we determine the lower bound of x1 (O3).

Without loss of generality, we assign A = {c(u;), c(v;), c(x;), c(w;), c(uiv1)} = {1,2,3}.
Then, there are three dominant vertices in A, while we still have vertices on other A that
must be colored. As a result, there will be two vertices with the same color codes. Thus,
x1(03) > 4

Next, we determine the upper bound of x1(0}) < 4. To show that 4 is an upper
bound for the locating-chromatic number for a subdivision outer edge of origami graph
O3, we describe a locating coloring c using four colors as follows:

c(u;)) =14,i=1,2,3.

2, fori=1,3
c(v;) = .
3, fori=2.

c(w;) =4,i=1,2,3.
c(x;)=1i,i=1,2,3.

The coloring ¢ will create the partition IT on V(O3). We shall show that the color codes
of all vertices in Oj are different. We have: cry(u1) = (0,1,1,1); cri(u2) = (1,0,1,1);
CH(LI:J,) = (1,1,0,1),‘ CH(ZJl) = (1,0,2,2),’ CH(Uz) = (2,1,0,2),‘ 611(03) = (2,0,1,2),’
Cn(wl) = (1,1,2,0),‘ CH(ZUz) = (2,1,1,0); CH(ZU3) = (1,2,1,0). Cn(xl) = (0,1,3,1),‘
cri(x2) = (3,0,1,1); crr(x3) = (2,1,0,1). Since the color codes of all vertices O are
different, c is a locating-chromatic coloring. Thus, XL(O;) <4.

Case B. x1.(O;) =5forn >4
Since a subdivision of origami graphs O;, for n > 4 is obtained by origami graph O,, with
one added vertex in edge v;w;, we have x1(O};) > 5 for n > 4. The addition of one vertex
on the outside does not reduce the number of colors needed because the number of the sets
B = {c(u;),c(v;),c(w;), c(u;y1)} is the same.

To show the upper bound for the locating-chromatic number for a subdivision outer
edge of origami graph Oj, for n > 4, let us consider different subcases.

Subcase a. (odd n), for [§] odd, n > 5.

Let ¢ be a coloring for a subdivision outer edge of origami graph Oj;, for [5] odd, and
n > 5; we make the partition IT of V(O;;):

C1 =A{wi|l1 <i<n};

Cy ={u;|foroddi,3 <i<n}U{vforeveni,2 <i<n-—1}U{x;|foroddi,1<i<mn};
Cs = {u;| foreveni,2 <i < [4] —1} U {u;| foreveni, [§]| +3 <i < n—1} U {v;] for
oddi, 1 <i<n}U({x foreveni,2 <i<n-—1};

Ca={m};

G = tupg1al

For for [ 4| odd the color codes of all the vertices of V(O;;) are:
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0, for the second component, odd 7,3 <i <n,n>5
for the third component, even,2 <i < [§] —1,n >5
for the third component, even i, (%W +3<i<n—1,n>9
for the fourth component, i =1
for the fifth component, i = [5] +1

era(y) = 2, for the third component, i = [ 5] + 1

i—1, for the fourth component, 2 <i < [4],n >5

n—i+1 for the fourth component, [%W +1<i<n,n>5

(5] —1, for the fifth component, i = 1

i—[%]—1, forthefifth component, [4]+1<i<nn>5

[3] —i+1, for the fifth component,2 <i < [5],n>5

1, otherwise .

2, for the first component, 1 <i <mn,n >5

0, for the second component, odd 7,1 <i <n,n >5
for the third component, eveni,2 <i<n—-1,n1n>5

i for the fourth component, 1 <i < [5],n >5

cri(v) =<¢n—i+2, for the fourth component, (%W +1<i<nn>5

(5], for the fifth component, i = 1

[4] —i+2, for the fifth component,2 <i < [§],n>5

i—[%], for the fifth component, [5| +1<i<n,n>5

1, otherwise .

0, for the first component, 1 <i <mn,n >5

2, for the third component, i = [5] andi=n

[4] —i+1, for the fifth component, 1 <i < [4],n>5
cr(wi) = qi—[5], for the fifth component, [4] +1<i<n,n>5

i for the fourth component, 1 <i < [4]|,n >5

n—i+1, for the fourth component, 5| +1<i<n,n>5

1, otherwise .

0, for the second component, odd 7,1 <i <n,n>5
for the third component, eveni,2 <i<n—-1,n>5

i+1, for the fourth component, 1 <i < [4],n >5

on(x)=qn—i+2, for the fourth component, [%] +1<i<nn>5

[%w —i+42, for the fifth component, 1 <i < [%L” >5

i— [%] +1, for the fifth component, [%] +1<i<nn>5

1, otherwise .

Since for n odd all vertices have different color codes, c is a locating coloring for

n

subdivision of origami graph O, so that x; (O;,) < 5, for [5] odd, n > 5.

Subcase b. (odd 1), for [4] even, n > 7.

Let ¢ be a coloring for a subdivision outer edge of origami graph O}, for [%| even, and
n > 7; we make the partition IT of V(O;;):

C1 = {wi|1 S 1 S TZ};

Cy = {u;|foroddi,3 <i<n}U{vforeveni,2 <i<n-—1}U{x;|foroddi,1 <i<mn};
Cs = {u;| foreven i,2 <i < [4] =2} U {u;| foreveni, [5]| +2 <i < n—1} U {v for
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oddi, 1 <i<n}U({xforeveni,2 <i<n-—1};

Cy={m};
Cs = {upy -

For [4] even, the color codes of all the vertices of V(O;;) are:

cr(v;) =

crr(w;) =

crr(x;) =

0,

2,

i—1,
n—i+1,

for the second component, odd i,3 <i <n,n>7
for the third component, eveni,2 <i < [§] —2,n>7
for the third component, even i, f%] +2<i<n—-1,n>7
for the fourth component, i =1
for the fifth component, i = (%w
n

for the third component, i = [4]
for the fourth component, 2 <i < [4]| —1

~

otherwise .

for the second component, eveni,2 <i<n—-1,n>7
for the third component, odd i,1 <i <n,n>7

for the first component, 1 <i <mn,n >7

for the fourth component, 1 <i < [§],n >7

for the fourth component, [%] +1<i<nn>7

for the fifth component, 1 <i < [4],n>7

for the fifth component, [§]| +1<i<n,n>7

otherwise .

for the first component, 1 <i <mn,n >7

for the third component, i = [5]| —landi=n
for the fourth component, 1 <i < [5],n >7

for the fourth component, {%W +1<i<nn>7
for the fifth component, 1 <i < [§] —1,n>7

i—[5]+1, forthe fifth component, [4]| <i<nn>7

otherwise .

for the second component, odd i,1 <i <n,n >7
for the third component, eveni,2 <i<n—-1,n>7
for the fourth component, 1 <i < [§] —1,n>7
for the fourth component, [§] <i<n,n>7

, for the fifth component, 1 <i < [5],n>7

i— [%] +2, for the fifth component, [%] +1<i<nn>7

otherwise .

Since for n odd all vertices have different color codes, c is a locating coloring for a
subdivision of the outer edge of origami graph O;;, so that x1(O;;) < 5, for (%1 even,n > 7.
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Subcase c. (even n), for 5 odd, n > 6.

Let c be a coloring for a subdivision outer edge of origami graph O;;, for 5 odd, and n > 6;
we make the partition IT of V(O;;) :

C :{wi|1 <i< %—1}U{wi|%+1 Sign};

Co = {u;| foroddi,3 <i<n-—1}U{v;| foreveni,2 <i<n}U{x;|foroddi,1<i<

n—1};
Cs :}{ui| foreveni,2 <i<n}U{v;|foroddi, 1 <i<n—1}U{x;|foreveni,2 <i<n};
Cy={u1};
Cs = {wy }.
For 4 odd, the color codes of all the vertices of V(O;;) are:
0, for the second component, odd i,3 <i<n—-1,n>6
for the third component, eveni,2 <i <mn,n > 6
for the fourth component, i =1
2, for the second component, i = 1
cr(u;)) =<i—1, for the fourth component, 2 < i < %,n >6
n—i+1, for the fourth component, % +1<i<nn>6
4 —i+1, for the fifth component,1 <i< %,n>6
i—3, for the fifth component, 5 +1<i<n,n>6
1, otherwise .
2, for the first component, 1 <i <n,n > 6
0, for the second component, eveni,2 <i <mn,n > 6
for the third component, odd i,1 <i<n—-1,1n>6
_ i for the fourth component, 1 <i < 4, n>6
cun(vi) = n—i+2, forthe fourth component, 5 +1<i<nn>6
5 —i+2, for the fifth component,1 <i<%,n>6
i—%5+1, for component, fifth component, 5 +1<i<n,n>6
1, otherwise .
0, for the first component, 1 <i < % —1,n>6
for the first component, 5 +1<i<n,n>6
for the fifth component, i = 5
2, for the first component, i = %
for the second component, i = n
cri(w;) =

i for the fourth component, 1 <i < 5,n > 6
n—i+1, for the fourth component, % +1<i<nn>6
2 —i+41, for the fifth component,1 <i< 2,n>6
i—%+1, for the fifth component, 5 +1<i<nn>6
1, otherwise .
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0, for the second component, odd 7,1 <i<n—-1,n>6
for the third component, eveni,2 <i <mn,n > 6
i+1, for the fourth component, 1 <i < %,n >6
cri(x;) = S m—i+2, forthe fourth component, 5+1<i<nn>6

% —i+2, for the fifth component,1 <i< 2 —-1,n>6
i—%5+2, forthe fifth component, 7 +1 <i<n,n>6

1, otherwise.

Since for n even all vertices have different color codes, ¢ is a locating coloring for a
subdivision of the outer edge of origami graph O;;, so that x1.(O;;) < 5, for 5 odd, n > 6.

Subcase d. (even n), for 5 even, n > 4.

Let ¢ be a coloring of subdivision origami graph O;;, for 5 even, and n > 4; we make the
partition IT of V(Oy,):

G ={will<i<z}U{wiz+2<i<n};

Co ={u;| foroddi,3 <i<n-—1}U{v;| foreveni,2 <i<n}U({x|foroddi,1<i<
n—1};

Cs = {u;| foreveni,2 <i<n}U{v;|foroddi, 1 <i<n-—1}U{x;|foreveni,2 <i<mn};
Cy=A{m};

Cs = {w%ﬂ}.

For 7 even the color codes of all the vertices of V(O;;) are:

0, for the second component, odd i,3 <i<n—-1,n>4
for the third component, eveni,2 <i <mn,n > 4
for the fourth component, i = 1
2, for the second component, i = 1
i—1, for the fourth component, 2 <i < 4% +1,n >4
cun(ui) = n—i+1, forthe fourth component, 5 +2 <i<mn,n >4
2, for the fifth component, i = 1
5 —i+2, for the fifth component,2 <i < 7 +1,n >4
i— % —1, for the fifth component, 5 +2 <i<n,n >4
1, otherwise .
2, for the first component, 1 <i <mn,n > 4
0, for the second component, eveni,2 <i <mn,n >4
for the third component, odd i,1 <i<n—1,n >4
i for the fourth component, 1 <i < %, n>4
cri(vi) = §n—i+2, forthe fourth component, sH+1<i<nn>4
241, for the fifth component, i = 1
L —i+3, forthefifth component,2 <i< 5 +1,n>4
i—3, for the fifth component, 5 +2 <i <n,n >4
1, otherwise .
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0, for the first component, 1 < i < %, n>4
for the first component, 5 +2 <i <n,n >4
for the fifth component, i = 7 +1

2, for the first component, i = % +1
_ for the second component, i = n
cri(wi) = i for the fourth component, 1 <i < 5,n >4
n—i+1, forthe fourth component, 5 +1<i<mn,n>4
5 —i+2, for the fifth component, 1 <i < 5,n >4
i-%, for the fifth component, § +2 <i<n,n >4
1, otherwise .
0, for the second component, oddi,1 <i<n—-1,n>4
for the third component, eveni,2 <i <n,n > 4
i+1, for the fourth component, 1 <i < 7,1 > 6
cri(x;) = < n—i+2, forthe fourth component, P+1<i<nn>4
5 —i+3, for the fifth component, 1 <i < 7,n >4
i—%5+1, for the fifth component, 5 +2 <i<mn,n >4
1, otherwise.

Since for n even all vertices have different color codes, c is a locating coloring for a
subdivision outer edge of origami graph Oj;, so that x (O;;) < 5, for 5 even, n > 4. This
completes the proof of Theorem 2. O

Note that Figure 2 is an example locating coloring for a subdivision of the outer edge
of origami graph Oz.

3. Conclusions

The proving steps of the two theorems we gave earlier show that the locating-
chromatic number of origami graphs Oy, x1.(Oy) is 4 for n = 3 and 5 for n > 4; the
same result holds for a subdivision of the outer edge of origami graph Oj;. This research
can be continued so as to determine the locating-chromatic number for some certain
operations of origami graphs.
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