
Library Attendance System

using YOLOv5 Faces Recognition

Mardiana

Informatics Engineering

University of Lampung

Bandar Lampung, Indonesia

mardiana@eng.unila.ac.id

Meizano Ardhi Muhammad

Informatics Engineering

University of Lampung

Bandar Lampung, Indonesia

meizano@eng.unila.ac.id

Yessi Mulyani

Informatics Engineering

University of Lampung

Bandar Lampung, Indonesia

yessi.mulyani@eng.unila.ac.id

Abstract— Recognizing a large number of faces at the same

time is an algorithmic and computational challenge. The

integration of a facial recognition system with an existing

automation system in a library is also a big challenge because of

the many sub-systems that operate in it. The aim is to develop a

prototype of a library attendance system to assist library

management related to facial recognition of users who visit the

library. This study uses image processing focuses on object

detection using the YOLOv5 algorithm. The library attendance

system integrates 3 sub-systems: API service, face recognition

using YOLOv5, and visitor identification system. The results

obtained are that the library attendance system can function

properly, can read the API service, and display information on

the results of face detection therefore the system can be used by

the existing library automation system.

Keywords— library attendance system, face recognition,

image processing, machine learning, YOLOv5, visitor

identification system

I. INTRODUCTION

Various kinds of research in the field of image processing,
especially those related to face detection and face recognition,
have been carried out. This research can be applied to help
overcome problems that exist in libraries. Most of the
librarian's works in libraries has been assisted by library
automation systems [1]. However, visual tasks, such as
recognizing the presence of users, still have problems. The
presence of visitors is known from the use of RFID and
barcode cards at the library entrance. The use of the card poses
security problems in the form of card misuse by others.
Computational technology and algorithms which able to
recognize many objects need to be used to answer these
problems. The existing library automation system needs to be
integrated with other systems that function for facial
recognition.

Several studies have been conducted to detect objects
using YOLO. YOLO is one of the Convolutional Neural
Network (CNN) algorithms [2] which was developed into
several other algorithms, including R-CNN, Fast R-CNN,
Faster R-CNN, and YOLO. Based on this research, YOLO has
advantages that can be used to detect objects. As in studies
that aim to detect objects in the form of road signs, the results
show the YOLO algorithm can detect with an accuracy of 74%
[3]. In addition, research that aims to detect spherical objects
on humanoid robot soccer can detect with an accuracy of 60%
[4].

The YOLO (You Only Look Once) algorithm is an
algorithm developed to detect an object in real-time [5]. The
detection system uses a repurpose classifier or localizer to

detect. YOLO already has many versions, starting with the
YOLO version, YOLOv2, YOLOv3 until the latest one is
YOLOv5. However, the application of the YOLOv5
algorithm for the library attendance system has not been done
much. So, it's an important thing to do.

The prototype library attendance system developed in this
study will use the YOLOv5 algorithm because it is considered
better than the previous version. With the technology, the
system not only recognizes the user's face but can also store
the recognized user data in a database. This will make it easier
for librarians to process attendance data for recognized or
unrecognized visitors.

II. METHOD

There are three-part of development based on three sub-
systems in the library attendance system: API Service, Face
recognition using YOLOv5, visitor identification system.
System model illustrated in Fig. 1.

Fig. 1. Concept Model Library attendance system

The stages of development are as follow:

1. Development of API Service for Library Attendance
System

2. Building face recognition using YOLOv5

3. Development of Visitor Identification System

4. Comprehensive System Testing

Development of API Service and Visitor Identification
System in stages 1 and 3 is carried out using general software
development lifecycle.

Building face recognition using YOLOv5 in stage 2
requires more careful consideration. YOLO (You Only Look
Once) is a real-time object detection algorithm with a high
level of accuracy. The YOLO algorithm uses a convolution
neural network for object detection. YOLO uses an artificial
neural network (ANN) approach to detect objects in an image.
This network divides the image into several regions and
predicts each boundary city. YOLO is very good at predicting
images and classifying images. YOLO can also detect
multiple images at once[6]. YOLO v5 has 4 models for
training data: YOLO v5-s, YOLO v5-m, YOLO v5-l, and
YOLO v5-x [7]. The four models have differences in network
architecture or the number of layers and the number of
parameters. The YOLO v5 architecture has 3 parts: the
Backbone Model, the Neck Model, and the Head Model.

1) Backbone Model

The backbone model is used to extract important features
from a given input image. YOLO v5 uses the CSP (Cross
Stage Partial) Network as the backbone to extract informative
features from the input image.

Fig. 2. DenseNet CSP [8]

Fig. 2. is a feature extraction process using DenseNet CSP.
CSP (Cross Stage Partial) is based on the same principle from
DenseNet except that the CSP input is separated into 2
portions, with some of it being forwarded through dense
blocks which will perform convolution and part of it being
sent directly to the next stage without being processed. Then
the part of the block that performs the convolution will be
combined (concat). Before entering the neck using FPN,
additional blocks are added, namely the SPP (Spatial Pyramid
Pooling) layer

2) Neck Model

Neck style on YOLOv5 using PANet which adopts the
Feature Pyramids Network (FPN) structure. The PANet
model is used to help the model generalize well for scaling
objects. This is very helpful in identifying the same object
with different sizes and scales. Fig. 3 is a PANet image for the
neck, this PANet is used for feature classification.

Fig. 3. PANET [9]

3) Head Model

Head model used to perform the final detection, this model
applies anchor boxes to the features and produces a final
output vector with class probabilities, objectivity scores, and
bounding boxes. YOLOv5 uses leaky ReLU and Sigmoid as
activation functions. The Leaky ReLU activation function is
used in the middle layer or hidden layers while Sigmoid is
used in the final detection layer. The activation function is a
function to calculate the number of input weights and biases
in the artificial neural network so that it can activate and
deactivate neurons.

The loss value in YOLOV5 is calculated based on
objectivity scores, class probability scores, and bounding box
regression scores.

The stages for building face recognition using YOLOv5
can be explained as follows:

1) Building a Dataset

The first process is the process of building a dataset before
training, with the steps in Fig. 4:

Fig. 4. Flowchart of Building a Dataset

To build the dataset, an Image collection is needed in the
form of photos in JPG/Img format, then the photos are
annotated or labeled with each photo using LabelImg. The
result of the annotation is in the form of a file in XML format.
Then the datasets with XML files are combined for image pre-
processing.

2) Training Dataset
The second process is a training process using a custom

YOLO v5-s model and the results of the training or Yolov5
weight model are used for the detection process, as shown in
Fig. 5 :

Fig. 5. Training Dataset Flowchart

The dataset is read and a class is formed which will be used
to create a Yolov5-s custom detection model. Next, this file is
used for training the dataset. After completing the training, the
data from the training can be tested using photos and videos.

3) Object Detection Model Testing

The third process is the object detection process using a
trained model.

Fig. 6. Test Flowchart

Fig. 6 is the testing phase using photos and videos. Input
can be photos or videos for testing. The detection process is
carried out by loading the model that has been built, then
classification and prediction are carried out using bounding
boxes and confidence scores. The results displayed are in the
form of prediction boxes, confidence values, and object
classes.

Stage 4 is Comprehensive System Testing. To evaluate the
integrated sub-system, comprehensive system testing is
conducted by incorporating the three-part sub-system. Fig. 7.
represents the comprehensive system testing phase.

Fig. 7. Comprehensive System Testing Flowchart

First, the input is from a face captured by the camera. Then
the detection process will load the model that has been built,
then perform classification and prediction using bounding box
and confidence score. The results displayed are in the form of
prediction boxes, confidence values, and object classes.

The detection results in the form of an object class (cls)
will be stored in the report database and then the data in the
report database will appear on the report page. The report page
is built to display data in the form of a number, user name,
NPM, date of attendance, and time of attendance.

III. RESULTS AND DISCUSSION

A. API Service for Library Attendance System

To send the results of the facial recognition sub-system, a
request to the web service is submitted via the HTTP protocol.
Response provided by the web service contains information
about the time, the number of visitors (humans), and
recognized users.

The nature of the web service API provided is agnostic so
that it does not require the use of a particular programming
language to access it.

The Reader Attendance API service is accessed via
JavaScript. The time required for each request in the 100x test
is 500 milliseconds (ms).

B. Face Recognition using YOLOv5

The data used for the facial recognition sub-system is 1528
data consisting of 1420 training data, 69 validation data, and
39 test data. The percentage distribution is 92.9% training
data, 4.5% valid data, and 2.6% test data.

1) Building a Dataset
Data labeling is done manually using labelImg software

which marks objects with rectangles as shown in Fig. 8.

Fig. 8. Labeling using labelImg

The object class used in this research is a total of 37
objects. Objects include general visitors (humans), and
identified users.

2) Training Dataset
YOLOv5 repository is used as the basic framework. all

repositories and dependencies of YOLOv5 must be fulfilled.
Dataset training for the face recognition sub-system was
carried out on 1420 images that had been labeled. The object
in the image is resized to 416x416. The training was carried
out for 1000 epochs with a total of 16 batches. The basic
model used is yolov5s.yaml.

The computational specifications used for training are
CUDA Nvidia Tesla T4 with 15079MB of memory. The
training process was completed in 3.736 hours for 1420
images labeled with 1000 epochs. The resulting weight model
is 14.9MB.

3) Object Detection Model Testing
Based on the results of the training, it can be seen that the

level of minimized return is achieved when the graph starts to
form an elbow (elbow method) in 700 epochs at mA@0.5,
mAP@0.5:0.95, Precision, and Recall. The results can be seen
in Fig. 9.

Fig. 9. The results of the Face recognition sub-system dataset training

Based on the results of the training as can be seen in Fig.
10, the highest value for precision is 0.5507 at 650 epochs.
Thus, training for more than 650 epochs has experienced
diminishing returns.

Fig. 10. Precision Face recognition sub-system

Based on the results of the training as can be seen in Fig.
11, the highest score for Recall is 0.9546 at 607 epochs. Thus,
training for more than 607 epochs has experienced
diminishing returns.

Fig. 11. Recall Face recognition sub-system

The method used to measure the Mean Average Precision
(mAP) on multiple object detection for the face recognition
sub-system is mAP@0.5 and mAP@0.5:0.95. The face
recognition sub-system on mAP@0.5 has a high level of
precision. The highest value as can be seen in Fig. 12, reached
was 0.9884 in the 631st epoch and after that, the change was
very small in the range of 0.02.

Fig. 12. mAP@0.5 Face recognition sub-system

The face recognition sub-system at mAP@0.5:0.95 has a
lower precision level than mAP@0.5 because the prediction
threshold is increased by 0.05 from 0.5 to 0.95. The highest
value as can be seen in Fig. 13, reached was 0.5986 at the
546th epoch which then tended to decline and stabilize at the
range of 0.5800.

Fig. 13. mAP@0.5 :0.95 Face recognition sub-system

The mAP value indicates the average precision value is far
above the threshold of 0.4 so that the resulting model is
feasible to use.

Some of the Ground Truth of the Face recognition sub-
system can be seen in Fig. 14.

Fig. 14. Ground Truth Face recognition sub-system

Some of the Ground Truth Augmented Training Data
obtained from Machine Learning can be seen in Fig.15.

Fig. 15. Ground Truth Augmented Training Data Face recognition sub-

system

Ground Truth compared to the results of object detection
and found that the accuracy is quite good for large objects but
on small objects, there is a tendency for the wrong detection
or not to be recognized at all. The confidence threshold for the
test is 0.4.

C. Visitor Identification System

The Attendance System library pulls information from the
Face recognition sub-system provided via a web service. The
information available through the API is retrieved using
JavaScript which is then displayed on the visitor identification
sub-system. The information that has been processed and
presented on the visitor identification sub-system can be seen
in Fig. 16.

Fig. 16. Visitor Identification System Output based on Web Service API

D. Library Attendance System

Library Attendance System testing is carried out on two
media models, namely images and videos. Tests were carried
out using a CUDA NVIDIA Tesla P100-PCIe-16GB with
16280MB of memory. The model used is the training model
on the face recognition sub-system.

1) Image Object Detection
There are 39 images tested with more than one object in

each image. Object detection on 39 images was carried out for
5.564 seconds, including the preparation process. The average
object detection per image is 0.015 seconds. Some of the
object detection results can be seen in Fig. 17.

Fig. 17. Object Detection Results in Images

2) Video Object Detection
The video used for testing had a running time of 15

minutes 45 seconds. Detection of objects on 15 minutes 45
seconds of video with 23.623 image frames were carried out
for 878.967 seconds, including the preparation process. The
average object detection per image is 0.013 seconds. The
number of frames per second (frames per second) is 76.92 fps
which is faster than the standard 60 fps for video. Some of the
object detection results can be seen in Fig. 18.

Fig. 18. Object Detection Results on Video

3) Library Attendance System Validation
Library Attendance System will validate the attendance

for a confidence score of 0.9, the detection results will appear
on the report page. The report page will display the data once
even though the object is detected many times in one day. This
is because the coding to save the database has been given a
parameter not to save more than 1 cls at a time. The example
of the report page can be seen in Fig.19.

Fig. 19. Library Attendance System Report

IV. CONCLUSION AND FUTURE WORKS

Library Attendance System is able to integrate three-part
of sub-system which include a face recognition system based
on YOLOv5. YOLOv5 face recognition subsystem which can
detect multiple objects in images and videos has an excellent
level of performance in terms of the average object detection
time standard per image. A large number of face recognition
systems with the YOLOv5 algorithm at the training stage took
3.736 hours for 1420 images with a total of 1000 epochs on a
CUDA Nvidia Tesla T4 with 15079MB of memory. The mAP
value indicates the average precision value is far above the
threshold of 0.4 so that the resulting model is feasible to use.
Detection of multiple objects with the YOLOv5 algorithm in
the image has a good performance level, which is 0.14267
seconds. Detection of multiple objects with the YOLOv5
algorithm on video has a good level of performance, which is
76.92 fps. Further development for Library Attendance
System, such as physical access control systems or security
warning systems, all of which aim to assist library
management, can be developed based on this study.

REFERENCES

[1] P. B. Babu and M. Krishnamurthy, Library automation to resource
discovery: a review of emerging challenges. The Electronic Library,
31(4), 433–451, 2013.

[2] C. Hu, Y. Wang, G. Yu, Z. Wang, and A. Lei, “Embedding CNN-Based
Fast Obstacles Detection for Autonomous Vehicles,” Intell. Connect.
Veh. Symp., pp. 1–11, 2018.

[3] C. Liu, Y. Tao, J. Liang, K. Li, and Y. Chen, “Object Detection Based
on YOLO Network,” 2018 IEEE 4th Inf. Technol. Mechatronics Eng.
Conf., no. Itoec, pp. 799–803, 2018.

[4] E. Rudiawan, R. Analia, D. S. P, and H. Soebakti, “The Deep learning
Development for Real-Time Ball and Goal Detection of Barelang-FC,”
2017 Conf. Int. Electron. Symp. Eng. Technol. Appl., pp. 146–151,
2017.

[5] J. Redmon, “You Only Look Once: Unifed, Real-Time Object
Detection”, Ann. Med. Psychol. (Paris)., vol. 134 II, no. 1, pp. 59–61,
2016.

[6] M. S. Chauhan, A. Singh, M. Khemka, A. Prateek, and R. Sen,
“Embedded CNN based vehicle classification and counting in non-
laned road traffic,” 2019.

[7] Glenn Jocher, “YOLOv5 in PyTorch,” Github, 2020. [Online].
Available: https://github.com/ultralytics/yolov5. [Accessed: 08-Nov-
2020].

[8] C. Y. Wang, H. Y. M. Liao, I. H. Yeh, Y. H. Wu, P. Y. Chen, and J.
W. Hsieh, “CSPNET: A new backbone that can enhance learning
capability of CNN,” arXiv, 2019.

[9] M. Tan, R. Pang, and Q. V. Le, “EfficientDet: Scalable and efficient
object detection,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., pp. 10778–10787, 2020.

