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Qbstracme locating-chromatic number of a graph combi two graph concepts, namely coloring
vertices and partition dimension of a graph. The locating-chromatic number is the smallest k such
that G has a locating k-coloring, denoted by x1 (G). This article proposes a procedure for obtaining a
locating-chromatic number for an origami graph and its subdivision (one vertex on an outer edge)

through two theorems with proofs.
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1. Introduction 31

The study of the partition dimension of connected graphs was intro d by
Chartrand et al. [1,2] with the aim of finding a new method for attacking the problem
of determining the metric dimension in graphs. The application of these metric dimen-
sions can be seen in the navigation of a robot modeled by a graph [3, solving the problem
of chemical data classification, and determining how to represent a set of chemical -
pounds in such a way that different compounds have different representations [5,6]. The
concept of the locating-chromatic number was first introduced by Chartrand et al. in 2002,
with two obtained h concepts, namely coloring vertices and partition dimensions of a
graph [7]. Finding the locating-chromatic number of a gra one of the interesting (and
un-completely solved) problems of graph theory. Let G = (V, E) be a connected graph; the
distance d (ay) between two of its vertices x and y is the length of the shortest path between
?em. Let ¢ be a proper k-coloring of G with color {1,2@k}, and I1 = {Cy,Cy, ..., Gt}

e a partition of V(G) that is induced by the coloring c. The color code ¢y (v) of v is the
ordered k-tuple (d(v, G ),v, G),...d(v,Cy))), where d(v,C;) = min {d(v,x) : x € C;}
foranyi € {1,2,3,.. k}. If all distinct vertices of G have distinct color codes, then ¢ is
called a k-locating coloring of G. The locating-chromatiffhumber denoted by x, (G) is the
smallest k such that G has a locating k-coloring. Let c be a locating k-coloring on graph
G(V,E). Furthermore locating-chromatic number has been determined for a few graph
classes; for example, it P, is a path of order n > 3 then the locating-chromatic number is
3; for acycle C, if n > 3isodd, x.(Cy) as obtained, and if n is even, x.(C,) = 4
was obtained; for a double star gZiph (S,3), 1 <a < bandb > 2, x1.(S,5) = b+ 1 was
obtained. LetIT = {S;,S,, ..., S5;} be the partition of V(G) induced by c. A vertex v € G is
Pylled a dominant vertex if d(v, S;) = 1, where v  S;. Chartrand et al. characterized all
graphs of order 1 wiffifghe locating-chromatic number 1 — 1 [8].

The problem of determining the luca{l'lmmaﬁc number of any general graph is
an NP-hard problem [9]. This means that to determine the locating-chromatic number of
any given graph, wed a specific algorithm. In 2012, Baskoro and Purwasih proposed a
procedure to obtain the locating-chromatic number of corona products of two graphs []. In
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2014, Asmiati obtained thd//fating-chromatic number of a non-homogeneous amalgamation
of stars [10]. Moreover, to determine the locating-chromatic number of disconnected graphs,
graphs with inant vertices and graphs of two components have been discussed in [11-13].
In 2019, t racterization of the locating chromatic number of powers of paths and a
condition (sharp upper and lower bounds) for the locating chromatic number of powers of
cycles were discussed [14] (see [15] for a discussion of the necessary and sufficerf:fonditions
for a pair of two specific start graphs to be an odd mean graph). Asmiati etal. determined
the locating-chromatic number of some Petersen graphs; P(r, 1) four for odd n > 3 or five
for even nn > 4 were obtained [16], and in [1j§results were obtained for certain barbell graphs.
Syofyan et al. have succeed in determaad e locating-chromatic number of homogeneous
lobsters [18]. In [19], Asmiati obtained the locating-chromatic number for non-homogeneous
caf:eralar graphs and non-homogeneous firecracker graphs. Next, Irawan and Asmiati in
2018 determined the locating-chromatic number of subdivision firecrackers graphs [ffJJand
in [21] obtained the certain operation of generalized Petersen graphs sP(n,1). In 2014, Behtoei
and Anbarloei determined the locating-chromatic number of the joining of two arbitrary
graphs [22]. In addition to that, in this article we propose a procedure for obtaining the
locati ymatic number for an origami graph and its subdivision (one vertex on an outer
edge). The following definition of an origami graph is taken from [23]. Letn € Nwith n > 3.
An origami graph O, is a graph with V(0,,) = {u;, v, w; : i € {1,..,n}} and E(O,) =
{ujw;, wivy, viw; : i € {1,...,n}} U {ujuipr,winizy 2 i € {1, .., 0 —1}} U {uyuy, wyiu } (see
Figure 1 for an example). Meanwhile, a subdivision of an origami graph Oj, is a graph with
V(0:) = {u, vy, x;,w; -1 € {1,...,n}}and E(O};) = {uw;, wv;, vixg, xv; 2 i € {1, ..,n}}uU
{wiuipr, wintipr s i€ {1,...,n— 1} } U {uyu1, wyin } } (see Figure 2 for an example).

1wy p, ol

Figure 2. A subdivision of an origami graph O¢.
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2. Rpts and Discussions
e

tc be a locating coloring in a conn graph G and N(g) denote the set of neighbor
of a vertex g in G. If p and g are distinct vertices of G such that d(p, w) = d(g, w) for all
w e V(G) —{p.q}, thenc(p) # c(g). In particular, if p and g are non-adjacent vertices
such that N(p) = N(gq), then c(p) # c(q) [7].
In the following subsection, the locating-chromatic number of origami graphs O, and
their subdivisions called O}, is described.

2.1. Locating-Chromatic Number of Origami Graphs
Theorem 1. Let Oy be an origami graph for n > 3. Then, the locating-chromatic number of O,

4, forn=23
XL[OW} = { f

5, otherwise.

Proof. Let n € Nwith n > 3. An origami graph Oy is a graph with V(O) = {u;,v;,w; :
i€ {1,.,n}}and E(O,) = {uw;, g8, viw; - i € {1,...n}} U {uu, w0 €
{1,.,n —1}} U {u,11, wyup }. Next, to prove the theorem, we consider the following
two cases:

Casel. x.(03) =4

First, we determine the lower bound of x| (O3). In the origami graphs O, forn = 3,
there are three adjacent vertices (complete graph with three vertices, denoted by K3); we
then need at least 3-locating coloring. Without loss of generality, we assign three colors for
any K3 in Oy, for n > 3, and then the three vertices are dominant vertices. As a result, if
we use three colors it is not enough because there are more than one K3 in Oy for n = 3.
Therefore, x1 (O3) > 4.

Next, we determine the upper bound of x;(O3) < 4. To show that 4 is an upper
bound for the locating-chromatic number for the origami graph O3 we describe a locating
coloring ¢ using four colors as follows:

clu;)=1,i=1,2,3.

o) = {2, furt::],S

3, fori=2.
clw;)=4,i=1,2,3.

The coloring ¢ will create the partitionITon V(O3). We shallgow that the color codes
of all vertices in Oj are different. We have: cry(uy) = (0,1,1,1); err(u2) = (1,0,1,1);
eri(ua) = (1L,1,0,1); en(or) = (1,0,2,1); en(v2) = (2,1,0,1); enlvs) = (2,0,1,1);
crp(wy) = (1,1,2,0); enlw:) = (2,1,1,0); en(ws) = (1,1,1,0). Since the color codes
of all vertices O3 are different, c is a locating-chromatic coloring. Thus, x; (O3) < 4.

Case?2. x1(Oy)=5,forn >4

To determine the lopiér bound, we will show that four colors are not enough. For
a contr tion, assume that there exists a 4-locating coloring ¢ on O, for n = 4. We
assign {c(u;), c(v;),e(w;), c(u; 1)} = {1,2,3,4}, where c(v;) # ¢(u;,1) because d(v;, x) =
d(uiq,x),x € {u;, v;}. Observe that, on O, for n > 4, there are n vertices u; whose degree
is 5. As a result, at least two vertices wy, wy, k # [ have the same color codes, which is a
contradiction. Thereforaﬂ(o,,] =5, forn > 4.

To show the upper bound for the locating-chromatic number of origami graphs Oy, for
i = 4, let us differentiate some subcases.

Subcase 1. (Odd n), for [4] odd, n > 5

Let ¢ be a coloring of origami graph Oy, [4] odd, and n > 5; we make the partition 1
of V(0,):

CG={wl<i<n);

Co ={uj|foroddi,3 <i<n} U {v|foreveni2<i<n—1}
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Cs = {uy| foreveni,2 <i < [4] -1} U {u foreveni,[4]+3 <i <n—1} U {v] for
oddi,1<i<n};

C,; = {I.I] },

C5 = {I.I|'%'|+ .

For [4] odd, the color codes of all the vertices of V(Oy) are:

C={w|l <i<n}
Fori =1, we have:
cn(wy) = (0,214, [§] —i+1).
For2<i< %-‘, 1 = 5 we have:
ap(w) = (0,114 [§] —i+1).
Fori= _%—| + 1 we have:
en(w;) = (0,1,2,n—i+1,i—[§]).
For [4] +2 <i < n,n>5wehave:
en(wy) = (0,L,,n—i+1,i—[§]).

Cy = {uy| forodd 7,3 <i<mn} U {v; fomen 2<i<n-—1}
Foriodd,3 <i< _%—|,n > 5 we have:
o) = (1,0,1,i—1,[§] —i+1).
For i odd, _%-| +2<i<nn=5h 51 have:
cn(ug) = (1,0, L,n—i+1,i— [§] - 1).
Forieven,2 <i < _%—| —1,n = 5 we have:
en(v) = (10,14, [§] —i+2).
Fori= _%—| + 1, we have:
cnle;) =(1,0,3, 0 —i+2,1).
For i even, %-| +3<i<n-—1,1n>9wehave:

en(v) = (1,0, n—i+2,i— [§]).

Cs = {u] foreven i,2 <i < [§] -1} U {u| foreveni,[§]+3 < i <n—1} U {y] for
oddi,1<i < n}.
Fori =1, we have:

en(e) = (1,2,0,i,[4]).
Foriodd,3 <i< _%—|,n > 5 we have:
an(vy) = (1, 1,00, [§] —i+2).

For i odd, _%-| +2<i<n,n>9wehave:

eri(vi) = (1,1,0,n —i+2,i — [4]).
Forieven,2 <i< [§]—1,n > 5 wehave:

er(w) = (1,1,0,i — 1, [4] —i+1).
Forieven, [§] 43 <i<n—1,1 > 9wehave:

en(ui) = (1,1,0,n —i+1,i— [4] —1).
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For Cy = {u;}, we have:

cr(im) =(1,1,1,0,[5] = 1).

For G5 = {u [3]+1 I3 wﬂla\!e:
en(upa) i) = (L1,2,[4] - 1,0).

Since for i1 odd all vertices have different color codes, ¢ is alocating coloring of origami
graphs Oy, so that x1.(0,) < 5, for [4] odd, n > 5.

Subcase 2. (Odd n), for [5] even, n > 7.

Let ¢ be a coloring of origami graph Oy, %-| even, and n > 7; we make the partition Il of
V(Oy) as follows:

C={w1 <i<n}

Cy = {uj| forodd i,3 <i<n}U {v;| foreveni2<i<n—1};

Cs = {u| foreveni,2 <i < _%—| — 2} U {uy| foreven i, _%—| +2<i<n—1} U {y for
oddi,1<i<n};

Ca={m};

Cs = {rt|',21_'| }-

For _%—| even, the color codes of all the vertices of V(O, ) are:

C={w|l <i<n}
Fori =1, we have:
CH(IU?} = (0!2! ]:i; _%-| - I}
For2<i< [§]—-1,n =7 wehave:
Cl_[(n)i} = (0!]! 1,i, %‘| _t}
Fori= _%—|, we have: .
23
en(wi) = (0,1,2,n —i+1,i—[5] +1).
For _ﬂ-|+]§i§n,1127we :

2
en(w;) = (0,1, L,n—i+1,i—[5] +1).

Co ={ui|foroddi,3 <i<n}U {v foreveni, 2 <i<n-—1}.
Foriodd,3<i< _%—| —1,n = 7 we have:

eni(ui) = (1,0,1,i — 1, [4] — ).

Foriodd, [§]+1<i<n,n > 7wehave:
crp{u) = (1,0,1,n — i+ 1, 88) %-|}

Forieven,2 <i < _%—| —2,1n > 7 we have:

en(vi) = (1,0,1,4,[5] —i+1).
Fori= [%1, we have:

en(v) = (1,0,3,0,i— [§] +1).
Forieven, [#]|+3<i<n—1,n > 7wehave:

en(v) = (L0, Ln—i+2,i—[%] +1).
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Cz = {u| foreveni,2 <i < _%—| — 2} U {uy| foreveni, _%—| +2<i<n—1}U{y for
oddi,1<i<n}.
Fori =1 wehave:
en(v) = (1,2,0,i, [§] —i+1).
Foriodd,3<i< _%-| —1,n = 7 we have:
ern(vi) = (1,1,0,0, [8] —i+1).
For i odd, _%—| +1<i<n,n>7wehave
en(v) = (LL,0,n—i+2,i—[%] +1).
Forieven,2 <i < _%-| —2,1n =7 wehave:

eni(ui) = (1,1,0,i — 1, [2] — ).
Forieven, [§] 42 <i<mn,n>7wehave:

crp(ui) = (1,,0n —i+1,i— %-|}

Cs = {1}, we have:

Cl‘[(]‘.tl} = (], ],],U, _%-| — ]}

Cs = {r.t(%] }, we have:

cn(r.t[ ]} =(1,12[4] -10).

7
Since for 1 odd all vertices have different color codes, c is alocating coloring of origami
graphs O, so that x;(0,) < 5, for [§] even,n > 7.
bcase 3. (even n), for § odd, n = 6.
Let ¢ be a coloring of origami graph Oy, § odd, and n > 6; we make the partition IT of
V(Oy):
CG={wl<i<i-1}U{wl§+1<i<n};
Ca = {u| for odd a <i<n-—1}U {v| foreveni,2 <i<n};
Cs = {uj|foreven,2 < i <n}U {v;|forodd ;1 <i<n—1};
Ca={m};
Cs = {wy}.
For % odd, the color codes of all the vertices of V(Oy) are:
CG={w1<i<i-1}U{wl§+1<i<n}
Fori =1, we have:

er(w;) = (0,2,1,4, 5 —i+1).
For2<i< 7—1,n = 6wehave:
crplew;) =(0,1,1,4, % —i4+1).
For § +1 <i < n,n > 6we have:
er(w;)) = (0,1, L,n—i+1,i-5+1).

Cy ={uy| foroddi,3 <i<n—1}U {v;| foreveni, 2 < i< n}.

Foriodd,3 <i< 5,n > 6 we have:

cr(#;) =(1,0,1,i 1,5 —i+1).
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Foriodd, 7 +2<i<mn—1n = 6wehave:
en(u) =(1,0,1L,n—i+1,i—5).
Forieven,2 <i < % —1,n =6 wehave:
en(vi) = (1,0,1,0,5 —i+2).
Forieven, 4 +1<i<n—1,n2> 6wehave:

en(vi) =(L,0,L,n—i+2,i—5+1).

Cs = {uj| foreveni,2 < i <n} U {v;|forodd i, 1 <i<n—1}.
Fori =1, we have:
eni(vi) = (1,3,0,i, 5 —i+2).

Foriodd,3<i< % —2,1n = 10 we have:

er(vi) = (1,1,0,i, 5 —i+2)
Fori= %, we have:
en(v) = (2,1,0,i,1).
Fori odd,% +2<i<n—1,n > 6wehave:
en(vi) =(1L,1L,0n—i+2,i—5+1).
Forieven, 2 <i< 4 —1,n > 6 wehave
eri(ui) =(1,1,0,i = 1,5 —i41).
Forieven, 4 +1 <i < n,n > 6wehave:
en(ui) =(L1L,0n—i+1i-%).
For Cy = {u;}, we have:
er(ug) = (1,2,1,0, 5 —i+1).

For G5 = {w% }, we have:

cn[w%} =(2,1,1,%,0).

Since for n even all vertices have different color codes, c is a locating coloring of
origami graphs Oy, so that x1.(O,) <5, for § odd, n > 6.

Subcase 4. (even n), for § even, n > 4.

Let ¢ be a coloring of origami graph Oy, § even, and n > 4; we make the partition I'1 of
V(O4y) as follows:

G={wll<i<§fiu{wl§+2<i<n};

Cz = {u| for odd gg i<n—1}U {vforeveni, 2 <i<n};
Cs = {uj|foreven,2 < i <n}U {v;|foroddi,1<i<n—1};
Co={m};

Cs = {w‘)’—H}-

For § even, the color codes of all the vertices of V(O,) are:
CG={wl<i<4§}U{w]§+2<i<n}
Fori =1 we have:
er(w;) = (0,2,1,4,5 —i+2).
For2<i< %,n > 4we have:

er(wi) = (0,1,1,0, 5 —i+2).
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For 5 +2 <i < n,n=4we have:

eri(wi) =(0,L,L,n—i+1,i—§).

Co ={u|foroddi,3 <i<n—1}U {v;| foreveni, 2 < i< n}.
Foriodd,3 <i <% +1,n > 8 we have:

cr(w;) =(L01,i—-1,5 —i+2).
Foriodd, 5 +3<i<n—-1n= Emhave:
eri(u;) = (1,0, n—i4+1,i— 5 —1).
Forieven,2 <i < %, n > 4 we have:
en(vi) = (1,0,1,0, 5 —i+3).
Forieven, 5 +2 <i<nn = 8wehave:

eri(vi) = (1,01, m—i+2,i—§).

™

3= {u;| foreveni,2 <i < n} U {v]foroddi 1 <i<n-—1}
Fori =1, we have:

cr(oy) = (1,3,0,1, 5 +1).

Foriodd,3 <i< 5 —1,n > 8§ wehave:
crrly;) = (1,1,0, i5 —i+3).
Fori= 5 +1, wehave:
eni(vi) = (2,1,0,4,1).
Foriodd, 7 +3 <i<n—1n = 8wehave:
eri(vi) = (1,1,0,m —i+2,i—§).

Forieven,2 <i < %, 1 = 4 we have:

en(ui) = (1,1,0,i =1, 5).
Forieven, & +2 <i < n,n > 8 wehave:

eri(u;)) = (1,1L,0n—i4+1,i— §—1).

For Cy = {u1}, we have:
err(y) = (1,2,1,0,5).

For G5 = {w§ }, we have:

cn(w%} =(2,1,1,%,0).

Since for n even all vertices have different color cod is a locating coloring of
origami graphs Oy, so that 1 (O,) < 5, for § even, n > 4. l8is completes the proof of
Theorem 1. [

Note that Figure 1 is an example locating coloring for origami graph Os.
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2.2. Locating-Chromatic Number for Subdivision Outer Edge of Origami Graphs

Theorem 2. Let O}, be a subdivision outer edge of origami graphs for n = 3. Then the locating-

4, forn=23

chromatic number of O, x1(O}) = f .
5, otherwise .

Proof. Let Of, n > 3 be a subdivision of an origami graph; O}, is a graph with V(0;) =
{uj, v, x5,w; = 1 € {1,.,n}} and E(O}) = {uwy, vy, v;xﬂ;w; cioe {1,..,ut} U
{aju g, wintiq 2 i € {1,..,n —1}} U {uyy, wyitg }). Next, to prove the theorem, we

consider the following two cases:

Case A. x.(03) =4
First, we determine the lower bound of x;(0O%).

Without loss of generality, we assign A = {c(u;), c(v;), c(xi), c(w;), c(uiy1)} = {1,2,3}.
Then, there are three dominant vertices in A, while we still have vertices on other A that
must be colored. As a result, there will be two vertices with the same color codes. Thus,
xL(03) = 4.

Next BB determine the upper bound of x;(03) < 4. To show that 4 is an upper
bound for the locating-chromatic number for a subdivision outer edge of origami graph
O;, we describe a locating coloring ¢ using four colors as follows:

clu;)=1i,i=1,2,3.

2, fori=1,3

3, fori=2.
clw;) =4,i=1,2,3.
o(x;)=i,i=1,23.

c(v;) =

The coloring ¢ will create the partitionITon V(O3 ). We shall show that the color codes
of all vertices in Of are different. We have: cry(u1) = (0,1,1,1); err(u2) = (1,0,1,1);
en(uz) = (L1,0,1); en(on) = (1,0,2,2); en(v2) = (2,1,0,2); en(vs) = (2,0,1,2);
er(wy) = (LL,2,0); elws) = (2,1,1,0); en(ws) = (1,2,1,0). en(x) = (0,1,3,1);
cri(x) = (3,0,1,1); ei(x3) = (2,1,0,1). Since the color codes of all vertices Of are
different, ¢ is a locating-chromatic coloring. Thus, 1 (0F) < 4.

CaseB. x; (O%) =5forn >4
Since a subdivision of origami graphs O;, for n > 4 is obtained by origami graph O, with
one added vertex in edge v;w;, we have x1(O};) = 5 for n = 4. The addition of one vertex
on th tside does not reduce the number of colors needed because the number of the sets
B = {c(u), c(vi), e(w;), e(uir1)} is@same.

To show the upper bound for the locating-chromatic number for a subdivision outer
edge of origami graph O, for n > 4, let us consider different subcases.

Subcase a. (odd n), for _%—| odd,n = 5.
Let ¢ be a coloring for a subdivision outer edge of origami graph O, for _%-| odd, and
n > 5; we make the partition I of V(O ):
Ci={wl<i<n});
Cy = {uy| foroddi,3 <i<n}U{y|foreveni2 <i<n—1}U {x|foroddi1<i<n};
Cz = {uj| foreveni,2 <i < _%-| — 1} U {u| foreven i, _%-| +3<i<n—1} U {y for
oddi,1<i<n}U{xj]foreveni,2 <i<n-—1};
Co={m};
C5 = {I.I|'%'|+l}.
5
For for [§] odd the color codes of all the vertices of V(O}) are:

n
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0, for the second component, oddi,3 <i <n,n >5
for the third component, eveni,2 <i < [4] -~ 1,n > 5
for the third component, even i, %-| +3<i<n—-1,n>=9
for the fourth component, i = 1
a for the fifth component, i = [§] +1
]2 for the third component, i = _%—| +1
() = i—1, for the fourth component, 2 < i < _'—2’—|,n =5
n—i—+1 for the fourth component, %-| +1<i<nn=5
[%—| —1i, for the fifth component, i = 1
i—[4] -1, for thefifthcomponent, [§]+1<i<nn>5
4] —i+1, for the fifth component, 2 <i < [4],n>5
1, otherwise .
2, for the first component, 1 <i<n,n =5
0, for the second component, oddi,1 <i<mn,n =5
for the third component, eveni,2 <i <n—-1,n>5
i, for the fourth component, 1 <i < 7'—”,11 =5
(i) = sn—i+2, for the fourth component, %] +1<i<nn=5
_%-|, for the fifth component, i = 1
_%—| —i+2, for the fifth component, 2 <i < _%—|, n=>5
i—[4], for the fifth component, [§] +1<i<n,n >5
1, otherwise .
0, for the firstcomponent, 1 <i<n,n =5
2, for the third component, i = [4] and i =n
%-| —i+1, for the fifth component, 1 <i < _%-|, n>5
en(w) = ¢i—[4], for the fifth component, [§] +1<i<n,n >5
i for the fourth component, 1 <i < _%-|, n=>5
n—i41, for the fourth component, [§]+1<i<nn =5
1, otherwise .
0, for the second component, odd i,1 <i <n,n =5
for the third component, ev@€l,2 <i <n—1,n>5
i+1, for the fourth componerm <i< [%1, n>=5

lx)=4n—i+2, for the fourth component, [§] +1<i <n,n>5
[%1 —i+2, for the fifth component, 1 < i < [%1, n=>5
i—[5] ¥4, for the fifth component, (5] +1<i<nn=>5
1, otherwise .

Since for n odd all vertices have different color codes, ¢ is a locating coloring for
subdivision of origami graph O}, so that x (O;;) <5, for ’%-| odd, n = 5.
Subcase b. (odd n), for %-| even, n > 7.
Let ¢ be a coloring for a subdivision outer edge of origami graph O}, for _%-| even, and
n > 7, we make the partition I of V(Oj):
CG={wll<i<n})
C, = {uy| foroddi,3 <i<n}U{y|foreveni2 <i<n—1}U{x]|foroddi1<i<n};
Cs = {uy| foreveni,2 <i < %-| — 2} U {uy| foreveni, %-| +2<i<n—1} U {y for
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oddi,1<i<n}U{x]foreveni2 <i<n-—1};
C,; = {H] },
C5 = {HH_-' }

5

For [4] even, the color codes of all the vertices of V(O}) are:

0, for the second component,odd i,3 <i<n,n=7
for the third component, eveni,2 <i < [4] -2,n =7
for the third component, even i, %-| +2<i<n—-1,n>7
for the fourth component, i = 1
for the fifth component, i = [§]
e (1) = 2, for the third component, i = _%-| )
i—1, for the fourth component, 2 < i< [4]| -1, n > 7
n—i+1, for the fourth component, odd i, _%-| +1<i<nn>=7
_%-| —1, for the fourth component, i = _%-|
(8] —i,  for thefifth component, 1 <i < [§] -1, n>7
i— %], for the fifth component, '—2’-| +1<i<nn=7
1, otherwise .
0, for the second component,eveni,2 <i<n—-1,n=7
for the third component,odd i,1 <i<n,n=>7
2, for the first component, 1 <i < a: =7
(@) = i, for the fourth componenf,]_ <i<g [%—|, n=7
n—i+2 for the fourth component, [2] +1<i<nn >7
[5]—i+1 for the fifth component, 1 <i < [§],n>7
i— 8] +1 forthe fifth component, [4]| +1<i<u,n>7
1, otherwise .
0, for the first component, 1 < i< n,n =7
2, for the third component,i = [§] —1andi=n
i for the fourth component, 1 <i < _%-|, n=7yv
cr(w;)) ={n—i+1, for the fourth component, ,§-| +1<i<nn>=7
[%] —1, for the fifth component, 1 <i < @ 1L,n=7
i—[4]+1, for the fifthcomponent, [4| <i<n,n=>7
1, otherwise .
0, for the second component, odd g i<nn=>=7
for the third component, eveni,2 <i <n—-1,n>7
.1, for the fourth component, 1 <i < [5] -1,1n >7
olx) = @8 i+2, for the fourth component, _'E’-| <i<nn=>7

[§]—i+2, for the fifth component, 1 <i < [§],n>7
i—[14] 882, for the fifth component, [2] +1<i<nn>7
1, otherwise .

Since for n odd all vertices have different color codes, ¢ is a locating coloring for a

subdivision of the outer edge of arigami graph O}, so that x1.(O};) < 5, for "Z—’-| even,n > 7.
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Subcase c. (even n), for % odd, n = 6.

Let c be a coloring for a subdivision outer edge of origami graph O}, for § odd, and n = 6;
we make the partition I of V(O}) :

Ci={w1<i<E -1 u{w|§+1<i<n};

Co = {u;|forodd i,3 <i<n—1} U {v;|foreveni,2 <i < n} U {x|foroddi1<i<

n—1}; 35

C3 = {u;| foreveni,2 < i < n} U {y;|foroddi,1 <i<n—1} U{x;|foreveni2 <i<mn};
Cy={m};

Cs = {wy}.

For § odd, the color codes of all the vertices of V(O};) are:

0, for the second component, oddi,3<i<n—-1,n=>6
for the third component, eveni,2 <i < n,n =6
for the fourth component, i = 1
2, for the second component, i =1
o) =<i—1, for the fourth component, 2 < a; 5n>6
n—i—+1, for thefourth component,% +1<i<nn>=6
8 —i+1, for thefifth component,1 <i< 5,n>6
i—5, for the fifth component, 5 +1 <i <n,n > 6
1, otherwise .
2, for the first component, 1 <i <n,n > 6
0, for the second component, eveni,2 <i < n,n =6
for the third component, oddi,1 <i<n-—-1,n>6
() = i, for the fourth component, 1 < i < %, n=6
n—i+2, for the fourth component, 5 +1<i<nn >6
5 —i42, for the fifth component,1<i< 5 n>6
i— 541, for component, fifth component, 5§ +1<i<n,n>6
1, otherwise .
0, for the first component, 1 <i < §—-1,n > 6
for the first component, 5 +1<i<n,n>6
for the fifth component, i = 5
2, for the first component, i = 3
for the second component, i = n
crr(w;) =

i for the fourth component,1 <i < 5,n>6
n—i+1, forthe fourth component, 5 +1<i<nn=>6
5 —i+1, for the fifthcomponent,1<i< 5, n>6
i—%5+1, for the fifth component, § +1<i<nmn>6
1, otherwise .
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0, for the second component,odd i, 1 <i<n—-1,1n>6
for the third component, even 1,2 <i < n,n > 6
i+1, for the fourth component, 1 <i < §,n > 6

ern(x;) = ¢ n—i+2, for the fourth component, § +1<i<mn,n>6
5 —i42,  for the fifth component, 1 <i < £ —1,n > 6
i—5+ for the fifth component, 5 +1 < i <n,1n = 6
1, otherwise.

Since for n even all vertices have different color codes, ¢ is a locating coloring for a
subdivision of the outer edge of origami graph Oj, so that 1 (0}) < 5, for § odd, n > 6.

Subcase d. (even n), for % even, n > 4.

Let ¢ be a coloring of subdivision origami graph O}, for 5 even, and n > 4; we make the
partition I1of V(O;},):

G={wll<i<iluU{w|s+2<i<n};

Co ={u;|forodd i,3 <i<n—1} U {v;|foreveni,2 <i < n} U {x|foroddil<i<
n—1};

C3 = {u| foreveni,2 < i < n} U {y|foroddi, 1 <i <n—1} U{x;|foreveni2 <i<n};
Ca={m};

Cs = {w%
For § even the color codes of all the vertices of V(Oy) are:
0, for the second component, oddi,3 <i<n—-1,n=>4
for the third component, eveni,2 <i < n,n > 4
for the fourth component, i = 1
for the second component, i =1
1—1, for the fourth component,2 <i < 5 +1,n >4
eni(u) = n—i+1, for the fourth component, & +2<i<n,n >4
5 for the fifth component, i = 1
5 —i+2, for the fifth component,2 <i< 5+1,n >4
i—% —1, for the fifth component, § +2 <i<nn=>4
1, otherwise .
2, for the first component, 1 < i <n,n >4
0, for the second component, eveni,2 <i<n,n =>4
for the third component, oddi, 1 <i<n—-1,n>4
38 for the fourth component,1 <i < 5,n >4
ar(vi) = {m—i+2, for the fourth component, § +1<i< nn >4
2+i for the fifth component, i = 1
5 —i+43, for thefifthcomponent,2 <i< 5+4+1,n >4
i—5, for the fifth component, § +2 <i <n,n >4
1, otherwise .
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0, for the first component, 1 <i < %,n >4
for the first component, § +2 < i <n,n =>4
for the fifth component, i = § +1
2, for the first component, i = § +1
(w,) for the second component, i = n
crp(wp) =
T i for the fourth component, 1 <i < %, n=4
n—i+1, for the fourth component, § +1<i<n,n >4
5 —i+2, for the fifthcomponent,1<i< §,n=4

i—%, for the fifth component, § +2 <i <nn >4
1, otherwise .
0, for the second component,odd i, 1 <i<n—-1,n =>4

for the third component, even i,2 < i <n,n >4
i+1, for the fourth component, 1 <i < 3,n =6
cri(x;)={n—i+2, for the fourth component, 5 +1<i<nn=>4
% —i+3, for the fifth component, 1 < i < %,n >4
i— 5+ n for the fifth component, 5 +2 < i <n,n >4
1, otherwise.

Since for n even all vertices have different color codes, c is a locating coloring B- a
subdivision outer edge of origami graph O}, so that x1.(O};) <5, for § even, n > 4. This
completes the proof of Theorem 2. [0

Note that Figure 2 is an example locating coloring for a subdivision of the outer edge
of origami graph Of.

3. Conclusions

The proving steps of the two theorems we gave earlier show that the locating-
chromatic number of origami graphs Ou, x1.(On) is 4 for n = 3and 5 for n > 4; the
same result holds for a subdivision of the outer edge of origami graph Oj,. This research
can be continued so as to determine the locating-chromatic number for some certain
operations of origami graphs.
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