Sistem Identifikasi Tingkat Kematangan Buah Nanas Secara Non-Destruktif Berbasis Computer Vision
DOI:
https://doi.org/10.23960/jemit.v2i1.26Keywords:
Artificial neural networks, Computer Vision, PineappleAbstract
A computer vision-based non-destructive pineapple maturity level identification system has been realized. This research was conducted to create a system capable of identifying six indexes of pineapple maturity level. An artificial neural network is used as a classifier for the level of maturity pineapples. Artificial neural network input is a statistical parameter consisting of mean, standard deviation, variance, kurtosis, and skewness of RGB and HSV color models pineapple images. Statistical parameters of the color model with a Pearson correlation value greater than 0.5 were used to characterize pineapple images. A total of 360 pineapple images were used in the training process with a percentage of 75% of training data and 25% of validation data. An image segmentation process is applied to separate the pineapple image from the image background. The result of this research is a pineapple maturity level identification system consisting of software and hardware which is able to identify six indexes of pineapple maturity level with average accuracy value of 98,4%.
Downloads
References
Asnor, J. I., Rosnah, S., Wan, Z. W. H., & Badrul, H. A. B. (2013). Pineapple maturity recognition using rgb extraction. International Journal of Electrical and Computer Engineering, 7(6), 597–600.
Badan Pusat Statistika RI. (2019). Statistik Tanaman Buah-buahan dan Sayuran Tahunan Indonesia. Jakarta: Badan Pusat Statistika RI.
Bakar, B. A. H. A., Ishak, A. J., Shamsuddin, R., & Hassan, W. Z. W. (2013). Ripeness Level Classification for Pineapple. Journal of Theoretical and Applied Information Technology, 57(3), 587–593.
Fharadila, B., & Candra, F. (2019). Identifikasi kematangan buah nanas menggunakan metode jaringan saraf tiruan. Jom FKTEKNIK, 6(1), 1–7.
Gravetter, F. J., Wallnue, L. B., & Forzano, L. B. (2018). Essentials of Statistics for the Behavioural Sciences. Boston: Cenggae Learning.
Kementerian Pertanian RI. (2016). Outlook Nanas Komoditas Pertanian Sub Sektor Hortikultura. Jakarta: Kementerian Pertanian RI.
Kokoska, S., & Zwillinger, D. (2000). Standard Probability and Statistics Tables and Formulae. New York: Chapman & Hall/CRC.
Mazen, F. M. A., & Nashat, A. A. (2019). Ripeness classification of bananas using an artificial neural network. Arabian Journal for Science and Engineering, 44(8), 6901–6910. https://doi.org/10.1007/s13369-018-03695-5
Mia, M. R., Mia, M. J., Majumder, A., Supriya, S., & Habib, M. T. (2019). Computer vision based local fruit recognition. International Journal of Engineering and Advanced Technology, 9(1), 2810–2820. https://doi.org/10.35940/ijeat.A9789.109119
Riduwan. (2003). Dasar Dasar Statistika. Bandung: Alfa Beta.
Shamsudin, R., Daud, W. R. W., Takriff, M. S., & Hassan, O. (2009). Chemical compositions and thermal properties of the josapine variety of pineapple fruit (ananas comosus l.) in different storage systems. 34(2011), 1558–1572. https://doi.org/10.1111/j.1745-4530.2009.00510.x
Umam, K., & Negara, B. S. (2016). Deteksi obyek manusia pada basis data video menggunakan metode background subtraction dan operasi morfologi. Jurnal CoreIT (Jurnal Hasil Penelitian Ilmu Komputer Dan Teknologi Informasi), 2(2), 31. https://doi.org/10.24014/coreit.v2i2.2391
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Journal of Energy, Material, and Instrumentation Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.