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Welcome from the General Chairs 

ICDAR 2011 
 
 
   On behalf of the ICDAR2011 organizing committee, we are honored and delighted to welcome you to 
Beijing for the Eleventh International Conference on Document Analysis and Recognition (ICDAR 2011). 
As an ancient capital city of one of the world’s oldest civilizations, Beijing is steeped in rich history and 
culture. At the same time, it is the vibrant center of education, science and technology of modern China. 
As such, Beijing is a perfect venue for this conference. We invite you to take advantage of the excellent 
technical programs while at the same time experience all that this great city has to offer. 
 
   As one of the flagship conferences of the International Association for Pattern Recognition (IAPR), 
ICDAR continues to reflect the vitality and impact of the worldwide document analysis research 
community. This year the conference received 422 submissions – a close match to the record 430 
received in ICDAR2009. Out of these about 21% were accepted as oral presentations and an additional 
45% as poster presentations. The conference further offers a record number of five co-located workshops 
and seven tutorials, providing focused forums on an array of topics of increasing importance. Finally, for 
the first time, we are offering a Doctoral Consortium, thanks to the strong leadership of IAPR TC-10 
(Graphics Recognition) and TC-11 (Reading Systems). This consortium will provide an opportunity for 
Ph.D. students, who represent the future of our field, to test their research ideas and receive valuable 
feedback and career guidance from the community at large. 
 
   We would like to extend our warmest congratulations to Prof. Sargur Srihari, who received this year’s 
IAPR/ICDAR Outstanding Achievement Award for his outstanding and continued contributions to 
research and education in handwriting recognition and document analysis, and services to the 
community; and to D. Masakazu Iwamura who received the IAPR/ICDAR Young Investigator Award for 
his outstanding contributions to camera-based document analysis and document image retrieval. Along 
with the past winners, these are the people who make our community thrive, and we owe them all a deep 
debt of gratitude. 
 
   A large conference like this cannot happen without the dedicated effort from the many volunteer 
organizers. We would like to thank the three Program Chairs, Prof. Chew Lim Tan, Prof. Daniel Lopresti 
and Prof. Thomas Breuel, for their diligent work and impeccable judgment in putting together a top notch 
technical program, and all the committee chairs for contributing to an exceptionally well-rounded 
conference program. We would like to thank our generous sponsors for their continued support of our 
research community. Special thanks go to the Executive Chairs, Prof. Cheng-Lin Liu and Prof. 
Changsong Liu, who have been the true driving force behind every step of the preparations leading to the 
conference. Finally, we would like to express our heart felt thanks to the team of local organizers at the 
Center for Intelligent Image and Document Information Processing (CIDIP) of Tsinghua University, the 
Institute of Automation of Chinese Academy of Sciences (CASIA), the Chinese Association of 
Automation(CAA) and the Center for International Scientific Exchanges of CAS, who devoted countless 
hours and effort to ensure that no important detail is left unattended to. 
 
   We wish you all an exciting and fruitful stay in Beijing! 
 
 
Xiaoqing Ding 
Hiromichi Fujisawa 
Jianying Hu 
General Chairs, ICDAR2011 
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Welcome from the Program Chairs 

ICDAR 2011 
 
 
   The technical program is, of course, the foundation of any conference, and ICDAR 2011 is no 
exception. As the Program Chairs, we take primary responsibility for deciding the program, but its content 
and quality derive from the vision and hard work of a large number of people. We begin by thanking the 
local organizing committee, the Executive Chairs, and the General Chairs for providing such an attractive 
venue for ICDAR 2011. Beijing is the perfect city for ICDAR, and we have no doubt that this in part 
explains the large number of submissions we received for the conference. We also wish to thank the 
authors who chose ICDAR as the event where they want to present the results of their research. There 
are other opportunities for publishing work in our field, but none, we believe, matches ICDAR for its 
breadth, depth, impact, and quality. Finally, the Program Committee and the Reviewers deserve 
tremendous thanks for the critical job they did in helping to select the papers for this year’s conference. 
Their names are listed on the pages that follow as a small measure of our deep appreciation. 
 
   As the General Chairs have noted, we received a total of 422 submissions to the conference. We were 
joined by 79 distinguished members of the international research community from 21 different countries 
who served as the Program Committee. Reviews were assigned to Program Committee members 
through a bidding process based on technical expertise and interests, with each member receiving an 
average of 15 papers. Between the Program Committee and outside Reviewers, a total of 1,269 reviews 
were collected, with the vast majority of submissions receiving three reviews. These formed the basis for 
our acceptance decisions. 
 
   The final program is organized into three parallel tracks incorporating 18 oral sessions, three poster 
sessions, three keynote talks, one panel session, and the results of the ICDAR competitions spread over 
three days. A total of 33 different countries are represented in the technical program. China and the 
United States are nearly tied for the largest number of authors, followed by Japan, France, India and 
Germany. 
 
   While in one sense our job as the Program Chairs is done after the papers have been selected and the 
program set, we eagerly look forward to seeing all of the members of our community in Beijing, and we 
hope that you find ICDAR 2011 an enjoyable and valuable experience. 
 
 
Chew Lim Tan 
Daniel Lopresti  
Thomas Breuel 
Program Chairs, ICDAR 2011 
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A Semi-Supervised Ensemble Learning Approach for Character Labeling with
Minimal Human Effort

Szilárd Vajda, Akmal Junaidi, Gernot A. Fink
Department of Computer Science

TU Dortmund
Dortmund, Germany

{szilard.vajda,akmal.junaidi,gernot.fink}@udo.edu

Abstract—One of the major issues in handwritten character
recognition is the efficient creation of ground truth to train
and test the different recognizers. The manual labeling of the
data by a human expert is a tedious and costly procedure.
In this paper we propose an efficient and low-cost semi-
automatic labeling system for character datasets. First, the data
is represented in different abstraction levels, which is clustered
after in an unsupervised manner. The different clusters are
labeled by the human experts and finally an unanimity voting
is considered to decide if a label is accepted or not. The
experimental results prove that labeling only less than 0.5% of
the training data is sufficient to achieve 86.21% recognition
rate for a brand new script (Lampung) and 94.81% for
the MNIST benchmark dataset, considering only a K-nearest
neighbor classifier for recognition.

Keywords-semi-supervised character labeling; clustering, en-
semble learning; Lampung characters;

I. MOTIVATION

During the last few years the focus in handwritten character
recognition has shifted from Arabic digits [1], Chinese [2]
and Kanji handwritten character recognition toward scripts
like Farsi [3], Devnagari, Telegu, Oriya, Bengali [4], [5] etc.

Such a broad interest in these ancient scripts shows the
endeavor of some countries to preserve these scripts as being
a relevant part of their cultural heritage. Our interest is to
help such initiatives by proposing to recognize an Indonesian
script, the Lampung [6], [7]. In our best knowledge, there is
little or no work available regarding this Indic related script.

The script is called “kaganga” which comes from the first 3
letters, ka, ga and nga respectively. Some districts in Sumatra
Island, Indonesia, are having traditional scripts which became
a remarkable trait of those areas. All those scripts were not
genuine scripts of the native but originated from the ancient
script in South India [6], [7]. The Lampung script is one of
the scripts in Sumatra Island which was inherited from this
ancient script. More precisely, it descended of Devnagari
script [4], a cluster of Brahmi script [7] from South India.

Beside the Devnagari script as a core, the Arabic script
structure [7] also influenced the Lampung script. The concept
of developing a sound syllable using diacritics on the top
and the bottom in Arabic writing system is adopted as well.

Figure 1: A Lampung document

Furthermore, the Lampung script has another concept by
putting diacritics on the right side of a letter.

The Lampung script is not a cursive writing system. It
has 20 main letters with 11 diacritics putting on one of three
possible positions around the letter and 6 punctuation marks.
A Lampung document sample can be seen in Fig.1. Some
Lampung characters are depicted in Fig.3.

Recognizing such an unknown script as Lampung is a real
challenge as there is no labeled data or not even synthetic
data available to train the different character recognizers.

The different database collecting initiatives [1], [4], [8]
described in the literature over the years address this consid-
ering mainly manually labeled sets, involving a tremendous
human effort which can just grow with the amount of data
available. As stated by Stamatopoulos et al. [9] the efficient
ground truth for document image processing should be a
“quick and low cost” solution.

In order to reduce the human effort from the processing
chain, we propose to label the character data automatically,

2011 International Conference on Document Analysis and Recognition

1520-5363/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDAR.2011.60
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Figure 2: General overview of the proposed semi-automatic labeling procedure

considering the least possible human interaction, involving
different complementary data representations, unsupervised
clustering, minimal human knowledge and ensemble learning.
Such semi-automatic labeling strategy can help to create
easily new character datasets and provide the scientific
community with new benchmark datasets.

The rest of the paper is organized as follows. Section
II. describes in details the proposed labeling strategy. Next,
Section III. presents a broad description of the datasets used
in the experiment. Finally, a summary of the current paper
can be found in Section IV.

II. SEMI-SUPERVISED CHARACTER LABELING

Accurate ground truth creation is mandatory to train
and test the different machine learning solutions proposed
in document analysis [9]. To produce accurate results a
huge and accurately labeled dataset is necessary implying
tremendous work load and costs. The goal of the semi-
supervised character labeling is to produce such amount of
data without involving tedious labeling processes (performed
by humans) and achieve that goal with reasonable costs.

A. General Overview

The semi-automatic labeling system described hereinafter
is a 3 stage process to produce labels for unknown character
shapes. The overall process is depicted in Fig. 2. The first
stage of the process involves 3 different data representations
starting with the raw pixel image, going through some data
reduction process by PCA (Principal Component Analysis)
and ending up with another data reduction, the so-called
autoencoder network proposed by Hinton et al. [10]. These
different data representations are then clustered using un-
supervised clustering and those clusters are labeled by the

human expert. The cluster identifiers are derived from the
label of the cluster centroid. Finally, in the last stage a voting
scheme is implemented to decide for the final label. Only
those samples are labeled where there is unanimity regarding
the label choice.

The main distinction between other semi-supervised learn-
ing strategies [11] and our method lies in the fact that we
do not classify based on the votes, but we assign labels only
to the training data and the final classifier is built on top of
the inferred labels.

B. Different data abstraction levels

In order to implement ensemble learning type voting
mechanism the ideal is to find complementarity [11] between
the data representations and classifiers involved in the scheme.

As we will use the same clustering strategy (details to be
found in Subsection II-C) we focus our effort to consider
different abstraction levels for our data representation (see
Fig. 2b).

Our first choice is the raw binarized image, considering as
input the different pixel values of the image. Even though this
representation seems to be rather simple, it has been used with
success for digit recognition [1], [5]. Such a representation is
advised for small size images together with images centered
around their gravity center and normalized with respect to
size.

The second choice was the reduction of the original pixel
data using PCA, an orthogonal linear transformation such
that the greatest variance lies in the first components. This
well known data reduction strategy allows to cope with the
correlated pixel values from the original representation.

Finally, we considered a rather new data reduction strategy
proposed by Hinton et al. [10], where the data reduction is
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optimized with respect to the reconstruction performances
of the so-called autoencoder network. The idea behind is to
train a multilayer neural network with a reduced size hidden
layer to reconstruct the original input. For more details please
refer to [10]. The authors claim that this reduction produces
much better reconstructions than a PCA would do. For our
purpose the output of this hidden layer was considered as
the new data representation.

The PCA and the autoencoder are two different data
strategies focusing on data reduction, hence a certain level
of complementarity can be assumed. The more sophisticated
data representations we consider the more orthogonal data
representation could be derived, thus more complementarity
can emerge from the data.

C. Unsupervised clustering and manual labeling

Once we have the different data representations described
in details in Subsection II-B, we cluster in an unsupervised
manner the different data. For this purpose the general Lloyd
algorithm1 was selected. The only parameter of this algorithm
is the k defining the number of clusters into which the
partition should separate the data samples. This parameter is
regulating the human effort involved in this semi-automatic
process. The bigger the k is the more clusters need to be
labeled.

Once the unsupervised clustering is done, each sample
will “inherit” the label of the cluster centroid in which it
is partitioned (see Fig. 2c). The manual labeling effort is
reduced to label the centroids of each cluster, exactly k
images for each type of data representation.

In our scenario this will imply 3k labeling operations. For
datasets consisting of several thousand of samples such a
labeling (k < 100) can be considered as a negligible effort.
There is no restriction to consider different cluster numbers
for the different data representations. The more cluster we
have the more fine results can be achieved.

The method itself does not exclude the usage of more
complex/sophisticated clustering algorithms, however such
thorough analysis of these algorithms is beyond the scope
of the current paper.

D. Voting

The clustering and the labeling will allocate a specific
label to each sample from our data. The goal of the voting
scheme [11] is to decide for a final label for each data sample
(see Fig. 2d).

Assume that the labels are given as a d-dimensional
binary vectors [li,1, . . . , li,d]T ∈ {0, 1}d, i = 1, . . . C, where
li,j = 1 if classifier Ci labels a samples p in class ωj and 0
otherwise.

The unanimity vote will result in an ensemble decision
for the class ωk if

1We use the name “Lloyd algorithm” to refer to k-means clustering.

C∑

i=1

li,k = C. (1)

For simple majority voting the condition would change to
C∑

i=1

li,k ≥
[
C

2

]
+ 1. (2)

This voting scheme will allow to decide for the final label
of the data. In our voting scenario, the unanimity vote (see
Eq. 1) counts 3 similar votes, while for the simple majority
votes it is sufficient to have 2 similar classifiers voting for
the same label.

E. Recognition

The voting scheme (unanimity) will provide a label for
some image samples from the dataset. Only these images
will be further considered in our experiments, mentioned as
training data. For recognition a K-nearest neighbor algorithm
is considered. For each character pattern the closest training
samples’ labels will be assigned.

Our primary goal was not to achieve the best scores as
possible, but rather to show the great potential of the semi-
automatic labeling. More powerful tools like neural networks
[1], [5] would provide even better recognition scores.

III. EXPERIMENTS

To prove the efficiency of the proposed labeling we
considered the Lampung character dataset and the well known
MNIST digit dataset [1].

A. Lampung character dataset

The Lampung dataset used in our experiments was derived
from a data collection written by 82 high school students
from Bandar Lampung, Indonesia. The Lampung texts are
created as transcriptions of some fairy tales. The media
to perform their handwriting was an A4 paper that was
designed to provide a space for the Lampung handwriting
with a small trailing part for filling the contributors identity.
Every handwritten document was created by only one writer,
hence producing a complex, multi-scriptor dataset. Each
handwritten sheet was scanned at 300 dpi. Such a document
can be seen in Fig.1.

Initially, the image documents were binarized using
Niblack’s method with a local thresholding. The results of
this binarization became the sources for producing connected
components (CCs) that ultimately considered as the main
representations of the Lampung characters. In order to discard
the noise, the clutter and the different side effects coming
from the binarization the extracted CCs were filtered based
on size, area, aspect ratio, pixel density [12]. Finally, each
CC image was linearly normalized into 20x20 pixel image.

From 82 image documents, the filtering step succeeded and
generated 35, 193 CCs images in total. These CCs contain

261



Figure 3: Some Lampung characters from a text paragraph

18 main characters (i.e. some labeled character samples can
be seen in Fig.3), where the letters “ra” and “gha” are not
to be found. Both letters have two elements, so that the CC
extraction algorithm defined each element as a separated
letter.

We separated from each available document the first 20
characters for test purpose, in total 1, 640 characters which
were labeled manually. The remaining 33, 553 character
samples were considered for training purpose without any
label attached to them.

B. MNIST digit dataset

MNIST [1] is a well known benchmark dataset containing
separated Arabic digits. The images coming mainly from
census forms, are size normalized to 28x28 gray level images.
The dataset contains 60, 000 and 10, 000 images for training
and test, respectively. For our experiments, we used the
training set but without any label information. The selection
of this dataset was two fold: a) labels are available and b) we
can directly compare our results with similar, state-of-the-art
methods.

C. Results

For the raw image representation 20x20 and 28x28 size
images were considered for Lampung and MNIST, respec-
tively. In the PCA reduction process, the 80 most relevant
principal components were used. This choice was motivated
by the fact that similar parameter selection is reported in
[1], so a direct comparison is possible. For the autoencoder
network’s bottleneck also a 80 size layer was considered for
the same reasoning.

The arbitrary selections of k = 54 and k = 80 for the
k-means clustering of the Lampung and MNIST can be
motivated by two facts. First, the larger the cluster number
we consider, the larger intra class variance will be obtained.
Secondly, this parameter controls the size of the data to
be labeled. In our case the human experts should label
162 and 240 images for the Lampung and MNIST data,
respectively. In percentages this would be 0.48% for the
Lampung characters and 0.4% for MNIST.

ka∗ nga∗ pa∗ ta da na∗ ca∗ nya ya wa ne.∗

ka∗ 360 0 0 2 1 0 0 0 0 0 4
nga∗ 3 256 1 8 0 4 0 0 0 0 0
pa∗ 1 0 373 1 0 0 0 0 0 0 3
ta 9 14 0 133 2 0 0 0 0 0 3
da 8 1 1 19 66 1 0 0 0 0 8

na∗ 6 43 0 0 0 46 0 0 0 0 0
ca∗ 2 0 6 0 0 0 46 0 0 0 0
nya 0 13 3 2 0 2 0 0 6 0 0
ya 1 1 3 0 0 0 1 0 33 0 0
wa 1 5 2 5 0 0 0 0 0 0 0

ne.∗ 10 6 6 5 1 0 1 0 1 0 93

Table I: Confusion matrix for Lampung using a K-nearest
neighbor (K = 1)

For the Lampung character dataset 33, 553 image samples
were considered for the semi-automatic labeling. After the
final voting in 45.44% only 2 classifiers agreed, while in
45.99% all 3 classifiers agreed upon the label. The remaining
8.57% cases were undecidable as each classifier voted for
a different label. Considering only the samples where there
was an unanimity on the selected labels, the result of the
K-nearest neighbor was 60% for the manually labeled test
set. This rather low recognition score is due to the facts
that the labels agree only in 45.99% of the cases, and the
K-nearest classifier is sensitive to distortions and can not
distinguish between almost identical character shapes.

Analyzing the confusions we realized the fact that some
classes are really similar and only just short strains differ in
the different characters. Re-labeling and merging the initial
20 classes into 11 classes, the results improved considerably.

The characters ka( ), ga( ) and sa( ) were merged into
class ka∗. The characters nga( ), a( ) and la( ) were
merged into class nga∗. The characters pa( ), ba( ) and
ma( ) were merged into class pa∗. The characters na( ) and
ja( ) were merged into class na∗. The characters ca( ) and
ha( ) were merged into class ca∗. Similarly, the characters
nengen( ) and noise( ) were merged into class ne.∗.

The unanimity vote (Eq. 1) increased to 75.40%, while
the votes for only 2 classifiers (Eq. 2) dropped to 22.27%.
In that case the recognition scores on the test set also ame-
liorated considerably. The good recognition score obtained
considering only 11 classes achieved 86.21%. A detailed
result table with confusions can be seen in Table I.

For MNIST data 60, 000 image samples were considered
in the semi-automatic labeling. After the final vote in 37.69%
of cases only 2 classifiers agreed (Eq. 2), in 54.76% of the
cases there was an unanimity (Eq. 1) about the label’s choice
and in the remaining 7.55% the classifiers voted differently.
For the unanimously voted patterns the correct labeling was
96.37%. This error measurement was possible due to the
available labels for the training set.

Considering only the data where all of the classifiers
agreed (Eq. 1), we used the simple K-nearest neighbor
to measure the quality of the labeling performed on our
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0 1 2 3 4 5 6 7 8 9

0 971 2 0 0 0 1 3 1 2 0
1 0 1130 3 0 1 0 1 0 0 0
2 13 4 991 2 0 0 3 10 9 0
3 6 2 10 942 0 11 0 10 19 10
4 1 9 2 0 921 0 9 1 2 37
5 27 1 0 32 2 770 19 2 29 10
6 10 2 0 0 2 2 942 0 0 0
7 1 20 9 0 7 0 0 974 0 17
8 15 2 7 19 5 8 5 6 901 6
9 13 9 3 5 14 1 1 15 9 939

Table II: Confusion matrix for MNIST using a K-nearest
neighbor (K = 1)

data. The accuracy of this simple and basic classifier already
produced 94.81% (K=1) and 94.77% (K=3). A detailed
result table with confusions can be seen in Table II.

This result is directly comparable with the result (95.0%)
reported by LeCun et al. [1] for K-nearest neighbor classifier.
While they used the label knowledge for all the 60, 000
training samples, in our case just 240 “labelings” were
necessary.

The confusions between classes like: (4,9), (3,5,8), (7,9)
can be explained with the poor capabilities of the K-nearest
neighbor and the underlaying distance metric used in our
experiment, namely the Euclidean distance.

IV. CONCLUSION

In this paper a new strategy for separated character labeling
is presented. To create new benchmark character datasets we
propose – instead of labeling the data manually – a new semi-
automatic method which is fast and limited to a negligible
amount of human interaction.

The method considers as input the images to be labeled
and different data abstractions like the raw image, Principal
Components and an autoencoder network are used the
represent the data. The different representations are than
clustered in an unsupervised manner. The only labeling
effort is made to label the clusters based on their centroids.
Finally, to exploit the complementarity of the different data
representations an ensemble voting scheme will decide for
the labels based on unanimity vote.

The 86.21% recognition rate for Lampung character -to
our best knowledge being the very first attempt to recognize
this script - and 94.81% for MNIST considering only 162
and 240 “labeling operations”, show the importance of the
method and provides a reliable labeling framework to handle
unknown datasets.

The more complex feature representations are used in data
representation combined with more sophisticated unsuper-
vised clustering techniques the more precise data separation
can be achieved which can lead to more accurate labeling.
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