LAPORAN

PENELITIAN DOSEN PEMULA

UNIVERSITAS LAMPUNG

SINTESIS BAHAN Na₂FeSiO₄ BERBASIS SILIKA SEKAM PADI UNTUK APLIKASI KATODE GENERASI BARU PADA BATERAI *RECHARGEABLE* Na-ION

PROGRAM STUDI FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS LAMPUNG 2021

Judul Penelitian Sintesis Bahan Na2FeSiO4 Berbasis Silika Sekam Padi Untuk Aplikasi Katode Generasi Baru Pada Baterai Rechargeable Na-Ion Manfaat sosial ekonomi Memanfaatkan limbah sekam padi menjadi bahan baku pembuatan material katode Ketua Peneliti . a. Nama Lengkap Agus Riyanto, S.Si., M.Sc. b. NIDN .0022088605 c. Jabatan Pungsional Asisten Ahli d. Program Studi Fisika e. Sinta ID .6115571 f. Nomor HP .085669366744 g. Alamat surel (e-mail) agus.rivanto@fmipa.unila.ac.id Anggota Peneliti (1) . a. Nama Lengkap Drs. Syafriadi, M.Si. b. Jabatan Pungsional Lektor c. Sinta ID .6683004 d. Program Studi Fisika Jumlah mahasiswa yang terlibat 1 orang Jumlah staf yang terlibat - Lokasi kegiatan Laboratorium Fisika Material Lama Kegiatan 6 bulan Biaya Penelitian Rp. 15.000.000,- Sumber dana LPPM Universitas Lampung	PENELITIAN DOSE	IN PEMULA UNIVERSITAS LAMPUNG
Ketua Peneliti a. Nama Lengkap : Agus Riyanto, S.Si., M.Sc. b. NIDN : 0022088605 c. Jabatan Fungsional : Asisten Ahli d. Program Studi : Fisika e. Sinta ID : 6115571 f. Nomor HP : 085669366744 g. Alamat surel (e-mail) : agus rivanto@fimipa.unila.ac.id Amggota Peneliti (1) : a. Nama Lengkap : Drs. Syafriadi, M.Si. b. Jabatan Fungsional : Lektor c. Sinta ID : 6683004 d. Program Studi : Fisika Jumlah mahasiswa yang terlibat : 1 orang Jumlah staf yang terlibat : 1 orang Jumlah staf yang terlibat : Laboratorium Fisika Material Lama Kegiatan : 6 bulan Biaya Penelitian : Rp. 15.000.000,- Sumber dana : LPPM Universitas Lampung	Judul Penelitian Manfaat sosial ekonomi	: Sintesis Bahan Na ₂ FeSiO ₄ Berbasis Silika Sekam Padi Untuk Aplikasi Katode Generasi Baru Pada Baterai <i>Rechargeable</i> Na-Ion : Memanfaatkan limbah sekam padi menjadi
Ketua Penelitia. Nama Lengkap: Agus Riyanto, S.Si., M.Sc.b. NIDN: 0022088605c. Jabatan Fungsional: Asisten Ahlid. Program Studi: Fisikae. Sinta ID: 6115571f. Nomor HP: 085669366744g. Alamat surel (e-mail): agus riyanto@fmipa.unila.ac.idAmggota Peneliti (1)a. Nama Lengkap: Drs. Syafriadi, M.Si.b. Jabatan Fungsional: Lektorc. Sinta ID: 6683004d. Program Studi: FisikaJumlah mahasiswa yang terlibat: 2 orangJumlah staf yang terlibat: 1 orangJumlah staf yang terlibat: Laboratorium Fisika MaterialLokasi kegiatan: 6 bulanBiaya Penelitian: Rp. 15.000.000,-Sumber dana: LPPM Universitas Lampung		bahan baku pembuatan material katode
a. Nama Lengkap : Agus Riyanto, S.Si., M.Sc. b. NIDN : 0022088605 c. Jabatan Fungsional : Asisten Ahli d. Program Studi : Fisika e. Sinta ID : 6115571 f. Nomor HP : 085669366744 g. Alamat surel (e-mail) : agus.rivanto@fmipa.unila.ac.id Anggota Peneliti (1) a. Nama Lengkap : Drs. Syafriadi, M.Si. b. Jabatan Fungsional : Lektor c. Sinta ID : 6683004 d. Program Studi : Fisika Jumlah mahasiswa yang terlibat : 2 orang Jumlah staf yang terlibat : 1 orang Jumlah staf yang terlibat : - Lokasi kegiatan : Laboratorium Fisika Material Lama Kegiatan : Rp. 15.000.000,- Sumber dana : LPPM Universitas Lampung	Ketua Peneliti	
 b. NIDN : 0022088605 c. Jabatan Fungsional : Asisten Ahli d. Program Studi : Fisika e. Sinta ID : 6115571 f. Nomor HP : 085669366744 g. Alamat surel (e-mail) : agus.riyanto@fmipa.unila.ac.id Anggota Peneliti (1) a. Nama Lengkap : Drs. Syafriadi, M.Si. b. Jabatan Fungsional : Lektor c. Sinta ID : 6683004 d. Program Studi : Fisika Jumlah mahasiswa yang terlibat : 2 orang Jumlah mahasiswa yang terlibat : 1 orang Jumlah staf yang terlibat : - Lokasi kegiatan : Laboratorium Fisika Material Lama Kegiatan : Rp. 15.000.000,- Sumber dana : LPPM Universitas Lampung 	a. Nama Lengkap	: Agus Riyanto, S.Si., M.Sc.
 c. Jabatan Fungsional : Asisten Ahli d. Program Studi : Fisika e. Sinta ID : 6115571 f. Nomor HP : 085669366744 g. Alamat surel (e-mail) : agus.rivanto@fmipa.unila.ac.id Anggota Peneliti (1) a. Nama Lengkap : Drs. Syafriadi, M.Si. b. Jabatan Fungsional : Lektor c. Sinta ID : 6683004 d. Program Studi : Fisika Jumlah mahasiswa yang terlibat : 2 orang Jumlah mahasiswa yang terlibat : 1 orang Jumlah staf yang terlibat : - Lokasi kegiatan : Laboratorium Fisika Material Lama Kegiatan : 6 bulan Biaya Penelitian : Rp. 15.000.000,- Sumber dana : LPPM Universitas Lampung 	b. NIDN	: 0022088605
d. Program Studi : Fisika e. Sinta ID : 6115571 f. Nomor HP : 085669366744 g. Alamat surel (e-mail) : agus.rivanto@fmipa.unila.ac.id Anggota Peneliti (1) : agus.rivanto@fmipa.unila.ac.id a. Nama Lengkap : Drs. Syafriadi, M.Si. b. Jabatan Fungsional : Lektor c. Sinta ID : 6683004 d. Program Studi : Fisika Jumlah mahasiswa yang terlibat : 2 orang Jumlah staf yang terlibat : 1 orang Jumlah staf yang terlibat : - Lokasi kegiatan : Laboratorium Fisika Material Lama Kegiatan : 6 bulan Biaya Penelitian : Rp. 15.000.000,- Sumber dana : LPPM Universitas Lampung	c. Jabatan Fungsional	: Asisten Ahli
e. Sinta ID : 6115571 f. Nomor HP : 085669366744 g. Alamat surel (e-mail) : agus.riyanto@fmipa.unila.ac.id Anggota Peneliti (1) a. Nama Lengkap : Drs. Syafriadi, M.Si. b. Jabatan Fungsional : Lektor c. Sinta ID : 6683004 d. Program Studi : Fisika Jumlah mahasiswa yang terlibat : 2 orang Jumlah alumni yang terlibat : 1 orang Jumlah staf yang terlibat : - Lokasi kegiatan : Laboratorium Fisika Material Lama Kegiatan : 6 bulan Biaya Penelitian : Rp. 15.000.000,- Sumber dana : LPPM Universitas Lampung	d. Program Studi	: Fisika
f. Nomor HP : 085669366744 g. Alamat surel (e-mail) : agus.riyanto@fmipa.unila.ac.id Anggota Peneliti (1) a. Nama Lengkap : Drs. Syafriadi, M.Si. b. Jabatan Fungsional : Lektor c. Sinta ID : 6683004 d. Program Studi : Fisika Jumlah mahasiswa yang terlibat : 2 orang Jumlah alumni yang terlibat : 1 orang Jumlah staf yang terlibat : - Lokasi kegiatan : Laboratorium Fisika Material Lama Kegiatan : 6 bulan Biaya Penelitian : Rp. 15.000.000,- Sumber dana : LPPM Universitas Lampung	e. Sinta ID	: 6115571
g. Alamat surel (o-mail) : agus.riyanto@fmipa.unila.ac.id Anggota Peneliti (1) a. Nama Lengkap : Drs. Syufriadi, M.Si. b. Jabatan Fungsional : Lektor c. Sinta ID : 6683004 d. Program Studi : Fisika Jumlah mahasiswa yang terlibat : 2 orang Jumlah alumni yang terlibat : 1 orang Jumlah staf yang terlibat : - Lokasi kegiatan : Laboratorium Fisika Material Lama Kegiatan : 6 bulan Biaya Penelitian : Rp. 15.000.000,- Sumber dana : LPPM Universitas Lampung	f. Nomor HP	: 085669366744
Anggota Peneliti (1)a. Nama Lengkap: Drs. Syafriadi, M.Si.b. Jabatan Fungsional: Lektorc. Sinta ID: 6683004d. Program Studi: FisikaJumlah mahasiswa yang terlibat: 2 orangJumlah alumni yang terlibat: 1 orangJumlah staf yang terlibat: -Lokasi kegiatan: Laboratorium Fisika MaterialLama Kegiatan: 6 bulanBiaya Penelitian: Rp. 15.000.000,-Sumber dana: LPPM Universitas Lampung	g. Alamat surel (e-mail)	: agus.riyanto@fmipa.unila.ac.id
a. Nama Lengkap : Drs. Syafriadi, M.Si. b. Jabatan Fungsional : Lektor c. Sinta ID : 6683004 d. Program Studi : Fisika Jumlah mahasiswa yang terlibat : 2 orang Jumlah alumni yang terlibat : 1 orang Jumlah staf yang terlibat : - Lokasi kegiatan : Laboratorium Fisika Material Lama Kegiatan : 6 bulan Biaya Penelitian : Rp. 15.000.000,- Sumber dana : LPPM Universitas Lampung	Anggota Peneliti (1)	
 b. Jabatan Pungsional c. Sinta ID d. Program Studi Fisika Jumlah mahasiswa yang terlibat 2 orang Jumlah alumni yang terlibat 1 orang Jumlah staf yang terlibat - Lokasi kegiatan Laboratorium Fisika Material Lama Kegiatan 6 bulan Biaya Penelitian Rp. 15.000.000,- Sumber dana LPPM Universitas Lampung 	a. Nama Lengkap	: Drs. Syafriadi, M.Si.
c. Sinta ID : 6683004 d. Program Studi : Fisika Jumlah mahasiswa yang terlibat : 2 orang Jumlah alumni yang terlibat : 1 orang Jumlah staf yang terlibat : - Lokasi kegiatan : Laboratorium Fisika Material Lama Kegiatan : 6 bulan Biaya Penelitian : Rp. 15.000.000,- Sumber dana : LPPM Universitas Lampung	b. Jabatan Fungsional	: Lektor
d. Program Studi : Fisika Jumlah mahasiswa yang terlibat : 2 orang Jumlah alumni yang terlibat : 1 orang Jumlah staf yang terlibat : - Lokasi kegiatan : Laboratorium Fisika Material Lama Kegiatan : 6 bulan Biaya Penelitian : Rp. 15.000.000,- Sumber dana : LPPM Universitas Lampung	c. Sinta ID	: 6683004
Jumlah mahasiswa yang terlibat : 2 orang Jumlah alumni yang terlibat : 1 orang Jumlah staf yang terlibat : - Lokasi kegiatan : Laboratorium Fisika Material Lama Kegiatan : 6 bulan Biaya Penelitian : Rp. 15.000.000,- Sumber dana : LPPM Universitas Lampung	d. Program Studi	: Fisika
Jumlah alumni yang terlibat: 1 orangJumlah staf yang terlibat: -Lokasi kegiatan: Laboratorium Fisika MaterialLama Kegiatan: 6 bulanBiaya Penelitian: Rp. 15.000.000,-Sumber dana: LPPM Universitas Lampung	Jumlah mahasiswa yang terlih	at : 2 orang
Jumlah staf yang terlibat : - Lokasi kegiatan : Laboratorium Fisika Material Lama Kegiatan : 6 bulan Biaya Penelitian : Rp. 15.000.000,- Sumber dana : LPPM Universitas Lampung	Jumlah alumni yang terlibat	: 1 orang
Lokasi kegiatan: Laboratorium Fisika MaterialLama Kegiatan: 6 bulanBiaya Penelitian: Rp. 15.000.000,-Sumber dana: LPPM Universitas Lampung	Jumlah staf yang terlibat	2-
Lama Kegiatan : 6 bulan Biaya Penelitian : Rp. 15.000.000,- Sumber dana : LPPM Universitas Lampung	Lokasi kegiatan	: Laboratorium Fisika Material
Biaya Penelitian : Rp. 15.000.000,- Sumber dana : LPPM Universitas Lampung	Lama Kegiatan	: 6 bulan
Sumber dana : LPPM Universitas Lampung	Biaya Penelitian	: Rp. 15.000.000,-
	Sumber dana	: LPPM Universitas Lampung

HALAMAN PENGESAHAN

Bandarlampung, 17 September 2021

Mengetahui. Dekan FMIPA Universitas Lampung

NIP 197407052000031001

Dr. Eng. Suripto Dwi Yuwono, M.T.

Sec. 23

Ketua Peneliti,

in

Agus Riyanto, S.Si., M.Sc. NIP 198608222015041002

Menyetujui, LPPM Universitas Lampung, ha Afriani, D.E.A 5101993032008

DAFTAR ISI

HALAMAN PENGESAHAN	i	
DAFTAR ISI	ii	
RINGKASAN	iii	
BAB I. PENDAHULUAN	1	
1.1 Latar Belakang	1	
1.2 Permasalahan	3	
1.3 Tujuan Khusus	3	
1.4 Urgensi Penelitian	3	
BAB II. TINJAUAN PUSTAKA	4	
2. 1 Silika Sekam Padi	4	
2.2 Sodium Besi Silikat (Na ₂ FeSiO ₄)	5	
2.3 Rekam Jejak Penelitian Pemanfaatan Silika Sekam Padi	6	
2.4 Road Map Penelitian Prototipe Baterai Rechargeable Na-Ion	8	
BAB III. METODE PENELITIAN	10	
3.1 Tempat dan Waktu Penelitian	10	
3.2 Alat dan Bahan Penelitian	10	
3.3 Prosedur Penelitian	11	
3.3.1 Ekstraksi silika dari sekam padi	12	
3.3.2 Sintesis Senyawa Na ₂ FeSiO ₄	12	
3.3.3 Perlakuan Termal	13	
3.3.4 Karakterisasi dan Analisis	13	
BAB IV. HASIL DAN PEMBAHASAN		
BAB V. KESIMPULAN	24	
REFERENSI	25	

RINGKASAN

Penelitian ini bertujuan untuk mengetahui komposisi fasa dan sifat kelistrikan prekursor Na₂FeSiO₄ yang diberi perlakuan termal pada suhu 350 – 475 °C. Sampel dibuat dari NaOH, Fe(NO₃)₃.9H₂O, serbuk silika amorf sekam padi, dan $C_{6}H_{8}O_{7}$. H₂O menggunakan metode sol-gel kemudian dilakukan perlakuan termal dengan waktu penahanan 10 jam pada suhu puncak. Gugus fungsi sampel diidentifikasi menggunakan spektroskopi Fourier transform infrared (FTIR). Fasa dianalisis menggunakan difraksi sinar-X (XRD) ditambah dengan analisis kualitatif dan kuantitatif. Sedangkan sifat kelistrikan sampel yang meliputi energi celah pita dan konduktivitas listrik dikarakterisasi masing-masing menggunakan UV-Vis DRS dan LCRmeter. Spektrum FTIR menunjukkan gugus fungsi Na-O, Fe-O, Si-O, dan Si-O-Si yang berasosiasi dengan struktur tetrahedral NaO₄, FeO₄, dan SiO₄. Analisis fasa menunjukkan bahwa sampel didominasi oleh Na₂FeSiO₄ dan diikuti oleh FeSiO₃, dan SiO₂. Pada rentang temperatur 350 – 475 °C, tidak terdapat perbedaan komposisi fasa (% wt.) yang signifikan, namun fasa Na₂FeSiO₄ cenderung menunjukkan peningkatan seiring dengan meningkatnya suhu sintering. Volume unit sel setiap fasa juga cenderung meningkat secara bertahap dengan meningkatnya suhu sintering. Peningkatan volume sel diikuti dengan penurunan nilai band gap dan peningkatan konduktivitas listrik sampel.

Kata kunci: band gap, konduktivitas listrik, Na₂FeSiO₄, sekam padi, silika

BAB I. PENDAHULUAN

1.1 Latar Belakang

Bahan bakar fosil saat ini menjadi sumber bahan bakar utama untuk berbagai alat transportrasi. Kondisi cadangan bahan bakar fosil yang semakin menurun dari tahun ke tahun menjadi ancaman yang serius bagi setiap negara yang masih mengandalkan bahan bakar tersebut, seperti Indonesia. Pemerintah Indonesia saat ini berupaya menekan penggunaan bahan bakar fosil dengan mengonversi sumber-sumber energi baru terbarukan (EBT) menjadi energi listrik untuk memenuhi kebutuhan energi yang semakin meningkat dari tahun ke tahun. Dalam konversi EBT menjadi energi listrik dibutuhkan perangkat penyimpan energi listrik agar produknya dapat didistribusikan sesuai dengan kebutuhan. Saat ini, baterai menjadi salah satu jenis perangkat yang dapat diandalkan karena memiliki kemampuan menyimpan energi listrik dengan kerapatan yang tinggi serta siklus hidup yang panjang (Xiao dkk, 2008).

Performa baterai sangat ditentukan oleh material elektronik penyusunnya yaitu katode dan anode. Diantara keduanya, katode ialah komponen yang paling dominan memberikan kontribusi pada performa baterai (Park dkk, 2014). Oleh sebab itu, topik riset material katode menjadi isu yang paling mendapat perhatian para peneliti baterai. Saat ini, bahan polianion X_2MSiO_4 (X = Li, Na dan M = Fe, Co, Mn) marak diteliti untuk dikembangkan menjadi katode karena memiliki stabilitas termal dan kimiawi yang sangat baik, tidak beracun (non-toksik), mampu menyimpan energi dengan kerapatan tinggi, dan memiliki siklus pengisian dan pengosongan (*charge/discharge*) yang sangat panjang (Park dkk, 2017; Zang dkk, 2015; Hsu dkk, 2015).

Baru-baru ini, bahan polianion berjenis sodium besi silikat (Na₂FeSiO₄) mulai marak dikembangkan menjadi katode baterai *rechargeable* Na-ion karena ketersediaan bahan bakunya sangat melimpah dibanding dengan bahan polianion berjenis litium (Li) yang telah lebih lama dikembangkan sebagai bahan katode. Selain itu, Na₂FeSiO₄ juga memiliki nilai *band gap* Na₂FeSiO₄ yang kecil berkisar 1,23–2,51 eV (Bianchini dkk, 2017) sehingga bersifat konduktif dan sangat cocok digunakan untuk katode. Upaya memanfaatkan Na₂FeSiO₄ menjadi katode baterai *rechargeable* juga didukung oleh kemudahan dalam menyintesisnya. Bahan tersebut dapat disintesis dengan beberapa metode yang sederhana seperti metode reaksi padatan (*solid state reaction*), sol-gel, atau *solvothermal* (Kaliyappan dan Chen, 2018; Li dkk, 2016; Kee dkk 2016; dan Ali dkk 2018).

Sodium, besi, dan silika merupakan bahan baku utama yang dibutuhkan untuk memproduksi Na₂FeSiO₄. Untuk menekan biaya produksi, bahan baku silika sangat memungkinkan dipenuhi dari silika organik, misalnya sekam padi. Menurut riset Kami sebelumnya, silika dengan tingkat kemurnian yang tinggi dapat diperoleh dari sekam padi (Riyanto dkk, 2017). Sejauh ini, silika yang diperoleh dari sekam padi juga telah berhasil Kami manfaatkan menjadi bahan baku pembuatan beberapa material, misalnya: borosilikat (Riyanto dkk, 2009), *cordierite* (Sembiring dkk, 2016; Sembiring dkk, 2017), *forsterite* (Sembiring dkk, 2017), geopolimer (Riyanto dkk, 2017), dan Li₂CoSiO₄ (Riyanto dkk, 2019). Kami juga telah berhasil memanfaatkan silika untuk memproduksi Na₂FeSiO₄ (Riyanto dkk, 2020).

Keaadaan struktur ikatan kimia, struktur kristal, kemurnian, dan karakteristik sifat listrik ialah beberapa parameter penting dari sebuah material katode. Semua parameter tersebut dapat dikontrol dengan memberikan perlakuan termal pada material tersebut. Penelitian Kami sebelumnya (Riyanto dkk, 2020; Amalia, 2019) telah sukses mendapatkan bahan Na₂FeSiO₄ berbasis silika sekam padi dengan tingkat kemurnian yang tinggi. Kami mendapatkan informasi ilmiah bahwa terdapat hubungan yang kuat antara suhu *sintering* dengan struktur ikatan kimia, struktur kristal, kemurnian, dan sifat listrik sampel Na₂FeSiO₄. Sampel yang disinter pada suhu 500 °C memiliki kemurnian 80,67 % wt dan terus meningkat kemurniannya seiring dengan kenaikan suhu sintering. Sampel yang disinter pada suhu 800 °C kemurnianya mencapai 88,88 % wt. Namun, meningkatnya kemurnian sampel Na₂FeSiO₄ justru diikuti dengan penurunan nilai konduktivitas listriknya. Faktor penyebabnya yaitu meningkatnya nilai band gap dan menurunnya volume unit sel dari fasa Na₂FeSiO₄ seiring dengan kenaikan suhu sintering. Berpijak dari hasil penelitian tersebut dipandang sangat perlu untuk meneliti karakteristik Na₂FeSiO₄ dengan perlakuan sintering kurang dari 500 °C. Penelitian lanjutan ini akan menghadirkan informasi ilmiah yang melengkapi hasil penelitian sebelumnya sehingga dapat dijadikan rujukan dasar dalam pengembangan material katode generasi baru baterai *rechargeable* Na-ion.

1.2 Permasalahan

Sesuai dengan pemaparan di atas, rumusan masalah pada penelitian ini ialah: (i) bagaimana efek temperatur *sintering* pada rentang 350 – 475 °C terhadap struktur ikatan kimia, struktur krital, kemurnian, dan parameter sel sampel Na₂FeSiO₄ dan (ii) bagaimana keterkaitan struktur ikatan kimia, struktur krital, kemurnian, dan paramater sel terhadap nilai *band gap* serta karateristik konduktivitas listrik sampel Na₂FeSiO₄.

1.3 Tujuan Khusus

Tujuan penelitian ini ialah: (1) memperoleh informasi ilmiah mengenai efek suhu *sintering* pada rentang suhu 350 – 475 °C terhadap keadaan struktur ikatan kimia, struktur kristal, kemurnian, parameter sel, dan sifat listrik bahan Na₂FeSiO₄, dan (ii) menelaah keterkaitan struktur ikatan kimia, struktur kristal, kemurnia, dan paramter sel terhadap nilai *band gap* serta konduktivitas listrik sampel Na₂FeSiO₄. Hasil penelitian ini akan dikomparasi dengan hasil penelitian sebelumnya dan selanjutnya dapat digunakan untuk menentukan sampel dengan potensi terbaik untuk dimanfaatkan menjadi kandidat bahan katode pada baterai *rechargeable* Na-ion.

1.4 Urgensi Penelitian

Beberapa urgensi dilakukan penelitian ini ialah: (i) memperluas dan menglengkapi informasi ilmiah yang telah dicapai dari penelitian sebelumnya mengenai struktur ikatan kimia, struktur kristal, kemurnian, parameter sel dan sifat listrik bahan Na₂FeSiO₄ sehingga dapat dijadikan rujukan dalam pengembangan material katode generasi baru baterai *rechargeable* Na-ion, (ii) penelitian ini juga merupakan upaya memanfaatkan silika dari sekam padi sebagai bahan baku pembuatan material maju untuk aplikasi teknologi penyimpanan energi listrik, dan (iii) penelitian ini merupakan langkah awal mendukung pemerintah dalam mengembangkan EBT khususnya dalam pengembangan

BAB II. TINJAUAN PUSTAKA

2. 1 Silika Sekam Padi

Salah satu tantangan pengembangan material maju ialah ketersediaan bahan baku. Silika ialah salah satu material penting yang sering digunakan sebagai bahan baku yang sangat dibutuhkan untuk mengembangkan material tersebut. Menurut penelitian, sekam padi mengandung silika aktif dengan kadar 16 – 20 % (Daifullah dkk, 2004; Hamdan dkk, 1997). Selain silika, dalam sekam padi juga terdapat komponen lain seperti: CaO, MgO, Al₂O₃, dan Na₂O, namun dalam komposisi yang sangat kecil (Siriluk dan Yuttapong, 2005). Dengan komposisi tersebut, sekam padi memiliki potensi yang besar untuk digunakan sebagai salah satu bahan baku pembuatan material berbasis silika.

Dorongan untuk memanfaatkan silika sekam padi menjadi bahan baku pembuatan material maju juga didukung oleh dua faktor penting lainnya, yaitu faktor kelayakan dan faktor proses ekstraksi. Dari sisi kelayakan, sekam padi sangat layak dimanfaatkan sebagai sumber silika karena jumlahnya sangat melimpah di Indonesia. Sedangkan dari sisi proses ekstraksi, silika dapat dengan mudah diperoleh dari sekam padi menggunakan metode sederhana yaitu metode ekstraksi alkalis dan metode pengabuan.

Metode ekstraksi alkalis telah diterapkan oleh Daifullah dkk (2003) dan Daifullah (2004) dengan menggunakan larutan KOH 5 %. Selain itu, Cheng dan Chang (1991) dan Riveros dan Garza (1986) menggunakan NaOH 1 M dan dilakukan dengan pengendapan silika menggunakan HCl 1 M. Metode pengabuan pada suhu 700 °C telah dilakukan oleh Della dkk (2002), Natarajan dkk (1998), Kalapathy (2000), dan Ramli dan Bahruji (2003). Silika yang diperoleh dari ekstraksi silika sekam padi telah dimanfaatkan dalam berbagai pengembangan material keramik diantaranya ialah borosilikat (Riyanto dkk, 2009), *cordierite* (Sembiring dkk, 2016; Sembiring dkk, 2017), *forsterite* (Sembiring dkk, 2017), geopolimer (Riyanto dkk, 2017), Li₂CoSiO₄ (Riyanto dkk, 2019). Beraneka ragamnya pemanfaatan silika sekam padi sebagai bahan baku pembuatan material maju karena silika sekam padi memiliki sifat-sifat fisis yang menunjang, seperti berwarna putih, kerapatan 2,6 g/cm³, dan mempunyai stabilitas termal yang tinggi hingga suhu 1414 °C (Malik, 2002; Hamdan dkk, 1997). Disamping itu, karakteristik mikrostruktur silika yang diperoleh dengan SEM menunjukkan luas permukaan yang tinggi, ukuran partikel halus, dengan struktur berdasarkan analisis XRD menunjukkan fasa amorf yaitu kuarsa dan bentuk kristal yaitu kristobalit dan tridmit (Siriluk dan Yuttapong, 2005).

2.2 Sodium Besi Silikat (Na₂FeSiO₄)

Na₂FeSiO₄ merupakan material polianion yang tersusun atas unit-unit anion NaO₄, FeO₄, dan SiO₄ tetrahra. Struktur Na₂FeSiO₄ secara umum dapat dipandang sebagai jaringan terdistorsi *hexagonal close packing* (HCP) dari ionion oksigen yang separuh dari sisi tetrahedranya ditempati oleh Na, Fe, dan Si (Yu dkk, 2018). Seluruh atom dalam struktur Na₂FeSiO₄ terikat secara kovalen. Kehadiran ikatan kovalen yang sangat kuat Si-O pada struktur tersebut menyebabkan Na₂FeSiO₄ memiliki kestabilan yang sangat baik. Kendatipun demikian, Na₂FeSiO₄ merupakan material polimorf yang strukturnya dapat berubah tergantung pada kondisi lingkungan. Na₂FeSiO₄ sekurang-kurangnya memiliki 6 jenis polimorf yang dibedakan dari jenis *space group*nya yaitu: *Pn* (2.f.u.), *Pn* (4.f.u.), *Pbn2₁*, *Pna2₁*, *P2_{1/c}*, dan C222₁. Perbedaan *space group* ini selanjutnya mempengaruhi sifat fisis Na₂FeSiO₄ (Yu dkk, 2018).

Saat ini, Na₂FeSiO₄ diproyeksikan sebagai material katode pada sistem baterai Na-ion sebagai alternatif pengganti bahan polianion berbahan alkali litium. Ketersedian bahan baku seperti sodium (Na) serta besi (Fe) dan silika yang melimpah menjadi salah satu faktor yang mendorong bagi peneliti untuk mengembangkan Na₂FeSiO₄ sebagai katode (Bianchini dkk, 2017). Upaya untuk memnfaatkan Na₂FeSiO₄ menjadi katode juga didasarkan pada berbagai sifat unggul yang dimilikinya. Diantara keunggulan material ini ialah secara teoritis memiliki daya simpan energi listrik dengan kerapatan yang tinggi yang mencapai nilai sebesar 276 mAh/g (Ye dkk, 2016). Na₂FeSiO₄ juga memiliki stabilitas kimiawi dan struktur yang sangat baik (Bianchini dkk, 2017). Selain itu, nilai *band gap* Na₂FeSiO₄ juga relatif kecil pada kisaran 1,23 – 2,51 eV, tergantung pada jenis polimorfnya (Bianchini dkk, 2017). Dengan nilai *band gap* yang relatif kecil memungkinkan Na₂FeSiO₄ memiliki konduktivitas listrik yang sesuai untuk katode baterai.

Na₂FeSiO₄ saat ini umumnya disintesis dari bahan baku sintetik melalui metode reaksi padatan (solid state reaction), solvothermal, atau metode sol-gel. Hasil penelitian yang dilakukan oleh Kaliyappan dan Chen (2018) memperlihatkan bahwa Na₂FeSiO₄ yang diprerarasi dari Na₂C₂O₄, FeC₂O₄ dan SiO₂ menggunakan reaksi padatan memiliki kemurnian yang tinggi. Begitu pula hasil riset yang dilakukan oleh Li dkk (2016) mendapatkan Na₂FeSiO₄ dengan kemurnian yang tinggi. Namun, kelemahan dari metode ini ialah membutuhkan konsumsi energi panas yang cukup tinggi dalam proses sintesisnya. Sementra itu, hasil riset yang dilakukan oleh Kee dkk (2016) melaporkan bahwa sampel Na₂FeSiO₄ yang diproduksi dari senyawa CH₃COONa, Si(C₂H₅O)₄, FeC₂O₄.2H₂O dan asam L-ascorbic melalui metode solvothermal mendapatkan sampel Na₂FeSiO₄ dengan kristalinitas yang tinggi, namun sejumlah fasa pengotor seperti Fe₃O₄ dan Na₂SiO₃ muncul pada sampel tersebut. Selain muculnya fasa pengotor, salah satu hal yang menjadi kelemahan metode ini ialah meskipun proses produksi sampel dapat dilakukan pada temperatur rendah tetapi membutuhkan waktu yang sangat panjang. Disisi lain, hasil penelitian yang dilakukan oleh Ali dkk (2018) menginformasikan bahwa Na₂FeSiO₄ yang disintesis menggunakan metode solgel dari senyawa sodium asetat (NaCH₃COO.2H₂O), tetraethyl orthosilicate (TEOS), dan FeC₂O₄.2H₂O memiliki tingkat kemurnian dan kritalinitas yang tinggi. Hasil riset lain juga menginformasikan bahwa sampel Na₂FeSiO₄ yang dihasilkan dari metode sol-gel juga memiliki kritalinitas dan kemurnian yang tinggi (Li dkk, 2016). Keunggulan metode ini ialah sampel dapat diproduksi dengan homogenitas yang tinggi pada temperatur sintesis yang rendah. Metode ini juga dapat menekan terjadinya pemisahan fasa sehingga dapat menghasilkan sampel dengan kemurnian yang tinggi (Sembiring dkk, 2017).

2.3 Rekam Jejak Penelitian Pemanfaatan Silika Sekam Padi

Dalam penelitian Kami sebelumnya, silika sekam padi telah berhasil dimanfaatkan menjadi bahan baku dalam pembuatan material keramik isolator (termal dan listrik), yaitu bahan refraktori *cordierite* dan *forsterite*.

Табет Т. Кекаш јејак рек	initiali peritamatan shika se	
Pemanfaatan silika	Pemanfaatan silika	Pemanfaatan silika
sekam padi sebagai	sekam padi sebagai	sekam padi sebagai
bahan baku keramik	bahan baku material	bahan baku material
isolator (listrik dan	konduktor ionik	konduktor ionik
termal)	(material elektronik)	(material elektronik)
(Tahun 2016 – 2017)	(Tahun 2017 – 2018)	(Tahun 2019-2020)
Cordirite (Mg2Al4Si5O18)	Geopolimer	Sodium besi silikat
1 Dombontukon ovovo funosi	$(nM_2O.Al_2O_3.xSiO_2.yH_2O)$	(Na ₂ FeSiO ₄)
terjadi pada suhu 1050 °C	1 Struktur geopolimer dalam	1 Identifikasi karakteristik
dengan kestabilan rendah	fase amorf terbentuk pada	sifat termal melalui teknik
(FIIK dan DIA) 2. Struktur <i>cordierite</i> dominan	suhu 450 °C (XRD dan	TG/DTA
terbentuk pada suhu 1230 -	EDS) 2 Konduktivitas listrik dan	2. Identifikasi karakteristik struktur ikatan kimia dan
1350 °C (XRD) 3 Nilai kekerasan (<i>hardness</i>)	faktor rugi dielektrik	struktur kristal pada rentang
semakin meningkat pada	semakin meningkat seiring	tempperatur sintering 500 –
suhu <i>sintering</i> yang lebih tinggi (Vickers)	dengan peningkatan suhu dan seiring terbentuknya	800 °C menggunakan analisis FTIR dan XRD
4. Resistivitas menurun seiring	struktur amorf (jaringan	3. Identifikasi nilai <i>bad gap</i>
dengan meningkatnya	polisialat), sebaliknya nilai	menggunkan spektroskopi
(LCRmeter)	konstanta dielektrik semakin menurun pada suhu kalsinasi	UV-Vis 4 Identifikasi sifat listrik
	yang lebih tinggi (XRD dan	menggunakan LCRmeter
Forsterite (MgSiO4)	Litium koholt silikot	Geopolimer
1. Terbentuk gugus fungsi	(Li_2CoSiO_4)	(nM ₂ O,Al ₂ O ₃ ,xSiO ₂ ,vH ₂ O)
yang mengindikasikan struktur ikatan kimia	(112003104)	
forsterite (FTIR)	1. Pada rentang suhu 410 – 850	Analisis <i>Rietveld refinement</i> (XRD software Qual-X dan
2. Fasa <i>forsterite</i> dominan	fasa β_1 menjadi fasa β_{11} .	software Rietica)
perbandingan MgO:SiO ₂ =	Suhu 850 °C juga	
3:2 (XRD)	merupakan titik transisi	L
3. Ukuran partikel semakin	menjadi fasa γ_{II} (TG/DTA)	•
(SEM)	2. Transisi fasa yang terjadi	Luaran/Output
4. Pembentukan fasa <i>forsterite</i>	pada sampel Li ₂ CoSiO ₄ diikuti dengan peningkatan	Duccidiu o interno si cu ol
semakin meningkat seiring	nilai konstanta dielektrik	Prosiding internasional
sintering sehingga kestabila	dalam rentang frekuensi 450	
termal bahan tersebut	– 100.000 Hz (LCRmeter)	
5. <i>Forsterite</i> tergolong isolator	[]	
yang baik dan nilai	▼	
resistivitas listriknya semakin meningkat pada	Luaran/Output	
suhu <i>sintering</i> yang lebih	Jurnal pasional	
↓	terakreditasi (SINTA 2)	
Lugran/Output		
Jurnal internasional dan		
Jurnal internasional dan prosiding		

Tabel 1. Rekam jejak penelitian pemanfaatan silika sekam padi

Silika sekam padi juga telah kami manfaatkan sebagai bahan baku dalam sintesis material konduktor ionik geopolimer untuk aplikasi elektrode baterai dan sensor elektrokimia. Selain itu, kami juga telah memanfaatakan silika sekam padi dalam proses pembuatan material Li₂CoSiO₄ untuk aplikasi katode baterai ion litium dan Na₂FeSiO₄ untuk aplikasi katode generasi baru baterai *rechargeable* Na-ion. Hasil penelitian pemanfaatan silika sekam padi yang telah Kami lakukan dari tahun 2016 hingga 2020 ditunjukkan pada Tabel 1.

2.4 Road Map Penelitian Prototipe Baterai Rechargeable Na-Ion

Gambar 1. *Road map* penelitian pembuatan prototipe baterai *rechargeable* Na-ion berkatode Na₂FeSiO₄ berbasis silika sekam padi

Berpijak dari keberhasil memanfaatkan silika sekam padi sebagaimana ditunjukkan pada Tabel 1 dan mengingat pentingnya mengembangkan perangkat penyimpan energi listrik mendorong Kami untuk mulai merintis pembuatan prototipe baterai *rechargeable* Na-ion dengan katode dari Na₂FeSiO₄ berbasis silika sekam padi. *Road map* dari penelitian ini ditunjukkan pada diagram Gambar 1. Penelitian rintisan pembuatan prototipe baterai *rechargeable* Na-ion ini dibagi menjadi 5 tahap utama, yaitu: (1) sintesis katode suhu tinggi, (2) sintesis katode suhu rendah, (3) sintesis katode komposit, (4) sintesis bahan separator dan anode, dan (5) pembuatan prototipe baterai. Capaian dari tahap 1 dan 2 ialah diperolehnya karakteristik profil sifat termofisika, struktur ikatan kimia, struktur kristal, kemurnian, parameter sel, dan sifat listrik dari bahan Na₂FeSiO₄. Hasil yang diperoleh pada tahap 1 dan 2 akan dimanfaatkan untuk mengembangkan katode komposit pada penelitian tahap 3. Capai tahap 3 ialah diperolehnya informasi spesifik mengenaik karakteristik elektrokimia dari katode komposit

Na₂FeSiO₄/C. Pada tahap 3 ini juga akan dikembangkan instrumen penguji kualitas baterai yaitu alat uji *charge/discharge*. Penelitian tahap 4 menargetkan berhasil disintesinya material separator dan anode berbasis pada silika sekam padi. Penelitian tahap ke-5 ialah mulai direalisasikan prototipe baterai *rechargeable* Na-ion.

BAB III. METODE PENELITIAN

3.1 Tempat dan Waktu Penelitian

Kegiatan penelitian akan dilakukan di Laboratorium Fisika Material Jurusan Fisika FMIPA Unila, sedangkan pengujian sampel akan dilakukan di Universitas Indonesia, dan Lembaga Ilmu Pengetahuan Indonesia (LIPI) Kawasan Puspitek Serpong. Penelitian ini akan dilaksakan selama 6 bulan.

3.2 Alat dan Bahan Penelitian

Alat-alat yang digunakan dalam penelitian ini dibagi menjadi dua kelompok, yaitu alat-alat yang digunakan untuk mempreparasi sampel Na₂FeSiO₄ dan alat-alat yang digunakan untuk menguji karakteristik sampel Na₂FeSiO₄. Masing-masing alat tersebut ditunjukkan pada Tabel 2 dan Tabel 3. Sementara itu, bahan-bahan yang digunakan dalam penelitian ini ditunjukkan pada Tabel 4.

No	Nama Alat	Fungsi/kegunaan	
1	Tabung desikator	Untuk menyimpan sampel	
2	Hotplate stirrer	Untuk memanaskan dan mengaduk sampel	
3	Magnetic bar	Untuk mengaduk sampel	
4	Gelas ukur	Untuk mengukur/membuat larutan	
5	Tabung erlenmeyer	Untuk membuat larutan	
6	Gelas beaker	Untuk membuat sampel	
7	Botol sampel	Untuk menyimpan sampel	
8	Neraca digital	Untuk menimbang sampel	
9	Kertas saring	Untuk menyaring sampel	
10	Oven	Untuk mengeringkan sampel	
11	Buret/pipet tetes	Untuk mentitrasi	
12	pH meter	Untuk mengukur pH (keasaman)	
13	Sistem refluks	Untuk memproduksi sampel	
14	Mortar dan pastel	Untuk menggiling sampel secara manual	
15	Ayakan 200 mesh	Untuk mengayak sampel	
16	Alat press	Untuk mencetak sampel menjadi pellet	
17	Crusible	Untuk meletakkan sampel dalam furnace	
18	Furnace	Untuk memberi perlakuan termal pada	
		sampel dengan suhu yang tinggi	
19	Pinset	Untuk memegang sampel	
20	Spatula	Untuk menimbang sampel	
21	Aluminium foil/plastik	Untuk menimbang/membungkus sampel	

Tabel 2. Alat-alat yang digunakan untuk mempreparasi sampel Na₂FeSiO₄

No	Nama Alat	Fungsi/kegunaan	
1	FTIR	Untuk menguji struktur ikatan kimiawi	
		(gugus fungsi)	
2	XRD	Untuk menguji struktur kristal	
3	Spektroskopi Uv-vis DRS	Untuk mengekstimasi energi band gap	
4	LCR Meter	Untuk menguji sifat listrik yang meliputi	
		konduktivitas listrik, konstanta dielektrik	
		atau permitivitas relatif riil, dan faktor rugi	
		dielektrik	
5	Arduio Uno	Alat pendukung pengujian sampel	
6	Sensor INA219	Alat pendukung pengujian sampel	
7	Modul RCT	Alat pendukung pengujian sampel	
8	LCD	Alat pendukung pengujian sampel	
9	Modul microSD card	Alat pendukung pengujian sampel	
10	Relay	Alat pendukung pengujian sampel	
11	LED	Alat pendukung pengujian sampel	
12	Kabel	Alat pendukung pengujian sampel	
13	Jumper	Alat pendukung pengujian sampel	
13	Box rangkaian	Alat pendukung pengujian sampel	
13	Port USB	Alat pendukung pengujian sampel	

Tabel 3. Alat-alat yang digunakan untuk menguji/mengkarakterisasi sampel Na $_2$ FeSiO $_4$

Tabel 4. Bahan-bahan yang digunakan mempreparasi sampel Na₂FeSiO₄

No	Nama Bahan	Fungsi/kegunaan
1	Sekam padi	Sebagai sumber serbuk silika
2	Potasium hidrosida (KOH)	Untuk mengekstrak silika dari sekam padi
	90 %	
3	Asam nitrat (HNO ₃) 68 %	Untuk mengekstrak silika dari sekam padi
4	Sodium hidroksida (NaOH)	Bahan baku pembuatan Na ₂ FeSiO ₄
	99 %	
5	Besi nitrat nanohidrat	Bahan baku pembuatan Na ₂ FeSiO ₄
	(FeNO ₃ .9H ₂ O) 99 %	
	(Merk)	
6	Asam sitrat monohidrat	Sebagai agen dalam pembuatan Na ₂ FeSiO ₄
	(C ₆ H ₈ O ₇ .H ₂ O) 100 %	
7	Aseton	Cairan pembersih alat-alat penelitian
8	Akuades (H ₂ O)	Pelarut dan untuk membersikan berbagai
		alat-alat penelitian

3.3 Prosedur Penelitian

Prosedur dalam penelitian ini dibagi menjadi menjadi empat tahap utama, yaitu: (i) ekstraksi silika dari sekam padi, (ii) sintesis senyawa Na₂FeSiO₄, (iii) perlakuan termal, dan (iv) karakterisasi dan analisis data.

3.3.1 Ekstraksi silika dari sekam padi

Serbuk silika diekstrak menggunakan metode yang telah digunakan pada penelitian kami sebelumnya (Riyanto, 2009; Riyanto dkk, 2017). Proses ekstraksi dilakukan dengan mendidihkan 50 g sekam padi pada larutan 500 ml KOH 5 % (± 30 menit). Selanjutnya, ekstrak disaring hingga diperoleh silika sol. Setelah itu, silika sol tersebut ditambahkan larutan HNO₃ 10 % hingga diperoleh silika gel. Setelah melalui pencucian dan penyaringan, silika gel dikeringkan dalam oven pada suhu 150 °C hingga diperoleh silika padatan yang telah kering. Kemudian, padatan tersebut digerus dan diayak hingga diperoleh serbuk silika.

3.3.2 Sintesis Senyawa Na₂FeSiO₄

Sampel Na₂FeSiO₄ dipreparasi menggunakan metode sol-gel dari bahan FeNO₃.9H₂O, NaOH, silika sekam padi, dan asam sitrat dengan perbandingan mol masing-masing bahan ialah 1:2:1:3. Proses sintesis diawali dari membuat larutan besi nitrat, larutan NaOH, dan larutan asam sitrat. Larutan besi nitrat dibuat dari 2,02 g serbuk FeNO₃,9H₂O dan 25 ml akuades, larutan NaOH dibuat dari 0,4 g serbuk NaOH dan 10 ml akuades, sedangkan larutan asam sitrat dibuat dari 1 g serbuk asam sitrat dan 20 ml akuades. Selanjutnya, 0,3 g serbuk silika sekam padi dilarutkan pada larutan NaOH pada temperatur 70 °C sambil diaduk menggunakan hotplate stirer. Kemudian, larutan besi nitrat ditambahkan kedalam larutan tersebut menggunakan pipet tetes hingga menghasilkan larutan dengan pH 3 dan selanjutnya ditambahkan larutan asam sitrat hingga akhirnya diperoleh larutan dengan pH 1. Selanjutnya, larutan dimasukkan pada sistem refluks, diaduk selama 5 jam pada suhu 80 °C sampai dengan terbentuk larutan jenuh kekuning-kuningan. Ilustrasi proses sintesis Na₂FeSiO₄ ditunjukkan pada Gambar 2. Tahap berikutnya, larutan dipindah dalam lemari asam sambil terus diaduk dengan menggunakan hotplate stirer pada temperatur 80 °C hingga diperoleh gel. Gel tersebut dikeringkan pada temperatur 100 °C selama 2 jam menggunakan oven hingga tebentuk padatan dan selanjutnya digerus dan diayak hingga diperoleh serbuk sampel Na₂FeSiO₄.

Gambar 2. Ilustrasi proses sintesis Na₂FeSiO₄

3.3.3 Perlakuan Termal

Serbuk sampel Na₂FeSiO₄ dicetak menjadi *pellet* menggunakan alat press hidrolik hingga diperoleh sampel berbentuk silinder. Selanjunya, *pellet* tersebut disinter pada temperatur 350 °C, 375 °C, 400 °C, 420 °C, 450 °C, dan 475 °C menggunakan *furnace*.

3.3.4 Karakterisasi dan Analisis

3.3.4.1 Karakterisasi struktur ikatan kimia sampel Na₂FeSiO₄

Karakterisasi struktur ikatan kimia sampel Na₂FeSiO₄ dilakukan dengan menggerus sekitar 2 mg serbuk Na₂FeSiO₄ dengan 300 mg potasium bromida (KBr) dalam mortar dan kemudian campuran tersebut dicetak hingga diperoleh pelet KBr. Pengujian dilakukan dengan menggunakan FTIR pada rentang bilangan gelombang 400 – 4.000 cm⁻¹. Analisis data dilakukan dengan teknik membandingkan data yang diperoleh dengan referensi.

3.3.4.2 Karakterisasi struktur kristal sampel Na₂FeSiO₄

Struktur kristal sampel Na₂FeSiO₄ dilakukan dengan menggunakan XRD pada kondisi operasi menggunakan Cu-K α dengan panjang gelombang (λ) 0,15418 Å dan dalam rentang sudut difraksi 2 θ dari 10° – 90° dengan kenaikan per 0,02°. Data difraksi yang diperoleh dianalisis menggunakan perangkat lunak Qual-X versi 2.0 dengan metode *search-match*. Data difraksi selanjutnya akan diolah secara kuantitatif menggunakan perangkat lunak Rietica.

3.3.4.3 Uji band gap sampel Na₂FeSiO₄

Pengujian nilai *band gap* sampel dilakukan menggunakan UV-Vis DRS pada wilayah panjang gelombang 200 – 800 nm hingga diperoleh kurva hubungan absorbansi dan reflektansi terhadap panjang gelombang. Nilai *band gap* diestimasi menggunakan Teori Kubelka-Munk dengan menggunakan Persamaan (1) dan (2) (Babbar dkk, 2017).

$$F(R) = \frac{\kappa}{s} = (1 - R)^2 / 2R \tag{1}$$

$$[F(R)hv] = C(hv - E_g)$$
⁽²⁾

dengan F(R) ialah faktor Kubelka-Munk, K ialah koefisien absopsi, S ialah koefisien hambran, R ialah nilai reflektansi, h ialah konstanta Planck (6,626 x 10⁻³⁴ Js), v ialah frekuensi (Hz), C ialah konstanta, dan E_g ialah energi gap (eV).

3.3.4.4 Uji sifat listrik sampel Na₂FeSiO₄

Uji sifat listrik meliputi konduktivitas listrik (σ), konstanta dielektrik atau permitivitas relatif riil (ε_r), dan faktor rugi dielektrik (tan δ). Pengujian sampel Na₂FeSiO₄ dilakukan dengan menggunakan LCRmeter pada rentang frekuensi 1 Hz – 1x10⁵ Hz. Konstanta dielektrik dan tan δ dihitung menggunakan Persamaan (3) dan (4) (Tripathi dkk., 2015; Khan dkk., 2016).

$$\varepsilon_r = \frac{Cd}{\varepsilon_0 A} \tag{3}$$

$$\tan \delta = \frac{\varepsilon_r''}{\varepsilon_r} \tag{4}$$

dengan C = kapasitansi sampel (F), ε_0 = permitivitas vakum (8,854.10⁻¹² F/m), d= ketebalan sampel (m), A = luas permukaan sampel (m²), dan = ε_r'' ialah permitivitas relatif bagian imajiner (F/m). Permitivitas relatif riil berkaitan dengan jumlah energi yang tersimpan dalam material yang mengalami polarisasi, sedangkan permitivitas bagian imajiner merepresentasikan energi yang hilang, dan tan δ merupakan faktor rugi dielektrik atau faktor kehilangan energi. Permitivitas bagian imajiner (ε_r'') berkaitan konduktivitas listrik dan dapat dihitung dengan Persamaan (5) dan (6) (Hanjitsuwan dkk., 2011; Hussien, 2011).

$$\sigma = \varepsilon_0 \varepsilon_r'' \omega \tag{5}$$

$$\omega = 2\pi f \tag{6}$$

dengan σ = konduktivitas listrik (S/m atau dapat dikonversi menjadi S/cm), ω = frekuensi sudut (rad/s), dan f = frekuensi linier (Hz).

Prosedur yang akan dilakukan dalam penelitian ini secara sederhana ditunjukkan pada diagaram Gambar 3.

Gambar 3. Prosedur Penelitian

BAB IV. HASIL DAN PEMBAHASAN

Hasil identifikasi gugus fungsi ditunjukkan pada Gambar 4(a)-(e) masingmasing menunjukkan sampel yang disinter pada suhu 350 °C, 375 °C, 400 °C, 425 °C, 450 °C dan 475 °C. Analisis ini dilakukan dalam rentang bilangan gelombang 4000 – 400 cm⁻¹. Keenam spektrum dari sampel tersebut memperlihatkan indikasi keberadaan ikatan NaO₄, FeO₄, dan SiO₄ tetrahedra yang merupakan ikatan dasar penyusun terbentuknya Na₂FeSiO₄ seperti yang telah dikemukakan oleh penelitian sebelumnya oleh Zhu et al., (2018) dan Riyanto et al., (2020). Pada Gambar 4 terdapat puncak serapan pada bilangan gelombang $432,05 \text{ cm}^{-1} - 455,20 \text{ cm}^{-1}$ yang menunjukkan adanya vibrasi tekuk gugus NaO dari [NaO₄] tetrahedra. Pelebaran serapan puncak pada gugus fungsi NaO tersebut disebabkan oleh ukuran parameter sel yang meningkat dengan meningkatnya suhu sintering. Puncak serapan pada bilangan gelombang 686,65 cm⁻¹ – 563,21 cm⁻¹ menunjukkan adanya vibrasi ulur gugus FeO dari [FeO₄] tetrahedra dengan puncak serapan bergeser ke arah yang lebih kecil seiring dengan meningkatnya suhu sintering 586,36 cm⁻¹ – 509,21 cm⁻¹ pergeseran tersebut disebabkan adanya interaksi antargugus fungsi (Karamipour et al., 2015; Jain et al., 2018). Selain itu, keberadaan puncak serapan bilangan gelombang 910,40 - 871,82 cm⁻¹ yang mengidentifikasikan adanya vibrasi ulur gugus Si-O dari [SiO₄] (Zaghib et al., 2006; Ghaffari and Behzad, 2018). Gugus Si-O ini muncul karena adanya efek korelasi yang diinduksi oleh Na-O dan Fe-O tetrahedral dalam struktur Kristal (Ali et al., 2018).

Selain adanya gugus fungsi Si-O, Fe-O dan Na-O, Gambar 4 juga memperlihatkan adanya gugus fungsi O-H pada sampel yang ditandai dengan adanya puncak serapan pada bilangan gelombang 3433,29 cm⁻¹ – 3425,58 cm⁻¹ pergeseran puncak serapan gugus fungsi ini berasal dari molekul air yang teradsorpsi seperti yang dikemukakan oleh Jiang *et al.*, (2016). Menurut Kumar et al (2016), gugus silanol terdeteksi pada puncak serapan 3749,62 cm-1, daerah serapan ini muncul akibat adanya molekul air yang terperangkap dalam sampel molekul air yang bersatu dengan silika membentuk ikatan Si-OH (Sheykhan et al., 2017; Mahadevan and Du, 2018. Selain itu, terdapat gugus karboksil C-H dari

[CH₂] pada bilangan gelombang 2368,59 cm⁻¹ – 2337,72 cm⁻¹ gugus fungsi ini kemungkinan berasal dari prekursor $C_6H_8O_7$.H₂O yang berfungsi sebagai agen pelekat adanya gugus karboksil karena asam sitrat yang terhidrasi (Abadi et al, 2015).

Gambar 4. Hasil identifikasi gugus fungsi Na₂FeSiO₄ yang di*sinter* pada suhu (a) 350 °C, (b) 375 °C, (c) 400 °C, (d) 425 °C, (e) 450 °C dan (f) 475 °C

Analisis struktur kristal dilakukan menggunakan metode pencocokan (search match) dengan perangkat lunak QualX. Metode ini dilakukan dengan mencocokkan data eksperimen dengan database kristalografi (COD). Mengingat bahwa Na₂FeSiO₄ belum tercantum dalam *database* kristalografi, maka analisis XRD dapat dilakukan dengan membandingkan terhadap database kristalografi yang sejenis seperti Na₂ZnSiO₄, Na₂MnSiO₄, dan Na₂CaSiO₄. Hasil pencocokan dengan COD menunjukkan bahwa sampel Na₂FeSiO₄ memiliki karakteristik yang serupa dengan Na₂CaSiO₄ sesuai dengan COD 00-101-0111. Difraktogram hasil pencocokan ini ditunjukkan pada Gambar 5. Berdasarkan Gambar 5, terdapat puncak utama yang mengindikasikan fasa Na₂FeSiO₄ pada $2\theta = 33,97^{\circ}$ dan 20,54° serta muncul puncak lainnya pada 45,05°. Hal ini menunjukkan kesesuaian dengan hasil FTIR yang menunjukkan kehadiran ikatan gugus fungsi Na-O, Fe-O, dan Si-O sebagai penyusun ikatan dasar penyusun terbentuknya Na₂FeSiO₄. Selain itu, hasil pencocokan juga memperlihatkan kehadiran fasa lain seperti FeSiO₃ (COD 00-900-1627) dengan puncak utama pada $2\theta = 29.36^{\circ}$ diikuti puncak lainnya pada $2\theta = 34,09^\circ$; $37,98^\circ$; $43,53^\circ$; dan $47,82^\circ$. Selanjutnya, puncak utama SiO₂ (COD 00-900-7171). Pada $2\theta = 29,38^{\circ}$ diikuti puncak lainnya pada $2\theta = 31,90^{\circ}$ dan 32,49°. Berdasarkan *database* tersebut, kristal Na₂CaSiO₄ memiliki struktur cubic dengan space group P 21 3 serta sesuai dengan struktur Na₂FeSiO₄ hasil penelitian sebelumnya (Ye et al, 2016). Sementara itu, fasa FeSiO₃ yang memiliki struktur monoclinic dengan space group P 1 21/c 1. Pada fasa SiO₂ memiliki struktur *triclinic* dengan *space* group C 1 2/C 1.

Gambar 5. Difraktogram XRD Na₂FeSiO₄ yang di*sinter* pada suhu (**a**) 350 °C, (**b**) 375 °C, (**c**) 400 °C, (**d**) 425 °C, (**e**) 450 °C dan (**f**) 475 °C

Gambar 6. Hasill *refinement* data XRD sampel Na_2FeSiO_4 yang disinter pada suhu (a) 350 °C, (b) 375 °C, (c) 400 °C, (d) 425 °C, (e) 450 °C dan (f) 475 °C

Hasil analisis secara kuantitatif dilakukan dengan *refinement* data XRD menggunakan metode *Rietveld* dan perangkat lunak *Rietica* ditunjukkan pada Gambar 6. Hasilnya menunjukkan persentase parameter kesesuaian hasil *refinement* data XRD seperti ditunjukkan pada Tabel 5. Berdasarkan data pada Tabel 2, seluruh sampel memiliki nilai R_{exp} , R_w , dan R_p kurang dari 11% dan nilai *GoF* kurang dari 1%. Nilai persentase *GoF* kurang dari 4% dan R_{wp} kurang dari 25% menyatakan bahwa hasil *refinement* tersebut telah memenuhi standar metode *Rietveld* [40]. Penambahan suhu *sintering* mengakibatkan perubahan intensitas fasa Na₂FeSiO₄, FeSiO₃ dan SiO₂. Hasil *refinement* data XRD juga dapat digunakan untuk menghitung persen berat (wt.%) dari masing-masing sampel seperti ditunujukkan pada Tabel 6. Berdasarkan data pada Tabel 6, peningkatan suhu *sintering* menyebabkan peningkatan persen berat (wt.%) dari fasa Na₂FeSiO₄ sebagai fasa utama serta diikuti dengan peningkatan volume unit sel dari fasa Na₂FeSiO₄ seperti pada Tabel 7.

Sampel disenter pada (°C)	R_{wp}	R_p	R _{exp}	GoF
350	6,79	4,94	10,70	0,40
375	6,36	4,78	9,37	0,46
400	6,75	4,71	9,97	0,45
425	6,22	4,85	9,00	0,47
450	6,73	5,33	10,10	0,44
475	6,52	4,80	9,38	0,48

Tabel 5. Presentase parameter kesesuaian *refinement* data XRD Na₂FeSiO₄.

Tabel 6. Presentase fasa dalam persen berat (% wt).

Sampel disinter	Phase		
pada (°C)	Na ₂ FeSiO ₄	FeSiO ₃	SiO ₂
350	73,44	19,03	7,53
375	73,46	18,94	7,60
400	73,66	18,91	7,43
425	74,08	19,33	6,59
450	73,74	19,29	6,97
475	74,23	18,76	7,01

Sampel disinter pada (°C)	Na ₂ FeSiO ₄	FeSiO ₃	SiO ₂
350	409,841	462,666	639,556
375	412,661	460,501	638,606
400	412,827	464,143	632,414
425	417.421	448,285	477,686
450	416,915	447,650	505,531
475	417,040	435,186	522,446

Tabel 7. Volume unit sel pada masing-masing fasa ($Å^3$)

Nilai energi *band gap* dari Na₂FeSiO₄ yang dianalisis menggunakan teorema Kubelka-Munk dan plot Tauc ditunjukkan pada Gambar 7. Sampel memiliki enam nilai energi *band gap* berturut-turut yaitu: 2,00 eV, 1,99 eV, 1,98 eV, 1,92 eV, 1,98 eV dan 1,95 eV sebagaimana ditunjukkan pada Tabel 8. Berdasarkan nilai energi *band gap* pada masing-masing suhu tersebut, terlihat bahwa peningkatan suhu *sintering* tidak signifikan mempengaruhi nilai energi *band gap*. Hal tersebut disebabkan karena keenam sampel memiliki komposisi fasa yang relatif sama sebagaimana ditunjukkan pada Tabel 6. Secara keseluruhan, besarnya energi *band gap* dipengaruhi oleh hasil perubahan parameter sel dari hasil *refinement*. Perubahan parameter sel dapat mengubah struktur pita sehingga mempengaruhi besarnya energy *band gap*.

Sementara itu, nilai konduktivitas listrik yang tinggi mengikuti nilai energi *band gap* yang rendah. Nilai konduktivitas listrik yang diukur pada rentang frekuensi 50 – 60 Hz pada perlakuan termal 350 °C, 375 °C, 400 °C, 425 °C, 450 °C dan 475 °C ditunjukkan pada Gambar 8 dan ditulis dalam bentuk tale seperti pada Tabel 8. Berdasarkan Tabel 8 bahwa hasil pengujian konduktivitas listrik menunjukkan sampel pada suhu 425 °C memiliki konduktivitas tertinggi yaitu 4,35×10⁻⁵ S/m. Ketidaklinier nilai konduktivitas listrik pada keenam sampel ini disebabkan oleh pergeseran nilai transmitansi pada gugus fungsi. Pergeseran ini terjadi karena adanya adsorpsi gugus O-H dari Si-OH pada permukaan SiO₂, sehingga jarak antar pita valsensi dengan pita konduktisi semakin kecil dan nilai energi *band gap* yang dihasilkan pada suhu *sintering* 425 °C rendah.

Gambar 7. Plot Tauc analisis energi *band gap* yang di*sinter* pada suhu (**a**) 350 °C, (**b**) 375 °C, (**c**) 400 °C, (**d**) 425 °C, (**e**) 450 °C dan (**f**) 475 °C

Tuber of T that Rondanti thas noting pada inchaenor 50 00 The			
Sampel sintered at (°C)	Energi band gap (eV)	Konduktivitas listrik (S/m)	
350	2,00	2,35×10 ⁻⁵	
375	1,99	2,77×10 ⁻⁵	
400	1,98	4,12×10 ⁻⁵	
425	1.92	4.35×10^{-5}	

1,98

1,95

Tabel 8. Nilai konduktivitas listrik pada frekuensi 50 – 60 Hz

450

475

 $4,20 \times 10^{-5}$

4,22×10⁻⁵

Gambar 5. Hasil pengukuran konduktivitas listrik pada frekuensi 50 – 60 Hz.

BAB V. KESIMPULAN

Strudi ini menunjukkan bahwa spektrum FTIR dari sample Na₂FeSiO₄ menunjukkan gugus fungsi Na-O, Fe-O, Si-O, dan Si-O-Si yang berasosiasi dengan struktur tetrahedral NaO₄, FeO₄, dan SiO₄. Analisis fasa menunjukkan bahwa sampel didominasi oleh Na₂FeSiO₄ dan diikuti oleh FeSiO₃, dan SiO₂. Pada rentang temperatur 350 – 475 °C, tidak terdapat perbedaan komposisi fasa (% wt.) yang signifikan, namun fasa Na₂FeSiO₄ cenderung menunjukkan peningkatan seiring dengan meningkatnya suhu sintering. Volume unit sel setiap fasa juga cenderung meningkat secara bertahap dengan meningkatnya suhu sintering. Peningkatan volume sel diikuti dengan penurunan nilai *band gap* dan peningkatan konduktivitas listrik sampel.

REFERENSI

- Abadi, M. H. S. *et al.* (2015) 'Effects of Annealing Temperature on Infrared Spectra of SiO2 Extracted From Rice Husk', (January).
- Ali, B. *et al.* (2018) 'Interconnected mesoporous Na₂FeSiO₄ nanospheres supported on carbon nanotubes as a highly stable and efficient cathode material for sodium-ion battery', *Journal of Power Sources*. Elsevier, 396(June), pp. 467–475.
- Ali, B. *et al.* (2018) 'Interconnected mesoporous Na2FeSiO4 nanospheres supported on carbon nanotubes as a highly stable and efficient cathode material for sodium-ion battery', *Journal of Power Sources*. Elsevier, 396(June), pp. 467–475.
- Amalia, A.R. (2019) 'Pengaruh perlakuan termal terhadap struktur kristal dan karakteristik sifat listrikpada bahan polianion Na₂FeSio₄ berbasis silika sekam padi', Skripsi, pp. 1-57.
- Babbar, P. *et al.* (2017) 'Charge/discharge characteristics of Jahn-Teller distorted nanostructured orthorhombic and monoclinic Li₂MnSiO₄ cathode materials', *RSC Advances.* Royal Society of Chemistry, 7(37), pp. 22990–22997.
- Bianchini, F., Fjellvåg, H. and Vajeeston, P. (2017) 'First-principles study of the structural stability and electrochemical properties of Na₂MSiO₄ (M = Mn, Fe, Co and Ni) polymorphs', *Physical Chemistry Chemical Physics*, 19(22), pp. 14462–14470.
- Cheng, J.M and Chang, F.W (1991), "The Chlorination Kinetics of Rice Husk", Indian Engineering Chemical Research, 30, pp. 2241–2247.
- Daifullah, A.A.M; Awwad, N.S; El-Reefy (2004), "Purification of Phosphoric Acid from Ferric Ion Using Modified Rice Husk", *Chemical Engineering* and Processing, 43, pp. 193- 201.
- Daifullah, A.A.M; Girgis, B.S and Gad, H.M.H (2003), "Utilization of Agro residues (Rice Husk) in Small Waste Water Treatment Plans", *Materials Letters*, 57, pp. 1723 –1731.
- Della, V.P; Kuhn, I; Hotza, D (2002), "Rice Husk Ash an Alternate Source for Active Silica Production", *Materials Letters*, 57. 818 821.
- Feng, Z., Tang, M. and Yan, Z. (2018) '3D conductive CNTs anchored with Na2FeSiO4nanocrystals as a novel cathode material for electrochemical sodium storage', *Ceramics International*. Elsevier Ltd and Techna Group S.r.l., 44(17), pp. 22019–22022.
- Ghaffari, A. and Behzad, M. (2018) 'Facile synthesis of layered sodium disilicates as efficient and recoverable nanocatalysts for biodiesel production from rapeseed oil', *Advanced Powder Technology*. The Society of Powder Technology Japan, 29(5), pp. 1265–1271.
- Hamdan, H; Muhid, M.N; Endud, S; Listioine, E; Ramli, Z (1997), "29Si MAS, NMR, XRD and FESEM Studies of Rice Husk Silica for Synthesis Zeolite", J. Non Crystal Solids 211, pp. 126–131.
- Hanjitsuwan, S., Chindaprasirt, P. and Pimraksa, K. (2011), Electrical conductivity and dielectric property of fly ash geopolymer pastes, *International Journal of Minerals, Metallurgy and Materials*, 18(1), pp. 94– 99.

- Hsu, C.-H., Shen, Y.-W., Chien, L.-H. and Kuo, P.-L. (2015) 'Li₂FeSiO₄ nanorod as high stability electrode for lithium-ion batteries', *J Nanopart Res*, 54(December), pp. 1–9.
- Hussien, B. (2011), The D.C and A.C Electrical Properties of (PMMA-Al₂O₃) Composites, *European Journal of Scientific Research*, 52(2), pp. 1450–216.
- Jain, R. et al. (2018) 'Infrared Spectroscopic Study of Magnetic Behavior of Dysprosium Doped Magnetite Nanoparticles', Journal of Superconductivity and Novel Magnetism. Journal of Superconductivity and Novel Magnetism, 32(2019), pp. 325–333.
- Jiang, X. *et al.* (2016) 'Determination of the acid values of edible oils via FTIR spectroscopy based on the O A H stretching band', *Food Chemistry*. Elsevier Ltd, 212(2016), pp. 585–589.
- Kalapathy, C; Protor, A and Shultz, J (2000), "A Simple Method for Production of Pure Silica from Rice Husk Ash", *Biosource Technology*, 73, pp. 257–264.
- Kaliyappan, K. and Chen, Z. (2018) 'Facile solid-state synthesis of eco-friendly sodium iron silicate with exceptional sodium storage behaviour', *Electrochimica Acta*. Elsevier Ltd, 283, pp. 1384–1389.
- Karamipour, S., Sadjadi, M. S. and Farhadyar, N. (2015) 'Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy Fabrication and spectroscopic studies of folic acid-conjugated Fe 3 O 4 @ Au core – shell for targeted drug delivery application', SPECTROCHIMICA ACTA PART A: MOLECULAR AND BIOMOLECULAR SPECTROSCOPY. Elsevier B.V., 148, pp. 146–155.
- Kee, Y. *et al.* (2016) 'Investigation of metastable Na₂FeSiO₄ as a cathode material for Na-ion secondary battery', *Materials Chemistry and Physics*. Elsevier B.V, 171, pp. 45–49.
- Khan, M. S., Sohail, M., Khattak, N. S. and Sayed, M. (2016), Industrial ceramic waste in Pakistan, valuable material for possible applications, *Journal of Cleaner Production*, 139, pp. 1520–1528.
- Kumar, S. *et al.* (2016) 'Graphene oxide grafted with iridium complex as a superior heterogeneous catalyst for chemical fixation of carbon dioxide to dimethylformamide', *Carbon.* Elsevier Ltd, 100(April 2016), pp. 632–640.
- Li, S. *et al.* (2016) 'Zero-Strain Na₂FeSiO₄ as Novel Cathode Material for Sodium-Ion Batteries', ACS Applied Materials and Interfaces, 8(27), pp. 17233–17238.
- Mahadevan, T.S., and Du, J. (2018) 'Evaluating water reactivity at silica surfaces using reactive potentials', *The Journal of Physical Chemistry*, 122, p. 18.
- Malik, P.K, (2002)," Used of activated Carbons Prepared from Saw dust and Rice Husk for adsorption of Acid Dyes: A case of Acid Yellow," Dyes and Pigment elsevier Science, Ltd.
- Park, H., Song, T., Tripathi, R., Nazar, L. F. and Paik, U. (2014) 'Li₂MnSiO₄/carbon nanofiber cathodes for Li-ion batteries', *Ionics*, 20(10), pp. 1351–1359.
- Park, Y. M., Lim, H., Moon, J., Lee, H., Son, S. H., Kim, H. and Kim, H. (2017) 'High-Yield One-Pot Recovery and Characterization of Nanostructured Cobalt Oxalate from Spent Lithium-Ion Batteries and Successive Re-Synthesis of LiCoO₂', *Metal*, 7, pp. 1–11.

- Ramli, Z and Bahruji, H (2003), "Synthesis of ZMS 5 Type Zeolite Using Crystalline Silica of Rice Husk Ash", *Malaysian Juornal of Chemistry*, 5, pp. 48 – 55.
- Riveros, H and Garza, C (1986), "Rice Husk Ash a Source of High Purity Silica", J. Crys. Growth, 75, pp. 126–131.
- Riyanto, A. Sembiring, S., Amalia, A.R., Astika, A., and Marjunus, R. (2020)'A preliminary study of phases, elemental mapping, and electrical properties on Na2FeSiO4 derived from rice husk silica', *Journal of Physics: Conference Series*, 1572 (2020), pp. 1-9.
- Riyanto, A. Sembiring, S., and Junaidi. (2017) 'Karakteristik Fisis Aluminosilikat Geopolimer Berbasis Silika Sekam Padi untuk Aplikasi Fast Ionic Conductor', *Reaktor*, 17(2), pp. 96–103.
- Riyanto, A., Ginting, O.M., and Simon, S., (2009), Pengaruh suhu sintering terhadap pembentukan gugus borosiloksan (B-O-Si) bahan keramik borosilikat berbasis silika sekam padi, *Prosiding Seminar Nasional Sains MIPA dan Aplikasinya*, Universitas Lampung, 1, Pp. 219–224.
- Riyanto, A., Sembiring, S., Megawati, Mabbarroh, N., Junaidi, and Ginting, E., (2019) 'Analisis Transisi Fasa dan Sifat Dielektrik Pada Li₂CoSiO₄ yang Dipreparasi dari Silika Sekam Padi dan Produk Daur Ulang Katode Baterai Ion Litium Bekas', *Alchemy Jurnal Penelitian Kimia*, 15(1), pp. 89–103.
- Sembiring, S., Riyanto, A., Simanjuntak, W. and Situmeang, R. (2017) 'Effect of MgO-SiO₂ ratio on the forsterite (Mg₂SiO₄) precursors characteristics derived from amorphous rice husk silica', *Oriental Journal of Chemistry*, 33(4), pp. 1828–1836.
- Sembiring, S., Simanjuntak, W., Situmeang, R., Riyanto, A. and Karo-Karo, P. (2017) 'Effect of alumina addition on the phase transformation and crystallisation properties of refractory cordierite prepared from amorphous rice husk silica', *Journal of Asian Ceramic Societies*. Taibah University, 5(2), pp. 186–192.
- Sembiring, S., Simanjuntak, W., Situmeang, R., Riyanto, A., and Sebayang, K. (2016), Preparation of refractory cordierite using amorphous rice husk silica for thermal insulation purposes', *Ceramics International*. Elsevier, 42(7), pp. 8431–8437.
- Sheykhan, M., Yahyazadeh, A. and Ramezani, L. (2017) 'A novel cooperative Lewis acid / Brønsted base catalyst Fe 3 O 4 @ SiO 2 -APTMS-Fe (OH) 2: An efficient catalyst for the Biginelli reaction', *Molecular Catalysis*. Elsevier B.V., 435(2017), pp. 166–173.
- Siriluk and Yuttapong (2005), "Structure of Mesoporous MCM-41 Prepared from Rice Husk Ash", Asian Symposium on Visualization, Chaingmai, Thailand.
- Tripathi, M., Sahu, J. N., Ganesan, P., Monash, P. and Dey, T. K. (2015), Effect of microwave frequency on dielectric properties of oil palm shell (OPS) and OPS char synthesized by microwave pyrolysis of OPS, *Journal of Analytical and Applied Pyrolysis*, 112, pp. 306–312.
- Xiao, D., Shao, L., Ma, R., Shui, M., Gao, J., Huang, F., Wu, K., Qian, S., Wang, D., Long, N., Ren, Y. and Shu, J. (2013) 'Hydrothermal preparation of ironbased orthosilicate cathode materials with different SiO₂ particles and their electrochemical properties', *International Journal of Electrochemical Science*, 8(6), pp. 7581–7590.

- Ye, Z. et al. (2016) 'Robust diamond-like Fe-Si network in the zero-strain Na x FeSiO 4 cathode', *Electrochimica Acta*, 212(September), pp. 934–940. doi: 10.1016/j.electacta.2016.07.073.
- Yu, S. et al. (2018) 'Structural stabilities and electrochemistry of Na₂FeSiO₄ polymorphs: first-principles calculations', *Journal of Solid State Electrochemistry*, 22(7), pp. 2237–2245.
- Zaghib, K. *et al.* (2006) 'Structural , magnetic and electrochemical properties of lithium iron orthosilicate', 160, pp. 1381–1386.
- Zhang, L., Duan, S., Yang, X., Liang, G. and Huang, Y. (2015) 'Insight into cobalt-doping in Li₂FeSiO₄ cathode material for lithium-ion battery', *Journal of Power Sources.*, 274, pp. 194–202.

LAMPIRAN (Luaran Penelitian)

