Karakterisasi Limbah Cair Greywater pada level Rumah Tangga Berdasarkan Sumber Emisi

Greywater Characterization at Household Scale by Emission Source

  • Siti Nurul Khotimah Civil Engineering Department, Universitas Lampung
  • Nur Anisa Mardhotillah PT Bina Buana Raya
  • Nur Arifaini Universitas Lampung
  • Sumiharni Universitas Lampung
Keywords: greywater, karakteristik, sumber emisi

Abstract

[ID] Limbah cair greywater merupakan limbah cair hasil aktivitas dapur, pencucian pakaian dan kamar mandi. Produksi limbah greywater rumah tangga sekitar 70–75% dari total produksi limbah cair rumah tangga dengan kandungan polutan yang rendah. Terkait dengan tingginya volume produksi limbah cair greywater, limbah greywater berkontribusi sekitar 70-80% dalam  pencemaran badan air. Namun demikian, volume produksi limbah greywater yang tinggi ini justru dapat dijadikan sumber alternatif baru air bersih jika dilakukan pengolahan limbah dengan baik dan tepat. Di dalam pengolahan limbah greywater ini dibutuhkan data karakteristik agar pengolahanya menjadi tepat. Permasalahannya ketersediaan data karakteristik greywater sangat minim, karena itulah dilakukan penelitian ini. Penelitian ini bertujuan untuk melakukan karakterisasi limbah cair greywater berdasarkan sumber emisinya dengan parameter yang dilihat adalah BOD, COD, TSS, DO, temperature, pH dan turbidity dari masing-masing sumber limbah cair greywater dan juga kondisi limbah yang sudah tercampur dari ketiga sumber limbah. Penelitian dilakukan dengan mengambil sampel sebanyak 12 sampel dari suatu rumah tangga. Dari hasil penelitian menunjukan bahwa limbah dapur merupakan limbah dengan kandungan yang terberat dibandingkan limbah lainnya dari greywater. Kandungan BOD dan COD Dapur menduduki nilai tertinggi dengan nilai  250-1000 mg/L untuk BOD dan 840-3430 mg/L untuk COD. Kandungan BOD dan COD limbah greywater terendah berasal dari limbah kamar mandi dengan kandungan BOD 6-100 mg/L sedangkan kandungan COD 19,4-143 mg/L. Keseluruhan rasio BOD/COD menunjukkan nilai berkisar 0,2-0,5 yang artinya limbah adalah biodegradable. Kadar pH dari keduabelas sampel berkisar dari 4,2-6,5. Kandungan TSS tertinggi berasal dari dapur dengan nilai 202 – 620 mg/L.

[EN] Greywater  is wastewater generated from kitchen, laundry and bath activities. Its production is about 70–75% of the total household wastewater. Related to the high volume of greywater production, greywater  contributes around 70-80% in polluting water bodies. By appropriate treatment, the high volume of greywater production can be used as a new alternative of water source. Unfortunately, the availability of greywater  characteristic data is very limited in existence. This study aims to characterize greywater effluent based on its emission source with focus parameters were BOD, COD, TSS, DO, temperature, pH and turbidity from each source of greywater effluent and also the mixed waste conditions from the three waste sources. The study was conducted by taking  12 samples from a household. The results of the study show that kitchen waste is the heaviest pollutant content compared to other waste from greywater. The content of BOD and COD in the kitchen occupies the highest value with a value of 250-1000 mg/L for BOD and 840-3430 mg/L for COD. The lowest BOD and COD content of greywater came from bathroom waste with a BOD content of 6-100 mg/L while the COD content was 19.4-143 mg/L. The overall BOD/COD ratio shows a value ranging from 0.2 to 0.5, which means that the waste is biodegradable. The pH levels of the twelve samples ranged from 4.2-6.5. The highest TSS content comes from the kitchen with a value of 202 – 620 mg/L.

Downloads

Download data is not yet available.

References

E. Eriksson, K. Auffarth, M. Henze, and A. Ledin, “Characteristics of grey wastewater,” Urban Water, vol. 4, no. 1, 2002, doi: 10.1016/S1462-0758(01)00064-4.

E. Friedler and M. Hadari, “Economic feasibility of on-site greywater reuse in multi-storey buildings,” Desalination, vol. 190, no. 1–3, 2006, doi: 10.1016/j.desal.2005.10.007.

E. Friedler, “Quality of individual domestic greywater streams and its implication for on-site treatment and reuse possibilities,” Environ. Technol., vol. 25, no. 9, 2004, doi: 10.1080/09593330.2004.9619393.

B. Jefferson, A. Palmer, P. Jeffrey, R. Stuetz, and S. Judd, “Grey water characterisation and its impact on the selection and operation of technologies for urban reuse,” Water Sci. Technol., vol. 50, no. 2, 2004, doi: 10.2166/wst.2004.0113.

F. Li, K. Wichmann, and R. Otterpohl, “Review of the technological approaches for grey water treatment and reuses,” Science of the Total Environment, vol. 407, no. 11. 2009, doi: 10.1016/j.scitotenv.2009.02.004.

E. Donner, E. Eriksson, D. M. Revitt, L. Scholes, H. C. H. Lützhøft, and A. Ledin, “Presence and fate of priority substances in domestic greywater treatment and reuse systems,” Sci. Total Environ., vol. 408, no. 12, 2010, doi: 10.1016/j.scitotenv.2010.02.033.

P. Soewondo and A. Yulianto, “THE EFFECT OF AERATION MODE ON SUBMERGED AEROBIC BIO FILTER REACTOR FOR GREY WATER TREATMENT,” Environ. Eng., vol. 3, no. 3, 2008.

Y. Gilboa and E. Friedler, “UV disinfection of RBC-treated light greywater effluent: Kinetics, survival and regrowth of selected microorganisms,” Water Res., vol. 42, no. 4–5, 2008, doi: 10.1016/j.watres.2007.09.027.

R. M. S. Radin Mohamed, A. A. S. Al-Gheethi, A. H. Mohd Kassim, A. Martin, S. Dallas, and M. H. Bin Khamidun, “A Potential Reuse of Greywater in Developed and Developing Countries,” 2019.

L. Domnech and D. Saurí, “Socio-technical transitions in water scarcity contexts: Public acceptance of greywater reuse technologies in the Metropolitan Area of Barcelona,” Resour. Conserv. Recycl., vol. 55, no. 1, 2010, doi: 10.1016/j.resconrec.2010.07.001.

C. Matos, A. Sampaio, and I. Bentes, “Possibilities of greywater reuse in non-potable in situ urban applications, according with its quality and quantity,” WSEAS Trans. Environ. Dev., vol. 6, no. 7, 2010.

U. Pinto and B. L. Maheshwari, “Reuse of greywater for irrigation around homes in Australia: Understanding community views, issues and practices,” Urban Water J., vol. 7, no. 2, 2010, doi: 10.1080/15730620903447639.

K. A. Mourad, J. C. Berndtsson, and R. Berndtsson, “Potential fresh water saving using greywater in toilet flushing in Syria,” J. Environ. Manage., vol. 92, no. 10, 2011, doi: 10.1016/j.jenvman.2011.05.004.

D. M. Revitt, E. Eriksson, and E. Donner, “The implications of household greywater treatment and reuse for municipal wastewater flows and micropollutant loads,” Water Res., vol. 45, no. 4, 2011, doi: 10.1016/j.watres.2010.11.027.

G. Antonopoulou, A. Kirkou, and A. S. Stasinakis, “Quantitative and qualitative greywater characterization in Greek households and investigation of their treatment using physicochemical methods,” Sci. Total Environ., vol. 454–455, 2013, doi: 10.1016/j.scitotenv.2013.03.045.

I. Bodnar, A. Szabolcsik, E. Baranyai, A. Uveges, and N. Boros, “Qualitative characterization of household greywater in the northern great plain region of Hungary,” Environ. Eng. Manag. J., vol. 13, no. 11, 2014, doi: 10.30638/eemj.2014.302.

A. E. South, E. Nazir., “KARAKTERISTIK AIR LIMBAH RUMAH TANGGA (grey water) PADA SALAH SATU PERUMAHAN MENENGAH KEATAS YANG BERADA DI Tangerang Selatan,” Ecolab, vol. 10, no. 2, 47-102, 2016.

Published
2021-11-02
Section
Articles
Abstract viewed = 2 times
PDF downloaded = 2 times