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Abstract 
The locating-chromatic number denote by χ 𝐺 , is the smallest 
𝑡  such that 𝐺  has a locating t-coloring. In this research, we 
determined locating-chromatic number for subdivision of certain 
barbell operation of origami graphs. 
Key words: 
locating-chromatic number, sudivision, certain barbell operation, 
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1.  Introduction 

 
The concept of partition dimension was introduced by 

Chartrand et al. [1] as the development of the concept of 
metric dimension. The application of metric dimension can 
be found in robotic navigation [2], chemical data 
classification [3], and the optimization of threat detecting 
sensors [4]. The locating-chromatic number was first 
discovered by Chartrand et al. [5] in 2002, with obtained 
two graph concepts, coloring vertices and partition 
dimension of a graph. The locating-chromatic number 
denote by χ 𝐺 , is the smallest 𝑡  such that 𝐺  has a 
locating t-coloring. Next, investigated the locating-
chromatic number for a path graph 𝑃 , a cycle graph 𝐶 , 
and double star graph 𝑆 , . Furthermore, Chartrand et al. 
[6] characterized all graphs of order 𝑛  with locating-
chromatic number 𝑛  1 . Baskoro and Asmiati [7] 
characterized all trees with locating-chromatic number 3. 

 
The locating-chromatic number of the join of graphs 

was introduced by Behtoei and Anbarloei [8]. Purwasih et 
al. [9], obtained locating-chromatic number for a 
subdivision of a graph on one edge. For graph with 
dominant vertices have been studied in [10]. In [11], 
Asmiati found the locating-chromatic number of non-
homogeneous caterpillar and firecrackers graph, [12] 
certain barbell graphs 𝐵 ,  and 𝐵 , . In 2019, Irawan et 
al. [13] obtained the locating-chromatic number for certain 
operation of generalized Petersen graphs 𝑠𝑃 4, 2 . 
Furthermore, in [14] determined the locating-chromatic 
number for 𝑠𝑃 𝑛, 1 , origami graphs [15] and certain 
barbell origami graphs [16]. The locating-chromatic 

number of a graph is a newly interesting topic to study 
because there is no general theorem for determining the 
locating-chromatic number of any graph. In this research, 
we specifying about locating-chromatic number for 
subdivision of certain barbell operation of origami graphs, 
called 𝐵 .  This study is a continuation of previous 
research. 

 
The following definition of the locating-chromatic 

number of a graph, dominant vertices, origami graph, and 
certain barbell origami graphs is taken from [5, 17, 18, 16]. 
We use some theorems that is basics to work out a lower 
bound of the locating-chromatic number of a graph is 
taken from [5, 15]. The set of neighbours of a vertex 𝑙 in 𝐺, 
denoted by 𝑁 𝑙 . 
 
Theorem 1.1. [5] Let 𝑐  be a locating coloring in a 
connected graph 𝐺 . If 𝑘  and 𝑙  are distinct vertices of 𝐺 
such that 𝑑 𝑘, 𝑤 𝑑 𝑙, 𝑤  for all 𝑤 ∈ 𝑉 𝐺 𝑘, 𝑙 , 
then 𝑐 𝑘 𝑐 𝑙 . In particular, if 𝑘  and 𝑙  are non-
adjacent vertices of 𝐺such that 𝑁 𝑘 𝑁 𝑙 , then 𝑐 𝑘
𝑐 𝑙 . 
 
Theorem 1.2. [15] Let 𝑂  be an origami graph for 𝑛 3. 
The locating chromatic number of an origami graphs 𝑂  is 
4 for 𝑛=3 and 5 otherwise. 
 
2. Results and Discussion 

 
In this section, we will discuss the locating-chromatic 

number for subdivision of certain barbell operation of 
origami graphs, denoted by 𝐵 . 

 
Theorem 2.1. Let 𝐵  be a subdivision of certain barbell 
operation of origami graphs for 𝑛  3, 𝑠  1. Then the 
locating-chromatic number of 𝐵  is five, χ 𝐵 5. 
 
Proof. Let 𝐵  be a subdivision of certain barbell 
operation of origami graphs for 𝑛 3 , 𝑠 1 , with 
𝑉 𝐵 𝑢 , 𝑢 , 𝑣 , 𝑣 , 𝑤 , 𝑤 : 𝑖 ∈ 1, … , 𝑛 ∪ 𝑥 : 
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𝑖 ∈ 1, … , 𝑠  and 𝐸 𝐵 𝑢 𝑤 , 𝑢 𝑣 , 𝑣 𝑤 , 𝑢 𝑢 ,  
𝑤 𝑢 : 𝑖 ∈ 1, … , 𝑛  ∪   𝑢 𝑤 , 𝑢 𝑣 , 𝑣 , 𝑤 , 
𝑢 𝑢 , 𝑤 𝑢 : 𝑖 ∈ 1, … , 𝑛 1  ∪  𝑢 𝑥 ,  
𝑥 𝑢  ∪ 𝑥 𝑥 : 𝑖 ∈ 1, … , 𝑠 1 . 
 

To prove the theorem, we will be divided into two 
cases : 
 
Cases 1. For 𝑛 3 
First, we determine lower bound of χ 𝐵 . Since 
subdivision of certain barbell operation of origami graphs, 
containing origami graphs 𝑂 , then by Theorem 1.2. 
χ 𝐵 4 . Next, we will show that 4 colors are not 
enough. Origami graph 𝐵  there are six complete graph 
with four vertices, denote by 𝐾 . Without loss of 
generality, we assign three colors for any 𝐾  in 𝐵 , and 
then the six vertices are dominant vertices. As a result, if 
we use four colors it is not enough because there are more 
than one 𝐾  in 𝐵 . So χ 𝐵  5. 
 

Next, we determined the upper bound of  χ 𝐵
 5. To show that χ 𝐵  5, consider the 5-coloring c 
on 𝐵  as follow, 
𝐶 𝑢 , 𝑤 , 𝑢 , 𝑣 ; 
𝐶 𝑢 , 𝑤 , 𝑤 ;  
𝐶 𝑢 , 𝑣 , 𝑤 , 𝑢 , 𝑣 , 𝑣  ∪ 𝑥 |for odd 𝑖, 𝑖 1 ; 
𝐶 𝑢 , 𝑣 , 𝑤 , 𝑤  ∪ 𝑥 |for even 𝑖 , 𝑖 2 ;  
𝐶 𝑣 ; 
 

The coloring c will create partition Π on 𝑉 𝐵 . We 
shall show that the color codes of all vertices in 𝐵  are 
diferent. We have 𝑐 𝑢 0, 2, 1, 1, 1 ; 𝑐 𝑢
1, 1, 0, 1, 2 ; 𝑐 𝑢 1, 2, 1, 0, 1 ; 𝑐 𝑢
1, 0, 1, 1, s  3 ; 𝑐 𝑢 1, 1, 1, 0, s  4 ; 𝑐 𝑢
0, 1, 1, 1, s  4 ; 𝑐 𝑣 1, 3, 2, 0, 1 ; 𝑐 𝑣

1, 3, 0, 1, 2 ; 𝑐 𝑣 2, 0, 1, 1, 3 ; 𝑐 𝑣
2, 1, 1, 0, s  4 ; 𝑐 𝑣 0, 1, 2, 1, s  5 ; 𝑐 𝑣
1, 2, 1, 0, s  5 ; 𝑐 𝑤 1, 3, 2, 1, 0 ; 𝑐 𝑤
0, 2, 1, 1, 2 ; 𝑐 𝑤 1, 1, 1, 0, 2 ; 𝑐 𝑤
2, 1, 0, 1, s  4 ; 𝑐 𝑤 1, 0, 2, 1, s  5 ; 𝑐 𝑤
1, 1, 0, 1s  4 . For 𝑠 1 , we have 𝑐 𝑥   𝑖 

 1, 1, 1, 0, 𝑖  2 .For 𝑖  odd, 𝑖 , 𝑠  2 , we have 

𝑐 𝑥   𝑖  1, 𝑖  1, 1, 0, 𝑖  2 . For 𝑖 even, 𝑖 , 

𝑠  2 , we have 𝑐 𝑥    𝑖  1, 𝑖  1, 0, 1, 𝑖  2 . 

For 𝑖  odd, 𝑖 , 𝑠  2, we have 𝑐 𝑥   𝑠  𝑖 

 2, 𝑠  𝑖  1, 1, 0, 𝑖  2 . For 𝑖 even, 𝑖 , 𝑠  2 , 

we have 𝑐 𝑥    𝑠  𝑖  2, 𝑠  𝑖  1, 0, 1, 𝑖  2 .  
 

Since the color codes of all vertices 𝐵  are diferent, 
thus c is a locating coloring. So χ 𝐵 5. 

 

Case 2. For 𝑛 4 
First, we determine lower bound of χ 𝐵  for 𝑛 4 . 
Since subdivision of certain barbell operation of origami 
graphs, containing origami graphs 𝑂 , then by Theorem 
1.2 it is clear that χ 𝐵 5.  
 

To show the upper bound for the locating-chromatic 
number for subdivison of certain barbell operation of 
origami graphs χ 𝐵 5  for 𝑛 4 . Let us diferent 
some subcases. 
 

Subcase 2.1. (odd 𝑛), for  odd, 𝑛 5 

Let 𝑐  be a coloring for subdivison of certain barbell 

operation of origami graph 𝐵 , for  odd, 𝑛 5  we 

make the partition Π of 𝑉 𝐵  : 
𝐶 𝑤 |1 𝑖 𝑛  ∪ 𝑢 ; 
𝐶 𝑢 |for odd 𝑖, 3 𝑖 𝑛  ∪  𝑣 |for even 𝑖, 2 𝑖

𝑛 1  ∪ 𝑢  |for odd 𝑖, 3 𝑖 2   ∪  𝑢 |for  

odd 𝑖, 2 𝑖 𝑛  ∪  𝑣 | for even 𝑖, 2 𝑖 𝑛

1  ∪ 𝑥 |for even 𝑖, 𝑖 2 ; 

𝐶 𝑢 |for even 𝑖, 2 𝑖 1  ∪ 𝑢 |for even 𝑖,   

 3 𝑖 𝑛 1  ∪  𝑣 |for odd 𝑖, 1 𝑖 𝑛    ∪   𝑢 | 
for even 𝑖, 2 𝑖  𝑛 1  ∪ 𝑣 |for odd 𝑖, 1 𝑖 𝑛 ; 
𝐶 𝑢  ∪ 𝑤 |1 𝑖 𝑛  ∪ 𝑥 |for odd 𝑖, 𝑖 1 ; 
𝐶 𝑢  ∪ 𝑢 . 

 

For   odd 𝑛 5, the color codes of all the vertices 

of 𝑉 𝐵  are : 
 

𝑐 𝑢

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

0,                 for 2  ordinate, even 𝑖, 3 𝑖 𝑛, 𝑛 5                   

for 3  ordinate, even 𝑖, 2 𝑖 1, 𝑛 5         

for 3  ordinate, even 𝑖, 3 𝑖 𝑛 1, 𝑛 9 

for 4  ordinate, 𝑖 1                                                       

for 5  ordinate, 𝑖 1                                            

2,                 for 3  ordinate, 𝑖 1                                           

𝑖 1,          for 4  ordinate, 2 𝑖 , 𝑛 5                              

𝑛 𝑖 1,   for 4  ordinate, 1 𝑖 𝑛, 𝑛 5                      

𝑖 1, for 5  ordinate, 1 𝑖 𝑛, 𝑛 5                      

𝑖 1, for 5  ordinate, 2 𝑖 , 𝑛 5                             

𝑖,        for 5  ordinate, 𝑖 1                                                      

1,                  otherwise.                                                                            
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 𝑐 𝑣

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧

0,                for 2  ordinate, even 𝑖, 2 𝑖 𝑛 1, 𝑛 5        
for 3  ordinate, odd 𝑖, 1 𝑖 𝑛, 𝑛 5                  

2,                for 2  ordinate, 𝑖 1                                                  

3,                 for 3  ordinate, 𝑖 1                                        

𝑖,                 for 4  ordinate, 2 𝑖 , 𝑛 5                          

𝑛 𝑖 2, for 4  ordinate, 1 𝑖 𝑛, 𝑛 5                   

,               for 5  ordinate, 𝑖 1                                                   

𝑖 2, for 5  ordinate, 2 𝑖 , 𝑛 5                          

𝑖 ,       for 5  ordinate, 1 𝑖 𝑛, 𝑛 5                  

1,                  otherwise.                                                                        

   

 
 𝑐 𝑤

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

0,                 for 1  ordinate, 1 𝑖 𝑛, 𝑛 5                        
2,                  for 2  ordinate, 𝑖 1                                            

for 3  ordinate, 𝑖                                          

𝑖,                 for 4  ordinate, 1 𝑖 , 𝑛 5                    

𝑛 𝑖 1,   for 4  ordinate, 1 𝑖 𝑛, 𝑛 5            

𝑖 1, for 5  ordinate, 1 𝑖 , 𝑛 5                    

𝑖 ,       for 5  ordinate, 1 𝑖 𝑛, 𝑛 5            

1,                  otherwise.                                                                  

  

 
𝑐 𝑢

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧ 𝑖 1,       for 1  ordinate, 2 𝑖 , 𝑛 5                        

𝑛 𝑖 1, for 1  ordinate, 1 𝑖 𝑛, 𝑛 5                 

0,               for 1  ordinate, 𝑖 1                                                 

for 2  ordinate, odd 𝑖, 3 𝑖 2, 𝑛 9    

for 2  ordinate, odd 𝑖, 2 𝑖 𝑛, 𝑛 5    

for 3  ordinate, even 𝑖, 3 𝑖 𝑛 1, 𝑛 5     

for 5  ordinate, 𝑖 1                                     

1,   for 1  ordinate, 𝑖                                              

2,             for 2  ordinate, 𝑖                                             

𝑖,   for 5  ordinate, 1 𝑖 1, 𝑛 5                

𝑖 ,   for 5  ordinate, 1 𝑖 𝑛, 𝑛 5               

1,             otherwise.                                                                     

  

 
 
 
 
 
 
 
 
 
 
 
 

𝑐 𝑣

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 𝑖,                 for 1  ordinate, 2 𝑖 , 𝑛 5                    

𝑛 𝑖 2,   for 1  ordinate, 1 𝑖 𝑛, 𝑛 5             

0,                 for 2  ordinate, even 𝑖, 2 𝑖 𝑛 1, 𝑛 5 
for 3  ordinate, odd 𝑖, 1 𝑖 𝑛, 𝑛 5           

2,                  for 2  ordinate, 𝑖 1                                           

3,                 for 2  ordinate, 𝑖                                          

𝑖 1, for 5  ordinate, 1 𝑖 , 𝑛 5                   

𝑖 1, for 5  ordinate, 1 𝑖 𝑛, 𝑛 5            

1,                  otherwise.                                                                  

  

 
𝑐 𝑤

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝑖,                 for 1  ordinate, 2 𝑖 , 𝑛 5                    

𝑛 𝑖 1, for 1  ordinate, 1 𝑖 𝑛, 𝑛 5            

2,                 for 2  ordinate, 𝑖 1  and 𝑖                     

0,                 for 4  ordinate, 1 𝑖 𝑛, 𝑛 5                      

𝑖,       for 5  ordinate, 1 𝑖 1, 𝑛 5           

𝑖 1, for 5  ordinate, 𝑖 𝑛, 𝑛 5                   

1,                  otherwise.                                                                 

  

 
𝑐 𝑥  

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧ 𝑠 𝑖 1,       for 1  ordinate, 𝑖

𝑠
2

, 𝑠 2          

𝑖 1,               for 1  ordinate, 𝑖
𝑠
2

 , 𝑠 2         

for 3  ordinate, 𝑖
𝑠
2

                     

1,                       for 1  ordinate, 𝑖 𝑠                          
for 2  ordinate, odd 𝑖 , 𝑖 1            
for 4  ordinate, even 𝑖, 𝑖 2            

𝑠 𝑖 2,         for 3  ordinate, 𝑖
𝑠
2

                     

𝑖
𝑛
2

2,      for 5  ordinate, 𝑖
𝑠
2

                     

𝑠 𝑖
𝑛
2

1, for 5  ordinate, 𝑖
𝑠
2

                     

0,                        otherwise.                                              

 

 
Since for odd n all vertices have different color codes, 

𝑐 is a locating coloring for subdivison of certain barbell 
operation of origami graphs 𝐵  , so that χ 𝐵  5, for 

  odd, 𝑛 5.  
 

Subcase 2.2. (odd 𝑛), for  even, 𝑛 7 

Let 𝑐  be a coloring for subdivison of certain barbell 

operation of origami graph 𝐵 , for  even, 𝑛 7  we 

make the partition Π of 𝑉 𝐵  : 
𝐶 𝑤 |1 𝑖 𝑛  ∪ 𝑢 ; 
𝐶 𝑢 |for odd 𝑖, 3 𝑖 𝑛  ∪  𝑣 |for even 𝑖, 2 𝑖

𝑛 1   ∪   𝑢 |for even 𝑖, 2 𝑖 2   ∪   𝑢 | 
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for even 𝑖, 2  𝑖 𝑛 1  ∪  𝑣 |for odd 𝑖, 1

𝑖 𝑛 ;  

𝐶 𝑢 |for even 𝑖, 2 𝑖 2  ∪ 𝑢 |for even 𝑖,  

2 𝑖 𝑛 1 ∪ 𝑣 |for odd 𝑖, 1 𝑖 𝑛  ∪  𝑢 |  
for odd 𝑖, 3 𝑖  𝑛  ∪  𝑣 |for even 𝑖, 2 𝑖 𝑛 1  
∪ 𝑥 |for even 𝑖, 𝑖 2 ;  
𝐶 𝑢  ∪ 𝑤 |1 𝑖 𝑛  ∪ 𝑥 |for odd 𝑖, 𝑖 1 ; 
𝐶 𝑢  ∪  𝑢 . 

 

For  even 𝑛 7, the color codes of all the vertices 

of 𝑉 𝐵  are : 
 

𝑐 𝑢

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

0,              for 2  ordinate, odd 𝑖, 3 𝑖 𝑛, 𝑛 7                     

for 3  ordinate, even 𝑖, 2 𝑖 2, 𝑛 7         

for 3  ordinate, even 𝑖, 2 𝑖 𝑛 1, 𝑛 7 

for 4  ordinate, 𝑖 1                                                       

for 5  ordinate, 𝑖                                                     

2,              for 3  ordinate, 𝑖                                                     

𝑖 1,        for 4  ordinate, 2 𝑖 , 𝑛 7                              

𝑛 𝑖 1, for 4  ordinate, 1 𝑖 𝑛, 𝑛 7                      

𝑖 ,     for 5  ordinate, 1 𝑖 𝑛, 𝑛 7                      

𝑖,     for 5  ordinate, 1 𝑖 1, 𝑛 7                      

1,              otherwise.                                                                            

  

 
𝑐 𝑣

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

0,               for 2  ordinate, even 𝑖, 2 𝑖 𝑛 1, 𝑛 7          
for 3  ordinate odd 𝑖, 1 𝑖 𝑛, 𝑛 7                    

2,               for 2  ordinate, 𝑖 1                                                    

3,                for 3  ordinate, 𝑖                                                   

𝑖,                for 4  ordinate, 1 𝑖 , 𝑛 7                            

𝑛 𝑖 2, for 4  ordinate, 1 𝑖 𝑛, 𝑛 7                    

𝑖 1, for 5  ordinate, 1 𝑖 , 𝑛 7                            

𝑖 1, for 5  ordinate, 1 𝑖 𝑛, 𝑛 7                    

1,                   otherwise.                                                                          

  

 

 

 

 

 

 

 

 

𝑐 𝑤

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

0,                 for 1  ordinate, 1 𝑖 𝑛, 𝑛 7                       
2,                  for 2  ordinate, 𝑖 1                                           

for 3  ordinate, 𝑖                                         

𝑖,                  for 4  ordinate, 2 𝑖 , 𝑛 7                   

𝑛 𝑖 1,   for 4  ordinate, 1 𝑖 𝑛, 𝑛 7           

𝑖,        for 5  ordinate, 1 𝑖 , 𝑛 7                   

𝑖 1, for 5  ordinate, 1 𝑖 𝑛, 𝑛 7           

1,                  otherwise.                                                                 

  

 
𝑐 𝑢

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧ 𝑖 1,       for 1  ordinate, 2 𝑖 , 𝑛 7                               

𝑛 𝑖 1, for 1  ordinate, 1 𝑖 𝑛, 𝑛 7                        

0,               for 1  ordinate, 𝑖 1                                                        

for 2  ordinate, even 𝑖, 2 𝑖 2, 𝑛 7         

for 2  ordinate, even 𝑖, 2 𝑖 𝑛 1, 𝑛 7  

for 3  ordinate, odd 𝑖, 3 𝑖 𝑛, 𝑛 7                      

for 5  ordinate, 𝑖                                                      

2,               for 2  ordinate, 𝑖                                                     

𝑖,     for 5  ordinate, 1 𝑖 1, 𝑛 7                       

𝑖 ,    for 5  ordinate, 1 𝑖 𝑛, 𝑛 7                       

1,                otherwise.                                                                             

  

 
𝑐 𝑣

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧𝑖,                   for 1  ordinate, 2 𝑖 1, 𝑛 7            

𝑛 𝑖 2,   for 1  ordinate, 1 𝑖 𝑛, 𝑛 7           

0,                   for 2 ordinate, odd 𝑖, 1 𝑖 𝑛, 𝑛 7          
for 3  ordinate, even 𝑖, 2 𝑖 𝑛 1, 𝑛 7

2,                  for 3  ordinate, 𝑖 1                                           

3,                  for 2  ordinate, 𝑖                                        

𝑖 1, for 5  ordinate, 1 𝑖 , 𝑛 7                 

𝑖 1, for 5  ordinate, 1 𝑖 𝑛, 𝑛 7          

1,                 otherwise.                                                                

   

 
𝑐 𝑤

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝑖,                 for 1  ordinate, 1 𝑖 , 𝑛 7                   

𝑛 𝑖 1,   for 1  ordinate, 1 𝑖 𝑛, 𝑛 7           

2,                  for 2  ordinate, 𝑖                                        

for 3  ordinate, 𝑖 1                                          
0,                  for 4  ordinate, 1 𝑖 𝑛, 𝑛 7                     

𝑖,        for 5  ordinate, 1 𝑖 1, 𝑛  7         

𝑖 1, for 5  ordinate, 𝑖 𝑛, 𝑛 7                  

1,                 otherwise.                                                                

  

 



IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.9, September 2021 
 

 

83

 

𝑐 𝑥  

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧ 𝑠 𝑖 1,   for 1  ordinate, 𝑖 , 𝑠 2         

𝑖 1,           for 1  ordinate, 𝑖  , 𝑠 2        

1,                  for 1  ordinate, 𝑖 𝑠                         
for 3  ordinate, odd 𝑖, 𝑖 1            
for 4  ordinate, even 𝑖, 𝑖 2           

𝑖,                   for 2  ordinate, 𝑖                      

𝑠 𝑖 2,   for 2  ordinate, 𝑖                      

2,                  for 3  ordinate, 𝑠 1                       

𝑖 2, for 5  ordinate, 𝑖                      

𝑠 𝑖 , for 5  ordinate, 𝑖                      

0,                   otherwise.                                             

  

 

Since for odd 𝑛 all vertices have different color codes, 
𝑐 is a locating coloring for subdivison of certain barbell 
operation of origami graphs 𝐵  , so that χ 𝐵  5, for 

 even, 𝑛 7. 
 
Subcase 2.3. (even 𝑛), for  odd, 𝑛 6 

Let 𝑐  be a coloring for subdivison of certain barbell 
operation of origami graph 𝐵 , for  odd, 𝑛 6 we make 

the partition Π of 𝑉 𝐵  : 

𝐶 𝑤 |1 𝑖 1  ∪ 𝑤 | 1 𝑖 𝑛  ∪ 𝑢 ; 

𝐶 𝑢 |for odd 𝑖, 3 𝑖 𝑛 1  ∪  𝑣 |for even 𝑖, 2
𝑖 𝑛  ∪  𝑢 |for even 𝑖, 2 𝑖 𝑛  ∪  𝑣 |for odd 𝑖,  
1 𝑖 𝑛 1 ;  
𝐶 𝑢 |for even 𝑖, 2 𝑖 𝑛  ∪  𝑣 |for odd 𝑖, 3 𝑖
𝑛 1 ∪  𝑢 |for odd 𝑖, 3 𝑖 𝑛 1   ∪  𝑣 | for  
even 𝑖, 2 𝑖 𝑛  ∪ 𝑥 |for odd 𝑖, 𝑖 1 ; 
𝐶 𝑢  ∪ 𝑤 |1 𝑖 1  ∪  𝑤 | 1 𝑖
𝑛  ∪  𝑥 |for odd 𝑖, 𝑖 2 ; 
𝐶 𝑤  ∪ 𝑤 . 

 
For   odd 𝑛 6, the color codes of all the vertices of 

𝑉 𝐵  are : 
 

𝑐 𝑢  

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

0,               for 2  ordinate, odd 𝑖, 3 𝑖 𝑛 1, 𝑛 6                    
for 3  ordinate, even 𝑖, 2 𝑖 𝑛, 𝑛 6                           
for 4  ordinate, 𝑖 1                                                              

2,               for 3  ordinate, 𝑖 1                                                              

𝑖 1,        for 4  ordinate, 2 𝑖
𝑛
2

, 𝑛 6                                        

𝑛 𝑖 1, for 4  ordinate,
𝑛
2

1 𝑖 𝑛, 𝑛 6                                
𝑛
2

𝑖 1, for 5  ordinate, 1 𝑖
𝑛
2

, 𝑛 6                                       

𝑖   
𝑛
2

,     for 5  ordinate,
𝑛
2

1 𝑖 𝑛, 𝑛 6                                

1,               otherwise.                                                                                   

 

𝑐 𝑣

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

3,               for 2  ordinate, 𝑖 1                                                         
0,               for 2  ordinate, even 𝑖, 2 𝑖 𝑛, 𝑛 6                      

for 3  ordinate, odd 𝑖, 1 𝑖 𝑛 1, 𝑛 6                
𝑖,               for 4  ordinate, 1 𝑖 , 𝑛 6                                    

𝑛 𝑖 2, for 4  ordinate, 1 𝑖 𝑛, 𝑛 6                            

𝑖 2, for 5  ordinate, 1 𝑖 1, 𝑛 6                            

𝑖 1, for 5  ordinate, 𝑖 𝑛, 𝑛 6                                    

1,               otherwise.                                                                               

  

 
𝑐 𝑤

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧0,               for 1  ordinate, 1 𝑖 1, 𝑛 6                            

for 1  ordinate, 1 𝑖 𝑛, 𝑛 6                            

for 5  ordinate, 𝑖                                                          

2,               for 2  ordinate, 𝑖 1                                                        
𝑖,               for 4  ordinate, 1 𝑖 , 𝑛 6                                   

𝑛 𝑖 1, for 4  ordinate, 1 𝑖 𝑛, 𝑛 6                           

𝑖 1, for 5  ordinate, 1 𝑖 1, 𝑛 6                           

𝑖 1, for 5  ordinate, 1 𝑖 𝑛, 𝑛 6                           

1,               otherwise.                                                                              

   

 
𝑐 𝑢  

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧𝑖 1,        for 1  ordinate, 2 𝑖

𝑛
2

, 𝑛 6                                     

𝑛 𝑖 1, for 1  ordinate,
𝑛
2

𝑖 𝑛, 𝑛 6                                     

0,               for 2  ordinate, even 𝑖, 2 𝑖 𝑛, 𝑛 6                       
for 3  ordinate, odd 𝑖, 3 𝑖 𝑛 1, 𝑛 6                 
for 1  ordinate, 𝑖 1                                                           

2,               for 3  ordinate, 𝑖 1                                                          
𝑛
2

𝑖 1, for 5  ordinate, 1 𝑖
𝑛
2

, 𝑛 6                                    

𝑖
𝑛
2

,       for 5  ordinate,
𝑛
2

1 𝑖 𝑛, 𝑛 6                            

1,               otherwise.                                                                               

 

 
𝑐 𝑣  

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝑖,               for 1  ordinate, 2 𝑖

𝑛
2

, 𝑛 6                            

𝑛 𝑖 2, for 1  ordinate,
𝑛
2

1 𝑖 𝑛, 𝑛 6                     

0,               for 2  ordinate, odd 𝑖, 1 𝑖 𝑛 1, 𝑛 6        
for 3  ordinate, even 𝑖, 2 𝑖 𝑛, 𝑛 6               

3,               for 2  ordinate, 𝑖 1                                                 
𝑛
2

𝑖 1, for 5  ordinate, 1 𝑖
𝑛
2

1, 𝑛 6                    

𝑖
𝑛
2

1, for 5  ordinate,
𝑛
2

𝑖 𝑛, 𝑛 6                            

1,               otherwise.                                                                       
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𝑐 𝑤

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 𝑖,               for 1  ordinate, 1 𝑖 , 𝑛 6                         

𝑛 𝑖 1, for 1  ordinate, 1 𝑖 𝑛, 𝑛 6                  

2,               for 2  ordinate, 𝑖 1                                              
0,               for 4  ordinate, 1 𝑖 1, 𝑛 6                  

for 4  ordinate, 1 𝑖 𝑛, 𝑛 6                 

for 5  ordinate, i                                                

𝑖 1, for 5  ordinate, 1 𝑖 1, 𝑛 6                 

𝑖 1, for 5  ordinate, 1 𝑖 𝑛, 𝑛 6                 

1,               otherwise.                                                                    

   

 
𝑐 𝑥  

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧𝑠 𝑖 1, for 1  ordinate, 𝑖 , 𝑠 2            

𝑖 1,       for 1  ordinate, 𝑖  , 𝑠 2           

0,              for 3  ordinate, even 𝑖, 𝑖 2             
for 4  ordinate, odd 𝑖, 𝑖 1               

𝑖,               for 2  ordinate, 𝑖  , 𝑠 2         

𝑠 𝑖 2 for 2  ordinate, 𝑖 , 𝑠 2          

𝑖 1 for 5  ordinate, 𝑖 , 𝑠 2           

𝑠 𝑖 for 5  ordinate, 𝑖 , 𝑠 2           

1,              otherwise.                                                

  

 

Since for odd 𝑛 all vertices have different color codes, 
𝑐 is a locating coloring for subdivison of certain barbell 
operation of origami graphs 𝐵  , so that χ 𝐵  5, for 

  odd , 𝑛 6. 
 
Subcase 2.4. (even 𝑛), for  even, 𝑛 4 

Let 𝑐  be a coloring for subdivison of certain barbell 
operation of origami graph 𝐵 ,  even, 𝑛 4 we make 

the partition Π of 𝑉 𝐵  : 

𝐶 𝑤 |1 𝑖 1  ∪ 𝑤 | 1 𝑖 𝑛  ∪ 𝑢 ; 

𝐶 𝑢 |for odd 𝑖, 1 𝑖 𝑛 1  ∪  𝑣 |for even 𝑖, 2
𝑖 𝑛  ∪  𝑢 |for odd 𝑖, 3 𝑖 𝑛  ∪  𝑣 |for even 𝑖 

, 1 𝑖 𝑛 1 : 

𝐶 𝑢 |for even 𝑖, 2 𝑖 𝑛 2   ∪   𝑣 |for odd 𝑖, 1
𝑖 𝑛 1   ∪  𝑢 |for even 𝑖, 3 𝑖 𝑛 1  ∪  𝑣 | 

for odd 𝑖, 2 𝑖 𝑛  ∪ 𝑥 |for odd 𝑖, 𝑖 1 ; 
𝐶 𝑢  ∪  𝑤 |1 𝑖   ∪    𝑤 | 2 𝑖 𝑛    

∪   𝑥 |for even 𝑖, 𝑖 2 ; 
𝐶 𝑤  ∪ 𝑤 . 

 

For   even 𝑛 4, the color codes of all the vertices of 

𝑉 𝐵  are : 
 
 
 

𝑐 𝑢

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

0,               for 2  ordinate, odd 𝑖, 1 𝑖 𝑛 1, 𝑛 4                    
for 3  ordinate, even 𝑖, 2 𝑖 𝑛, 𝑛 4                          
for 4  ordinate, 𝑖 𝑛                                                             

𝑖,               for 4  ordinate, 1 𝑖 , 𝑛 4                                       

𝑛 𝑖,        for 4  ordinate, 1 𝑖 𝑛 1, 𝑛 4                        

𝑖 1, for 5  ordinate, 1 𝑖 , 𝑛 4                                       

𝑖   , for 5  ordinate, 1 𝑖 𝑛, 𝑛 4                               

1,              otherwise.                                                                                  

  

 
 𝑐 𝑣

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

0,               for 2  ordinate, even 𝑖, 2 𝑖 𝑛, 𝑛 4                    
for 3  ordinate, odd 𝑖, 1 𝑖 𝑛 1, 𝑛 4              

𝑖 1,      for 4  ordinate, 1 𝑖 , 𝑛 4                                  

𝑛 𝑖 1, for 4  ordinate, 1 𝑖 𝑛, 𝑛 4                          

𝑖 2, for 5  ordinate, 1 𝑖 1, 𝑛 4                          

𝑖 1, for 5  ordinate, 𝑖 𝑛, 𝑛 4                                  

1,               otherwise.                                                                              

  

 
 𝑐 𝑤

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧0,               for 1  ordinate, 1 𝑖 1, 𝑛 4                            

for 1  ordinate, 1 𝑖 𝑛, 𝑛 4                            

for 5  ordinate, 𝑖                                                          

2,               for 1  ordinate, 𝑖                                                          

for 3  ordinate, 𝑖 𝑛                                                        
𝑖 1,      for 4  ordinate, 1 𝑖 , 𝑛 4                                   

𝑛 𝑖,       for 4  ordinate, 𝑖 𝑛 1, 𝑛 4                           

𝑖 1, for 5  ordinate, 1 𝑖 , 𝑛 4                                  

𝑖 1, for 5  ordinate, 1 𝑖 𝑛, 𝑛 4                           

1,               otherwise.                                                                              

    

 
𝑐 𝑢

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝑖 1,      for 1  ordinate, 2 𝑖 , 𝑛 4                                     

𝑛 𝑖 1, for 1  ordinate, 1 𝑖 𝑛, 𝑛 4                              

0,               for 2  ordinate, even 𝑖, 2 𝑖 𝑛, 𝑛 4                       
for 3  ordinate, odd 𝑖, 3 𝑖 𝑛 1, 𝑛 4                 
for 1  ordinate, 𝑖 1                                                           

2,               for 3  ordinate, 𝑖 1                                                          
𝑖 1, for 5  ordinate, 1 𝑖 , 𝑛 4                                     

𝑖 ,       for 5  ordinate, 1 𝑖 𝑛, 𝑛 4                             

1,              otherwise.                                                                                
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𝑐 𝑣

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝑖,               for 1  ordinate, 2 𝑖 1, 𝑛 4                    

𝑛 𝑖 2, for 1  ordinate, 2 𝑖 𝑛, 𝑛 4                    

0,               for 2  ordinate, odd 𝑖, 1 𝑖 𝑛 1, 𝑛 4      
for 3  ordinate, even 𝑖, 2 𝑖 𝑛, 𝑛 4             

3,               for 2  ordinate, 𝑖 1                                               
𝑖 3, for 5  ordinate, 1 𝑖 , 𝑛 4                          

𝑖 ,       for 5  ordinate, 1 𝑖 𝑛, 𝑛 4                   

1,               otherwise.                                                                      

   

 
 𝑐 𝑤

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 𝑖,               for 1  ordinate, 1 𝑖 , 𝑛 4                          

𝑛 𝑖 1, for 1  ordinate, 1 𝑖 𝑛, 𝑛 4                   

0,               for 4  ordinate, 1 𝑖 , 𝑛 4                          

for 4  ordinate, 2 𝑖 𝑛, 𝑛 4                  

for 5  ordinate, 𝑖 1                                        

2,               for 4  ordinate, 𝑖 1                                       

𝑖 2, for 5  ordinate, 1 𝑖 , 𝑛 4                         

𝑖 ,       for 5  ordinate, 2 𝑖 𝑛, 𝑛 4                  

1,               otherwise.                                                                     

   

 
 𝑐 𝑥

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 𝑠 𝑖 1,       for 1  ordinate, 𝑖 , 𝑠 2            

𝑖 1,               for 1  ordinate, 𝑖  , 𝑠 2           

for 2  ordinate, 𝑖  , 𝑠 2          

𝑠 𝑖 2,        for 2  ordinate, 𝑖 , 𝑠 2           

0,                      for 3  ordinate, odd 𝑖, 𝑖 1               
for 4  ordinate, even 𝑖 , 𝑖 2             

𝑖 ,               for 5  ordinate, 𝑖 , 𝑠 2           

𝑠 𝑖 1, for 5  ordinate, 𝑖 , 𝑠 2           

1,                      otherwise.                                                 

  

  

Since for odd n all vertices have different color codes, 
𝑐 is a locating coloring for subdivison of certain barbell 
operation of origami graphs 𝐵  , so that χ 𝐵  5, for 

  even , 𝑛 4. This completes the proof of the theorem.  
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