Subdivision of Certain Barbell Operation of Origami Graphs has Locating-Chromatic Number Five

Agus Irawan ${ }^{1 *}$, Asmiati 2, La Zakaria ${ }^{2}$, Kurnia Muludi ${ }^{3}$ and Bernadhita Herindri Samodra Utami ${ }^{1}$,
${ }^{1}$ Information System, STMIK Pringsewu, J. Wismarini No. 09 Pringsewu, Lampung, Indonesia
${ }^{2}$ Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Lampung, Jl. Brodjonegoro No. 1 Bandar Lampung, Indonesia.
${ }^{3}$ Computer Sciences, Faculty of Mathematics and Natural Sciences, University of Lampung, Jl. Brodjonegoro No. 1 Bandar Lampung, Indonesia.
*Coreponding author

Abstract

The locating-chromatic number denote by $\chi_{L}(G)$, is the smallest t such that G has a locating t -coloring. In this research, we determined locating-chromatic number for subdivision of certain barbell operation of origami graphs.

Key words:

locating-chromatic number, sudivision, certain barbell operation, origami graphs.

1. Introduction

The concept of partition dimension was introduced by Chartrand et al. [1] as the development of the concept of metric dimension. The application of metric dimension can be found in robotic navigation [2], chemical data classification [3], and the optimization of threat detecting sensors [4]. The locating-chromatic number was first discovered by Chartrand et al. [5] in 2002, with obtained two graph concepts, coloring vertices and partition dimension of a graph. The locating-chromatic number denote by $\chi_{L}(G)$, is the smallest t such that G has a locating t-coloring. Next, investigated the locatingchromatic number for a path graph P_{n}, a cycle graph C_{n}, and double star graph $S_{a, b}$. Furthermore, Chartrand et al. [6] characterized all graphs of order n with locatingchromatic number $n-1$. Baskoro and Asmiati [7] characterized all trees with locating-chromatic number 3.

The locating-chromatic number of the join of graphs was introduced by Behtoei and Anbarloei [8]. Purwasih et al. [9], obtained locating-chromatic number for a subdivision of a graph on one edge. For graph with dominant vertices have been studied in [10]. In [11], Asmiati found the locating-chromatic number of nonhomogeneous caterpillar and firecrackers graph, [12] certain barbell graphs $B_{m, n}$ and $B_{P(n, 1)}$. In 2019, Irawan et al. [13] obtained the locating-chromatic number for certain operation of generalized Petersen graphs $s P(4,2)$. Furthermore, in [14] determined the locating-chromatic number for $s P(n, 1)$, origami graphs [15] and certain barbell origami graphs [16]. The locating-chromatic
number of a graph is a newly interesting topic to study because there is no general theorem for determining the locating-chromatic number of any graph. In this research, we specifying about locating-chromatic number for subdivision of certain barbell operation of origami graphs, called $B_{O_{n}}^{S}$. This study is a continuation of previous research.

The following definition of the locating-chromatic number of a graph, dominant vertices, origami graph, and certain barbell origami graphs is taken from [5, 17, 18, 16]. We use some theorems that is basics to work out a lower bound of the locating-chromatic number of a graph is taken from [5,15]. The set of neighbours of a vertex l in G, denoted by $N(l)$.

Theorem 1.1. [5] Let c be a locating coloring in a connected graph G. If k and l are distinct vertices of G such that $d(k, w)=d(l, w)$ for all $w \in V(G)-\{k, l\}$, then $c(k) \neq c(l)$. In particular, if k and l are nonadjacent vertices of G such that $N(k) \neq N(l)$, then $c(k) \neq$ $c(l)$.

Theorem 1.2. [15] Let O_{n} be an origami graph for $n \geq 3$. The locating chromatic number of an origami graphs O_{n} is 4 for $n=3$ and 5 otherwise.

2. Results and Discussion

In this section, we will discuss the locating-chromatic number for subdivision of certain barbell operation of origami graphs, denoted by $B_{O_{n}}^{s}$.

Theorem 2.1. Let $B_{O_{n}}^{S}$ be a subdivision of certain barbell operation of origami graphs for $n \geq 3, s \geq 1$. Then the locating-chromatic number of $B_{O_{n}}^{s}$ is five, $\chi_{L}\left(B_{O_{n}}^{s}\right)=5$.

Proof. Let $B_{O_{n}}^{S}$ be a subdivision of certain barbell operation of origami graphs for $n \geq 3, s \geq 1$, with $V\left(B_{O_{n}}^{s}\right)=\left\{u_{i}, u_{n+i}, v_{i}, v_{n+i}, w_{i}, w_{n+i}: i \in\{1, \ldots, n\}\right\} \cup\left\{x_{i}:\right.$

Manuscript revised September 20, 2021
https://doi.org/10.22937/IJCSNS.2021.21.9.9
$i \in\{1, \ldots, s\}\} \quad$ and $\quad E\left(B_{O_{n}}^{s}\right)=\left\{u_{i} w_{i}, u_{i} v_{i}, v_{i} w_{i}, u_{i} u_{i+1}\right.$, $\left.w_{i} u_{i+1}: i \in\{1, \ldots, n\}\right\} \cup\left\{u_{n+i} w_{n+i}, u_{n+i} v_{n+i}, v_{n+i}, w_{n+i}\right.$, $\left.u_{n+i} u_{n+i+1}, w_{n+i} u_{n+i+1}: i \in\{1, \ldots, n-1\}\right\} \cup \cup\left\{u_{n} x_{1}\right.$, $\left.x_{s} u_{n+1}\right\} \cup\left\{x_{i} x_{i+1}: i \in\{1, \ldots, s-1\}\right\}$.

To prove the theorem, we will be divided into two cases :

Cases 1. For $n=3$
First, we determine lower bound of $\chi_{L}\left(B_{O_{3}}^{S}\right)$. Since subdivision of certain barbell operation of origami graphs, containing origami graphs O_{3}, then by Theorem 1.2. $\chi_{L}\left(B_{O_{3}}^{S}\right) \geq 4$. Next, we will show that 4 colors are not enough. Origami graph $B_{O_{3}}^{s}$ there are six complete graph with four vertices, denote by K_{4}. Without loss of generality, we assign three colors for any K_{4} in $B_{O_{3}}^{S}$, and then the six vertices are dominant vertices. As a result, if we use four colors it is not enough because there are more than one K_{4} in $B_{O_{3}}^{s}$. So $\chi_{L}\left(B_{O_{3}}^{s}\right) \geq 5$.

Next, we determined the upper bound of $\chi_{L}\left(B_{O_{3}}^{S}\right) \leq$ 5. To show that $\chi_{L}\left(B_{O_{3}}^{S}\right) \leq 5$, consider the 5 -coloring c on $B_{O_{3}}^{S}$ as follow,
$C_{1}=\left\{u_{1}, w_{2}, u_{6}, v_{5}\right\} ;$
$C_{2}=\left\{u_{4}, w_{1}, w_{5}\right\} ;$
$C_{3}=\left\{u_{2}, v_{1}, w_{3}, u_{5}, v_{4}, v_{6}\right\} \cup\left\{x_{i} \mid\right.$ for odd $\left.i, i \geq 1\right\} ;$
$C_{4}=\left\{u_{3}, v_{2}, w_{4}, w_{6}\right\} \cup\left\{x_{i} \mid\right.$ for even $\left.i, i \geq 2\right\}$;
$C_{5}=\left\{v_{3}\right\} ;$
The coloring c will create partition Π on $V\left(B_{O_{3}}^{s}\right)$. We shall show that the color codes of all vertices in $B_{O_{3}}^{S}$ are diferent. We have $c_{\Pi}\left(u_{1}\right)=(0,2,1,1,1) ; c_{\Pi}\left(u_{2}\right)=$ $(1,1,0,1,2) \quad ; \quad c_{\Pi}\left(u_{3}\right)=(1,2,1,0,1) \quad ; \quad c_{\Pi}\left(u_{4}\right)=$ $(1,0,1,1, \mathrm{~s}+3) ; c_{\Pi}\left(u_{5}\right)=(1,1,1,0, \mathrm{~s}+4) ; c_{\Pi}\left(u_{6}\right)=$ $\left((0,1,1,1, \mathrm{~s}+4) ; c_{\Pi}\left(v_{1}\right)=(1,3,2,0,1) ; c_{\Pi}\left(v_{2}\right)=\right.$ $(1,3,0,1,2) \quad ; \quad c_{\Pi}\left(v_{3}\right)=(2,0,1,1,3) \quad ; \quad c_{\Pi}\left(v_{4}\right)=$ $(2,1,1,0, \mathrm{~s}+4) ; c_{\Pi}\left(v_{5}\right)=(0,1,2,1, \mathrm{~s}+5) ; c_{\Pi}\left(v_{6}\right)=$ $(1,2,1,0, \mathrm{~s}+5) ; c_{\Pi}\left(w_{1}\right)=(1,3,2,1,0) ; c_{\Pi}\left(w_{2}\right)=$ $(0,2,1,1,2) \quad ; \quad c_{\Pi}\left(w_{3}\right)=(1,1,1,0,2) \quad ; \quad c_{\Pi}\left(w_{4}\right)=$ $(2,1,0,1, \mathrm{~s}+4) ; c_{\Pi}\left(w_{5}\right)=(1,0,2,1, \mathrm{~s}+5) ; c_{\Pi}\left(w_{6}\right)=$ $(1,1,0,1 \mathrm{~s}+4)$. For $s=1$, we have $c_{\Pi}\left(x_{i}\right)=(i+$ $1,1,1,0, i+2)$. For i odd, $i \leq\left\lfloor\frac{s}{2}\right\rfloor, s \geq 2$, we have $c_{\Pi}\left(x_{i}\right)=(i+1, i+1,1,0, i+2)$. For i even, $i \leq\left\lfloor\frac{s}{2}\right\rfloor$, $s \geq 2$, we have $c_{\Pi}\left(x_{i}\right)=(i+1, i+1,0,1, i+2)$. For i odd, $i>\left\lfloor\frac{s}{2}\right\rfloor, s \geq 2$, we have $c_{\Pi}\left(x_{i}\right)=(s-i+$ $2, s-i+1,1,0, i+2)$. For i even, $i>\left|\frac{s}{2}\right|, s \geq 2$, we have $c_{\Pi}\left(x_{i}\right)=(s-i+2, s-i+1,0,1, i+2)$.

Case 2. For $n \geq 4$
First, we determine lower bound of $\chi_{L}\left(B_{O_{n}}^{s}\right)$ for $n \geq 4$. Since subdivision of certain barbell operation of origami graphs, containing origami graphs O_{n}, then by Theorem 1.2 it is clear that $\chi_{L}\left(B_{O_{n}}^{s}\right) \geq 5$.

To show the upper bound for the locating-chromatic number for subdivison of certain barbell operation of origami graphs $\chi_{L}\left(B_{O_{n}}^{S}\right) \geq 5$ for $n \geq 4$. Let us diferent some subcases.

Subcase 2.1. (odd n), for $\left\lceil\frac{n}{2}\right\rceil$ odd, $n \geq 5$
Let c be a coloring for subdivison of certain barbell operation of origami graph $B_{O_{n}}^{s}$, for $\left[\frac{n}{2}\right\rceil$ odd, $n \geq 5$ we make the partition Π of $V\left(B_{O_{n}}^{s}\right)$:
$C_{1}=\left\{w_{1} \mid 1 \leq i \leq n\right\} \cup\left\{u_{n+1}\right\} ;$
$C_{2}=\left\{u_{i} \mid\right.$ for odd $\left.i, 3 \leq i \leq n\right\} \cup\left\{v_{i} \mid\right.$ for even $i, 2 \leq i \leq$ $n-1\} \cup\left\{u_{n+i} \mid\right.$ for odd $\left.i, 3 \leq i \leq\left\lceil\frac{n}{2}\right\rceil-2\right\} \cup\left\{u_{n+i} \mid\right.$ for odd $\left.i,\left\lceil\frac{n}{2}\right\rceil+2 \leq i \leq n\right\} \cup\left\{v_{n+i} \mid\right.$ for even $i, 2 \leq i \leq n-$ 1\} $\cup\left\{x_{i} \mid\right.$ for even $\left.i, i \geq 2\right\}$;
$C_{3}=\left\{u_{i} \mid\right.$ for even $\left.i, 2 \leq i \leq\left\lceil\frac{n}{2}\right\rceil-1\right\} \cup\left\{u_{i} \mid\right.$ for even $i,\left\lceil\frac{n}{2}\right\rceil$ $+3 \leq i \leq n-1\} \cup\left\{v_{i} \mid\right.$ for odd $\left.i, 1 \leq i \leq n\right\} \cup\left\{u_{n+i} \mid\right.$ for even $i, 2 \leq i \leq n-1\} \cup\left\{v_{n+i} \mid\right.$ for odd $\left.i, 1 \leq i \leq n\right\}$; $C_{4}=\left\{u_{1}\right\} \cup\left\{w_{n+i} \mid 1 \leq i \leq n\right\} \cup\left\{x_{i} \mid\right.$ for odd $\left.i, i \geq 1\right\} ;$ $C_{5}=\left\{u_{\left[\frac{n}{2}\right]+1}\right\} \cup\left\{u_{n+\left[\frac{n}{2}\right]}\right\}$.

For $\left\{\frac{n}{2}\right\rceil$ odd $n \geq 5$, the color codes of all the vertices of $V\left(B_{O_{n}}^{S}\right)$ are :
$c_{\Pi}\left(u_{i}\right)=$
$\begin{cases}0, & \text { for } 2^{\text {nd }} \text { ordinate, even } i, 3 \leq i \leq n, n \geq 5 \\ & \text { for } 3^{\text {rd }} \text { ordinate, even } i, 2 \leq i \leq\left\lceil\frac{n}{2}\right\rceil-1, n \\ & \text { for } 3^{\text {rd }} \text { ordinate, even } i,\left\lceil\frac{n}{2}\right\rceil+3 \leq i \leq n- \\ & \text { for } 4^{\text {th }} \text { ordinate, } i=1 \\ 2, & \text { for } 5^{\text {th }} \text { ordinate, } i=\left\lceil\frac{n}{2}\right\rceil+1 \\ i-1, & \text { for } 3^{\text {rd }} \text { ordinate, } i=\left\lceil\frac{n}{2}\right\rceil+1 \\ n-i+1, & \text { for } 4^{\text {th }} \text { ordinate, } 2 \leq i \leq\left\lceil\frac{n}{2}\right\rceil, n \geq 5 \\ i-\left\lceil\frac{n}{2}\right\rceil-1, & \text { for } 5^{\text {th }} \text { ordinate, }\left\lceil\frac{n}{2}\right\rceil+1 \leq i \leq n, n \geq 5 \\ \left\lceil\frac{n}{2}\right\rceil-i+1, & \text { for } 5^{\text {th }} \text { ordinate, } 2 \leq i \leq\left\lceil\frac{n}{2}\right\rceil, n \geq 5 \\ \left\lceil\frac{n}{2}\right\rceil-i, & \text { for } 5^{\text {th }} \text { ordinate, } i=1 \\ 1, & \text { otherwise. }\end{cases}$

$c_{\Pi}\left(v_{i}\right)$	
	for $2^{\text {nd }}$ ordinate, even $i, 2 \leq i \leq n-1, n \geq 5$ for $3^{r d}$ ordinate, odd $i, 1 \leq i \leq n, n \geq 5$
2,	for $2^{\text {nd }}$ ordinate, $i=1$
3,	for $3^{\text {rd }}$ ordinate, $i=\left\lceil\frac{n}{2}\right\rceil+1$
i,	for $4^{\text {th }}$ ordinate, $2 \leq i \leq\left\lceil\frac{n}{2}\right], n \geq$
$n-i+2$,	for $4^{\text {th }}$ ordinate, $\left\lceil\frac{n}{2}\right]+1 \leq i \leq n, n \geq 5$
	for $5^{\text {th }}$ ordinate, $i=1$
$\left\lceil\frac{n}{2}\right\rceil-i+2$,	for $5^{\text {th }}$ ordinate, $2 \leq i \leq\left[\frac{n}{2}\right], n \geq 5$
$i-\left\lceil\frac{n}{2}\right\}$,	for $5^{\text {th }}$ ordinate, $\left\lceil\frac{n}{2}\right\rceil+1 \leq i \leq n, n \geq$
1,	otherwise.
$c_{\Pi}\left(w_{i}\right)=$	
${ }^{0}$	for $1^{\text {st }}$ ordinate, $1 \leq i \leq n, n \geq 5$
2 ,	for $2^{\text {nd }}$ ordinate, $i=1$
	for $3^{\text {rd }}$ ordinate, $i=\left\lceil\frac{n}{2}\right\rceil$
	for $4^{\text {th }}$ ordinate, $1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil$
$n-i+1$,	for $4^{\text {th }}$ ordinate, $\left\lceil\frac{n}{2}\right]+1 \leq i \leq n, n \geq$
$\left\lceil\frac{n}{2}\right\rceil-i+1$	for $5^{\text {th }}$ ordinate, $1 \leq i \leq\left[\frac{n}{2}\right], n \geq 5$
$\left\{\begin{array}{l} i-\left\|\frac{n}{2}\right\|, \\ 1, \end{array}\right.$	for $5^{\text {th }}$ ordinate, $\left\|\frac{n}{2}\right\|+1 \leq i \leq n, n \geq$ otherwise.
$c_{\Pi}\left(u_{n+i}\right)=$	
(i-1, for	for $1^{\text {st }}$ ordinate, $2 \leq i \leq\left\lceil\frac{n}{2}\right\rceil, n \geq$
$n-i+1, \quad$ for	for $1^{\text {st }}$ ordinate, $\left\lceil\frac{n}{2}\right\rceil+1 \leq i \leq n, n \geq 5$
0 ,	for ${ }^{\text {st }}$ ordinate, $i=1$
	for $2^{\text {nd }}$ ordinate, odd $i, 3 \leq i \leq\left[\frac{n}{2}\right]-2, n \geq 9$
	for $2^{\text {nd }}$ ordinate, odd $i,\left\lceil\frac{n}{2}\right]+2 \leq i \leq n, n \geq$
	for $3^{r d}$ ordinate, even $i, 3 \leq i \leq n-1, n \geq 5$ for $5^{\text {th }}$ ordinate, $i=\left[\frac{n}{2}\right\rceil+1$
$\left\lceil\frac{n}{2}\right\rceil-1, \quad$ for	for $1^{\text {st }}$ ordinate, $i=\left\lceil\frac{n}{2}\right\rceil$
	for $2^{\text {nd }}$ ordinate, $i=\left\lceil\frac{n}{2}\right\rceil$
$\left\lceil\frac{n}{2}\right]-i$,	for $5^{\text {th }}$ ordinate, $1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil-1, n \geq 5$
$i-\left\lceil\frac{n}{2}\right\rceil$,	for $5^{\text {th }}$ ordinate, $\left\lceil\frac{n}{2}\right\rceil+1 \leq i \leq n, n \geq 5$
(1,	oth

$c_{\Pi}\left(w_{i}\right)=$
$\left(\begin{array}{l}0, \\ 2,\end{array}\right.$
for $2^{\text {nd }}$ ordinate, $i=1$
for $3^{\text {rd }}$ ordinate, $i=\left\lceil\frac{n}{2}\right\rceil$
for $4^{\text {th }}$ ordinate, $1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil, n \geq 5$
for $4^{\text {th }}$ ordinate, $\left\lceil\frac{n}{2}\right]+1 \leq i \leq n, n \geq 5$
$|\overline{2}|-i+1, \quad$ for $5^{\text {th }}$ ordinate, $1 \leq i \leq\left|\frac{n}{2}\right|, n \geq 5$
$i-\left\lceil\frac{n}{2}\right\rceil, \quad$ for $5^{\text {th }}$ ordinate, $\left\lceil\frac{n}{2}\right\rceil+1 \leq i \leq n, n \geq 5$
$c_{\Pi}\left(u_{n+i}\right)=$
$\left(\begin{array}{ll}i-1, & \text { for } 1^{\text {st }} \text { ordinate, } 2 \leq i \leq\left\lceil\frac{n}{2}\right\rceil, n \geq 5 \\ n-i+1, & \text { for } 1^{\text {st }} \text { ordinate, }\left\lceil\frac{n}{2}\right\rceil+1 \leq i \leq n, n \geq 5 \\ 0, & \text { for } 1^{\text {st }} \text { ordinate, } i=1 \\ & \text { for } 2^{\text {nd }} \text { ordinate, odd } i, 3 \leq i \leq\left\lceil\frac{n}{2}\right\rceil-2, n \geq 9\end{array}\right.$
for $3^{\text {rd }}$ ordinate, even $i, 3 \leq i \leq n-1, n \geq 5$
for $5^{\text {th }}$ ordinate, $i=\left\lceil\frac{n}{2}\right\rceil+1$
$\left\lceil\overline{2} \mid-1, \quad\right.$ for $1^{\text {st }}$ ordinate, $i=\left\lceil\frac{n}{2}\right\rceil$
2 , for $2^{\text {nd }}$ ordinate, $i=\left\lceil\frac{n}{2}\right\rceil$
$\left|\frac{n}{2}\right|-i, \quad$ for $5^{\text {th }}$ ordinate, $1 \leq i \leq\left|\frac{n}{2}\right|-1, n \geq 5$
otherwise.

```
\(c_{\Pi}\left(v_{n+i}\right)=\)
\(\left(\begin{array}{ll}i, & \text { for } 1^{\text {st }} \text { ordinate, } 2 \leq i \leq\left\lceil\left.\frac{n}{2} \right\rvert\,, n \geq 5\right. \\ n-i+2, & \text { for } 1^{\text {st }} \text { ordinate, }\left\lceil\frac{n}{2}\right\rceil+1 \leq i \leq n, n \geq 5\end{array}\right.\)
0 , for \(2^{\text {nd }}\) ordinate, even \(i, 2 \leq i \leq n-1, n \geq 5\)
    for \(3^{r d}\) ordinate, odd \(i, 1 \leq i \leq n, n \geq 5\)
    for \(2^{\text {nd }}\) ordinate, \(i=1\)
    for \(2^{\text {nd }}\) ordinate, \(i=\left\lceil\frac{n}{2}\right\rceil\)
\(\left\lceil\frac{n}{2}\right]-i+1, \quad\) for \(5^{\text {th }}\) ordinate, \(1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil, n \geq 5\)
\(\begin{array}{ll}i-\left\lceil\frac{n}{2}\right\rceil+1, & \text { for } 5^{\text {th }} \text { ordinate, }\left\lceil\frac{n}{2}\right\rceil+1 \leq i \leq n, n \geq 5 \\ 1, & \text { otherwise. }\end{array}\)
\(c_{\Pi}\left(w_{n+i}\right)=\)
( \(i, \quad\) for \(1^{\text {st }}\) ordinate, \(2 \leq i \leq\left\lceil\frac{n}{2}\right\rceil, n \geq 5\)
\(n-i+1\), for \(1^{\text {st }}\) ordinate, \(\left\lceil\frac{n}{2}\right\rceil+1 \leq i \leq n, n \geq 5\)
2, \(\quad\) for \(2^{\text {nd }}\) ordinate, \(i=1\) and \(i=\left\lceil\frac{n}{2}\right\rceil\)
\(0, \quad\) for \(4^{\text {th }}\) ordinate, \(1 \leq i \leq n, n \geq 5\)
\(\left\lceil\frac{n}{2}\right\rceil-i, \quad\) for \(5^{\text {th }}\) ordinate, \(1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil-1, n \geq 5\)
\(\left(\begin{array}{ll}i-\left\lceil\frac{n}{2}\right\rceil+1, & \text { for } 5^{t h} \text { ordinate, }\left\lceil\frac{n}{2}\right\rceil \leq i \leq n, n \geq 5 \\ 1, & \text { otherwise. }\end{array}\right.\)
\(c_{\Pi}\left(x_{i}\right)=\)
\(\left(\begin{array}{ll}s-i+1, & \text { for } 1^{s t} \text { ordinate, } i>\left\lfloor\frac{s}{2}\right\rfloor, s \geq 2 \\ i+1\end{array}\right.\)
\(i+1, \quad\) for \(1^{\text {st }}\) ordinate, \(i \leq\left\lfloor\frac{s}{2}\right\rfloor, s \geq 2\)
    for \(3^{r d}\) ordinate, \(i \leq\left\lfloor\frac{s}{2}\right\rfloor\)
1, for \(1^{\text {st }}\) ordinate,\(i=s\)
    for \(2^{\text {nd }}\) ordinate, odd \(i, i \geq 1\)
    for \(4^{\text {th }}\) ordinate, even \(i, i \geq 2\)
    \(s-i+2, \quad\) for \(3^{r d}\) ordinate, \(i>\left\lfloor\frac{s}{2}\right\rfloor\)
\(i+\left\lceil\frac{n}{2}\right\rceil-2, \quad\) for \(5^{\text {th }}\) ordinate, \(i<\left\lceil\frac{s}{2}\right\rceil\)
\(\begin{array}{ll}s-i+\left\lceil\frac{n}{2}\right\rceil+1, & \text { for } 5^{t h} \text { ordinate, } i \geq\left\lceil\frac{s}{2}\right\rceil \\ 0, & \text { otherwise. }\end{array}\)
```

Since for odd n all vertices have different color codes, c is a locating coloring for subdivison of certain barbell operation of origami graphs $B_{O_{n}}^{S}$, so that $\chi_{L}\left(B_{O_{n}}^{S}\right) \leq 5$, for $\left\lceil\frac{n}{2}\right]$ odd, $n \geq 5$.

Subcase 2.2. (odd n), for $\left\lceil\frac{n}{2}\right\rceil$ even, $n \geq 7$
Let c be a coloring for subdivison of certain barbell operation of origami graph $B_{O_{n}}^{s}$, for $\left[\frac{n}{2}\right]$ even, $n \geq 7$ we make the partition Π of $V\left(B_{O_{n}}^{s}\right)$:
$C_{1}=\left\{w_{1} \mid 1 \leq i \leq n\right\} \cup\left\{u_{n+1}\right\} ;$
$C_{2}=\left\{u_{i} \mid\right.$ for odd $\left.i, 3 \leq i \leq n\right\} \cup\left\{v_{i} \mid\right.$ for even $i, 2 \leq i \leq$ $n-1\} \cup\left\{u_{n+i} \mid\right.$ for even $\left.i, 2 \leq i \leq\left\lceil\frac{n}{2}\right\rceil-2\right\} \cup\left\{u_{n+i} \mid\right.$
for even $\left.i,\left\lceil\frac{n}{2}\right\rceil+2 \leq i \leq n-1\right\} \cup\left\{v_{n+i} \mid\right.$ for odd $i, 1 \leq$ $i \leq n\}$;
$C_{3}=\left\{u_{i} \mid\right.$ for even $\left.i, 2 \leq i \leq\left\lceil\frac{n}{2}\right\rceil-2\right\} \cup\left\{u_{i} \mid\right.$ for even $i,\left\lceil\frac{n}{2}\right\rceil$ $+2 \leq i \leq n-1\} \cup\left\{v_{i} \mid\right.$ for odd $\left.i, 1 \leq i \leq n\right\} \quad \cup \quad\left\{u_{n+i} \mid\right.$ for odd $i, 3 \leq i \leq n\} \cup\left\{v_{n+i} \mid\right.$ for even $\left.i, 2 \leq i \leq n-1\right\}$ $\cup\left\{x_{i} \mid\right.$ for even $\left.i, i \geq 2\right\}$;
$C_{4}=\left\{u_{1}\right\} \cup\left\{w_{n+i} \mid 1 \leq i \leq n\right\} \cup\left\{x_{i} \mid\right.$ for odd $\left.i, i \geq 1\right\} ;$
$C_{5}=\left\{u_{\left[\frac{n}{2}\right]+1}\right\} \cup\left\{u_{n+\left[\frac{n}{2}\right]}\right\}$.
For $\left\lceil\frac{n}{2}\right\rceil$ even $n \geq 7$, the color codes of all the vertices of $V\left(B_{O_{n}}^{s}\right)$ are :
$c_{\Pi}\left(u_{i}\right)=$
$\begin{cases}0, & \text { for } 2^{n d} \text { ordinate, odd } i, 3 \leq i \leq n, n \geq 7 \\ & \text { for } 3^{r d} \text { ordinate, even } i, 2 \leq i \leq\left\lceil\frac{n}{2}\right\rceil-2, n \geq 7 \\ & \text { for } 3^{r d} \text { ordinate, even } i,\left\lceil\frac{n}{2}\right\rceil+2 \leq i \leq n-1, n \geq 7 \\ & \text { for } 4^{\text {th }} \text { ordinate, } i=1 \\ & \text { for } 5^{\text {th }} \text { ordinate, } i=\left\lceil\frac{n}{2}\right\rceil \\ 2, & \text { for } 3^{\text {rd }} \text { ordinate, } i=\left\lceil\frac{n}{2}\right\rceil \\ i-1, & \text { for } 4^{\text {th }} \text { ordinate, } 2 \leq i \leq\left\lceil\frac{n}{2}\right\rceil, n \geq 7 \\ n-i+1, & \text { for } 4^{\text {th }} \text { ordinate, }\left\lceil\frac{n}{2}\right\rceil+1 \leq i \leq n, n \geq 7 \\ i-\left\lceil\frac{n}{2}\right\rceil, & \text { for } 5^{\text {th }} \text { ordinate, }\left\lceil\frac{n}{2}\right\rceil+1 \leq i \leq n, n \geq 7 \\ \left\lceil\frac{n}{2}\right\rceil-i, & \text { for } 5^{\text {th }} \text { ordinate, } 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil-1, n \geq 7 \\ 1, & \text { otherwise. }\end{cases}$
$c_{\Pi}\left(v_{i}\right)=$
$\begin{cases}0, & \text { for } 2^{\text {nd }} \text { ordinate, even } i, 2 \leq i \leq n-1, n \geq 7 \\ 2, & \text { for } 3^{\text {rd }} \text { ordinate odd } i, 1 \leq i \leq n, n \geq 7 \\ 3, & \text { for } 2^{\text {nd }} \text { ordinate, } i=1 \\ \text { for } 3^{\text {rd }} \text { ordinate, } i=\left\lceil\frac{n}{2}\right\rceil \\ i, & \text { for } 4^{\text {th }} \text { ordinate, } 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil, n \geq 7 \\ n-i+2, & \text { for } 4^{\text {th }} \text { ordinate, }\left\lceil\frac{n}{2}\right\rceil+1 \leq i \leq n, n \geq 7 \\ \left\lceil\frac{n}{2}\right\rceil-i+1, & \text { for } 5^{\text {th }} \text { ordinate, } 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil, n \geq 7 \\ i-\left\lceil\frac{n}{2}\right\rceil+1, & \text { for } 5^{\text {th }} \text { ordinate, }\left\lceil\frac{n}{2}\right\rceil+1 \leq i \leq n, n \geq 7 \\ 1, & \text { otherwise. }\end{cases}$

$c_{\Pi}\left(x_{i}\right)=$	
$(s-i+1$,	for $1^{\text {st }}$ ordinate, $i>\left\lfloor\frac{s}{2}\right\rfloor$, s
$i+1$,	for $1^{s t}$ ordinate, $i \leq\left\lfloor\frac{s}{2}\right\rfloor, s \geq 2$
1,	for $1^{s t}$ ordinate, $i=s$ for $3^{r d}$ ordinate, odd $i, i \geq 1$ for $4^{\text {th }}$ ordinate, even $i, i \geq 2$
i,	for $2^{\text {nd }}$ ordinate, $i \leq\left\lceil\frac{s}{2}\right\rceil$
$s-i+2$,	for $2^{\text {nd }}$ ordinate, $i>\left\lceil\frac{s}{2}\right\rceil$
2 ,	for $3^{\text {rd }}$ ordinate, $s=1$
$i+\left\lceil\frac{n}{2}\right\rceil-2$,	for $5^{\text {th }}$ ordinate, $i \leq\left\lceil\frac{s}{2}\right\rceil$
$s-i+\left\lceil\frac{n}{2}\right\rceil$,	for $5^{\text {th }}$ ordinate, $i>\left\lceil\frac{s}{2}\right]$
0 ,	otherwise.

Since for odd n all vertices have different color codes, c is a locating coloring for subdivison of certain barbell operation of origami graphs $B_{O_{n}}^{s}$, so that $\chi_{L}\left(B_{O_{n}}^{s}\right) \leq 5$, for $\left\lceil\frac{n}{2}\right]$ even, $n \geq 7$.

Subcase 2.3. (even n), for $\frac{n}{2}$ odd, $n \geq 6$
Let c be a coloring for subdivison of certain barbell operation of origami graph $B_{O_{n}}^{s}$, for $\frac{n}{2}$ odd, $n \geq 6$ we make the partition Π of $V\left(B_{O_{n}}^{s}\right)$:
$C_{1}=\left\{w_{i} \left\lvert\, 1 \leq i \leq \frac{n}{2}-1\right.\right\} \cup\left\{w_{i} \left\lvert\, \frac{n}{2}+1 \leq i \leq n\right.\right\} \cup\left\{u_{n+1}\right\} ;$ $C_{2}=\left\{u_{i} \mid\right.$ for odd $\left.i, 3 \leq i \leq n-1\right\} \cup\left\{v_{i} \mid\right.$ for even $i, 2 \leq$ $i \leq n\} \cup\left\{u_{n+i} \mid\right.$ for even $\left.i, 2 \leq i \leq n\right\} \cup\left\{v_{n+i} \mid\right.$ for odd i, $1 \leq i \leq n-1\}$;
$C_{3}=\left\{u_{i} \mid\right.$ for even $\left.i, 2 \leq i \leq n\right\} \cup\left\{v_{i} \mid\right.$ for odd $i, 3 \leq i \leq$ $n-1\} \cup\left\{u_{n+i} \mid\right.$ for odd $\left.i, 3 \leq i \leq n-1\right\} \cup\left\{v_{n+i} \mid\right.$ for even $i, 2 \leq i \leq n\} \cup\left\{x_{i} \mid\right.$ for odd $\left.i, i \geq 1\right\}$;
$C_{4}=\left\{u_{1}\right\} \cup\left\{w_{n+i} \left\lvert\, 1 \leq i \leq \frac{n}{2}-1\right.\right\} \cup\left\{w_{n+i} \left\lvert\, \frac{n}{2}+1 \leq i \leq\right.\right.$ $n\} \cup\left\{x_{i} \mid\right.$ for odd $\left.i, i \geq 2\right\}$;
$C_{5}=\left\{w_{\frac{n}{2}}\right\} \cup\left\{w_{n+\frac{n}{2}}\right\}$.
For $\frac{n}{2}$ odd $n \geq 6$, the color codes of all the vertices of $V\left(B_{O_{n}}^{s}\right)$ are :
$c_{\Pi}\left(u_{i}\right)=$
$\begin{cases}0, & \text { for } 2^{\text {nd }} \text { ordinate, odd } i, 3 \leq i \leq n-1, n \geq 6 \\ & \text { for } 3^{\text {rd }} \text { ordinate, even } i, 2 \leq i \leq n, n \geq 6 \\ \text { for } 4^{\text {th }} \text { ordinate, } i=1 \\ 2, & \text { for } 3^{\text {rd }} \text { ordinate, } i=1 \\ i-1, & \text { for } 4^{\text {th }} \text { ordinate, } 2 \leq i \leq \frac{n}{2}, n \geq 6 \\ n-i+1, & \text { for } 4^{\text {th }} \text { ordinate, } \frac{n}{2}+1 \leq i \leq n, n \geq 6 \\ \frac{n}{2}-i+1, & \text { for } 5^{\text {th }} \text { ordinate, } 1 \leq i \leq \frac{n}{2}, n \geq 6 \\ i-\frac{n}{2}, & \text { for } 5^{\text {th }} \text { ordinate, } \frac{n}{2}+1 \leq i \leq n, n \geq 6 \\ 1, & \text { otherwise. }\end{cases}$

$$
\begin{aligned}
& c_{\Pi}\left(v_{i}\right)= \\
& \left\{\begin{array}{l}
3, \\
0, \\
i, \\
n-i+ \\
\frac{n}{2}-i+ \\
i-\frac{n}{2}+ \\
1,
\end{array}\right. \\
& \left\{\begin{array}{l}
0, \\
\\
2, \\
i, \\
n-i+1 \\
\frac{n}{2}-i+1 \\
i-\frac{n}{2}+1 \\
1,
\end{array}\right. \\
& c_{\Pi}\left(u_{n+i}\right)= \\
& \left(\begin{array}{ll}
i-1, & \text { for } 1^{\text {st }} \text { ordinate, } 2 \leq i \leq \frac{n}{2}, n \geq 6 \\
n-i+1, & \text { for } 1^{\text {st }} \text { ordinate, } \frac{n}{2} \leq i \leq n, n \geq 6
\end{array}\right. \\
& 0 \text {, for } 2^{n d} \text { ordinate, even } i, 2 \leq i \leq n, n \geq 6 \\
& \text { for } 3^{r d} \text { ordinate, odd } i, 3 \leq i \leq n-1, n \geq 6 \\
& \text { for } 1^{\text {st }} \text { ordinate, } i=1 \\
& 2 \text {, } \quad \text { for } 3^{r d} \text { ordinate, } i=1 \\
& \frac{n}{2}-i+1, \quad \text { for } 5^{\text {th }} \text { ordinate, } 1 \leq i \leq \frac{n}{2}, n \geq 6 \\
& \begin{array}{ll}
i-\frac{n}{2}, & \text { for } 5^{t h} \text { ordinate, } \frac{n}{2}+1 \leq i \leq n, n \geq 6 \\
1, & \text { otherwise. }
\end{array} \\
& \text { for } 2^{\text {nd }} \text { ordinate, } i=1 \\
& \text { for } 2^{\text {nd }} \text { ordinate, even } i, 2 \leq i \leq n, n \geq 6 \\
& \text { for } 3^{r d} \text { ordinate, odd } i, 1 \leq i \leq n-1, n \geq 6 \\
& \text { for } 4^{\text {th }} \text { ordinate, } 1 \leq i \leq \frac{n}{2}, n \geq 6 \\
& \text { for } 4^{\text {th }} \text { ordinate, } \frac{n}{2}+1 \leq i \leq n, n \geq 6 \\
& \text { for } 5^{\text {th }} \text { ordinate, } 1 \leq i \leq \frac{n}{2}-1, n \geq 6 \\
& \text { for } 5^{\text {th }} \text { ordinate, } \frac{n}{2} \leq i \leq n, n \geq 6 \\
& \text { otherwise. } \\
& \text { for } 1^{\text {st }} \text { ordinate, } 1 \leq i \leq \frac{n}{2}-1, n \geq 6 \\
& \text { for } 1^{\text {st }} \text { ordinate, } \frac{n}{2}+1 \leq i \leq n, n \geq 6 \\
& \text { for } 5^{\text {th }} \text { ordinate, } i=\frac{n}{2} \\
& \text { for } 2^{\text {nd }} \text { ordinate, } i=1 \\
& \text { for } 4^{\text {th }} \text { ordinate, } 1 \leq i \leq \frac{n}{2}, n \geq 6 \\
& \text { for } 4^{\text {th }} \text { ordinate, } \frac{n}{2}+1 \leq i \leq n, n \geq 6 \\
& \text { for } 5^{\text {th }} \text { ordinate, } 1 \leq i \leq \frac{n}{2}-1, n \geq 6 \\
& \text { for } 5^{\text {th }} \text { ordinate, } \frac{n}{2}+1 \leq i \leq n, n \geq 6 \\
& \text { otherwise. } \\
& \text { otherwise. }
\end{aligned}
$$

for $1^{\text {st }}$ ordinate, $2 \leq i \leq \frac{n}{2}, n \geq 6$
for $1^{\text {st }}$ ordinate, $\frac{n}{2}+1 \leq i \leq n, n \geq 6$
for $2^{\text {nd }}$ ordinate, odd $i, 1 \leq i \leq n-1, n \geq 6$
for $3^{r d}$ ordinate, even $i, 2 \leq i \leq n, n \geq 6$
for $2^{\text {nd }}$ ordinate, $i=1$
for $5^{\text {th }}$ ordinate, $1 \leq i \leq \frac{n}{2}-1, n \geq 6$
for $5^{\text {th }}$ ordinate, $\frac{n}{2} \leq i \leq n, n \geq 6$
otherwise.

$$
c_{\Pi}\left(v_{n+i}\right)=
$$

$$
\left\{\begin{array}{l}
i, \\
n-i+2, \\
0, \\
3, \\
\frac{n}{2}-i+1, \\
i-\frac{n}{2}+1, \\
1,
\end{array}\right.
$$

```
\(c_{\Pi}\left(w_{n+i}\right)=\)
\(\left(\begin{array}{ll}i, & \text { for } 1^{\text {st }} \text { ordinate, } 1 \leq i \leq \frac{n}{2}, n \geq 6 \\ n-i+1, & \text { for } 1^{\text {st }} \text { ordinate, } \frac{n}{2}+1 \leq i \leq n, n \geq 6\end{array}\right.\)
2, \(\quad\) for \(2^{\text {nd }}\) ordinate, \(i=1\)
\(0, \quad\) for \(4^{\text {th }}\) ordinate, \(1 \leq i \leq \frac{n}{2}-1, n \geq 6\)
    for \(4^{\text {th }}\) ordinate, \(\frac{n}{2}+1 \leq i \leq n, n \geq 6\)
    for \(5^{\text {th }}\) ordinate, \(\mathrm{i}=\frac{n}{2}\)
    \(\frac{n}{2}-i+1, \quad\) for \(5^{\text {th }}\) ordinate, \(1 \leq i \leq \frac{n}{2}-1, n \geq 6\)
    for \(5^{\text {th }}\) ordinate, \(\frac{n}{2}+1 \leq i \leq n, n \geq 6\)
    otherwise.
\(c_{\Pi}\left(x_{i}\right)=\)
\(\left(\begin{array}{ll}s-i+1, & \text { for } 1^{s t} \text { ordinate, } i>\left\lfloor\frac{s}{2}\right\rfloor, s \geq 2 \\ i+1, & \text { for } 1^{s t} \text { ordinate, } i \leq\left\lfloor\frac{s}{2}\right\rfloor, s \geq 2 \\ 0 & \text { for } 3^{r d} \text { ordinate } i, i \geq 2\end{array}\right.\)
\(0, \quad\) for \(3^{r d}\) ordinate, even \(i, i \geq 2\)
\(\left\{i, \quad\right.\) for \(2^{\text {nd }}\) ordinate, \(i \leq\left[\frac{s}{2}\right], s \geq 2\)
\(s-i+2\) for \(2^{\text {nd }}\) ordinate, \(i>\left[\frac{s}{2}\right], s \geq 2\)
\(i+\frac{n}{2}-1 \quad\) for \(5^{\text {th }}\) ordinate, \(i \leq\left\lceil\frac{s}{2}\right\rceil, s \geq 2\)
\(\left\lvert\, s-i+\frac{n}{2} \quad\right.\) for \(5^{t h}\) ordinate, \(i>\left|\frac{s}{2}\right|, s \geq 2\)
    otherwise.
```

Since for odd n all vertices have different color codes, c is a locating coloring for subdivison of certain barbell operation of origami graphs $B_{O_{n}}^{S}$, so that $\chi_{L}\left(B_{O_{n}}^{s}\right) \leq 5$, for $\frac{n}{2}$ odd, $n \geq 6$.

Subcase 2.4. (even n), for $\frac{n}{2}$ even, $n \geq 4$
Let c be a coloring for subdivison of certain barbell operation of origami graph $B_{O_{n}}^{s}, \frac{n}{2}$ even, $n \geq 4$ we make the partition Π of $V\left(B_{O_{n}}^{s}\right)$:
$C_{1}=\left\{w_{i} \left\lvert\, 1 \leq i \leq \frac{n}{2}-1\right.\right\} \cup\left\{w_{i} \left\lvert\, \frac{n}{2}+1 \leq i \leq n\right.\right\} \cup\left\{u_{n+1}\right\} ;$ $C_{2}=\left\{u_{i} \mid\right.$ for odd $\left.i, 1 \leq i \leq n-1\right\} \cup\left\{v_{i} \mid\right.$ for even $i, 2 \leq$ $i \leq n\} \cup\left\{u_{n+i} \mid\right.$ for odd $\left.i, 3 \leq i \leq n\right\} \cup\left\{v_{n+i} \mid\right.$ for even i $, 1 \leq i \leq n-1\}$:
$C_{3}=\left\{u_{i} \mid\right.$ for even $\left.i, 2 \leq i \leq n-2\right\} \cup\left\{v_{i} \mid\right.$ for odd $i, 1 \leq$ $i \leq n-1\} \cup\left\{u_{n+i} \mid\right.$ for even $\left.i, 3 \leq i \leq n-1\right\} \cup\left\{v_{n+i} \mid\right.$ for odd $i, 2 \leq i \leq n\} \cup\left\{x_{i} \mid\right.$ for odd $\left.i, i \geq 1\right\}$;
$C_{4}=\left\{u_{n}\right\} \cup\left\{w_{n+i} \left\lvert\, 1 \leq i \leq \frac{n}{2}\right.\right\} \cup\left\{w_{n+i} \left\lvert\, \frac{n}{2}+2 \leq i \leq n\right.\right\}$ $\cup\left\{x_{i} \mid\right.$ for even $\left.i, i \geq 2\right\}$; $C_{5}=\left\{w_{\frac{n}{2}}\right\} \cup\left\{w_{n+\frac{n}{2}+1}\right\}$.

For $\frac{n}{2}$ even $n \geq 4$, the color codes of all the vertices of $V\left(B_{O_{n}}^{S}\right)$ are :


```
\(c_{\Pi}\left(v_{n+i}\right)=\)
\(\left(\begin{array}{ll}i, & \text { for } 1^{s t} \text { ordinate, } 2 \leq i \leq \frac{n}{2}+1, n \geq 4 \\ n-i+2, & \text { for } 1^{s t} \text { ordinate, } \frac{n}{2}+2 \leq i \leq n, n \geq 4\end{array}\right.\)
0 , for \(2^{\text {nd }}\) ordinate, odd \(i, 1 \leq i \leq n-1, n \geq 4\)
    for \(3^{r d}\) ordinate, even \(i, 2 \leq i \leq n, n \geq 4\)
3, \(\quad\) for \(2^{\text {nd }}\) ordinate, \(i=1\)
\(\frac{n}{2}-i+3, \quad\) for \(5^{t h}\) ordinate, \(1 \leq i \leq \frac{n}{2}, n \geq 4\)
\(i-\frac{n}{2}\),
1,
    for \(5^{\text {th }}\) ordinate, \(\frac{n}{2}+1 \leq i \leq n, n \geq 4\)
    otherwise.
\(c_{\Pi}\left(w_{n+i}\right)=\)
\(\left(\begin{array}{ll}i, & \text { for } 1^{\text {st }} \text { ordinate, } 1 \leq i \leq \frac{n}{2}, n \geq 4 \\ n-i+1, & \text { for } 1^{\text {st }} \text { ordinate, } \frac{n}{2}+1 \leq i \leq n, n \geq 4\end{array}\right.\)
\(0, \quad\) for \(4^{\text {th }}\) ordinate, \(1 \leq i \leq \frac{n}{2}, n \geq 4\)
    for \(4^{\text {th }}\) ordinate, \(\frac{n}{2}+2 \leq i \leq n, n \geq 4\)
    for \(5^{\text {th }}\) ordinate, \(i=\frac{n}{2}+1\)
2, \(\quad\) for \(4^{\text {th }}\) ordinate, \(i=\frac{n}{2}+1\)
\(\frac{n}{2}-i+2\), for \(5^{t h}\) ordinate, \(1 \leq i \leq \frac{n}{2}, n \geq 4\)
\(\begin{array}{ll}i-\frac{n}{2^{\prime}} & \text { for } 5^{t h} \text { ordinate, } \frac{n}{2}+2 \leq i \leq n, n \geq 4 \\ 1, & \text { otherwise. }\end{array}\)
\(c_{\Pi}\left(x_{i}\right)=\)
\(\begin{cases}s-i+1, & \text { for } 1^{s t} \text { ordinate, } i>\left\lfloor\frac{s}{2}\right\rfloor, s \geq 2 \\ i+1, & \text { for } 1^{s t} \text { ordinate, } i \leq\left\lfloor\frac{s}{2}\right], s \geq 2 \\ & \text { for } 2^{\text {nd }} \text { ordinate, } i<\left[\frac{s}{2}\right], s \geq 2 \\ s-i+2, & \text { for } 2^{\text {nd }} \text { ordinate, } i \geq\left[\frac{s}{2}\right], s \geq 2 \\ 0, & \text { for } 3^{\text {rd }} \text { ordinate, odd } i, i \geq 1 \\ & \text { for } 4^{\text {th }} \text { ordinate, even } i, i \geq 2 \\ i+\frac{n}{2}, & \text { for } 5^{\text {th }} \text { ordinate, } i<\left\lceil\left.\frac{s}{2} \right\rvert\,, s \geq 2\right. \\ s-i+\frac{n}{2}+1, & \text { for } 5^{\text {th }} \text { ordinate, } i \geq\left[\frac{s}{2}\right], s \geq 2 \\ 1, & \text { otherwise. }\end{cases}\)
```

Since for odd n all vertices have different color codes, c is a locating coloring for subdivison of certain barbell operation of origami graphs $B_{O_{n}}^{s}$, so that $\chi_{L}\left(B_{O_{n}}^{s}\right) \leq 5$, for $\frac{n}{2}$ even, $n \geq 4$. This completes the proof of the theorem. \square

Acknowledgments

This work was partially supported by a research grant from DRPM Dikti 2021.

References

[1] G. Chartrand, P. Zhang, E. Salehi, On the partition dimension of a graph, Congressus Numerantium, vol.130, pp.157-168, 1998.
[2] V. Saenpholphat and P. Zhang, Conditional resolvability: a survey, International Journal of Mathematics and Mathematical Sciences, vol.38, pp.1997-2017, 2004.
[3] G. Chartrand and P. Zhang, The theory and applications of resolvability in graphs. A survey,Congr.Numer.160, pp.4768, 2003.
[4] M. Johnson, Conditional resolvability: a survey, Structureactivity maps for visualizing the graph variables arising in drug design, Journal of Biopharmaceutical Statistics, vol.3, no.2, pp.203-236, 1993.
[5] G. Chartrand, D. Erwin, M. A, Henning, P. J. Slater, P. Zhang, The locating-chromatic number of a graphs, Bulletin of the Institute of Combinatorics and its Applications, vol. 36, pp.89-101, 2002.
[6] G. Chartrand, D. Erwin, M. A, Henning,P. J. Slater, P. Zhang, Graf of order n with locating-chromatic number $n-$ 1, Discrate Mathematics, vol.269, no.1-3, pp. $65-79,2003$
[7] E. T. Baskoro and Asmiati, Characterizing all trees with locating-chromatic number 3, Electronic Journal of Graph Theory and Applications (EJGTA), vol.1, no.2, pp.109-117, 2013.
[8] A. Behtoei, M. Anbarloei, The locating chromatic number of the join of graphs, Bulletin of the Iranian Mathematical Society, vol.40, no.6, pp.1491-1504, 2014.
[9] I. A. Purwasih, E. T. Baskoro, H. Assiyatun, D. Suprijanto, The bounds on the locating-chromatic number for a subdivision of a graph on one edge, Procedia Computer Science, vol.74, pp. $84-88,2015$.
[10] D. Welyyanti , E. T. Baskoro, R. Simanjuntak, S. Uttunggadewa, On locating-chromatic number for graphs with dominant vertices, Procedia Computer Science, vol.74, pp.89-92, 2015.
[11] Asmiati, On the locating-chromatic numbers of nonhomogeneous caterpillars and firecrackers graphs, Far East Journal of Mathematical Sciences (FJMS), vol.100, no.8, pp.1305-1316, 2016.
[12] Asmiati, I. K. G. Yana, and L. Yulianti, On The Locating Chromatic Number of Certain Barbell Graphs, International Journal of Mathematics and Mathematical Sciences, pp.1-5, 2018.
[13] A. Irawan, Asmiati, S. Suharsono, K. Muludi, The locatingchromatic number for certain operation of generalized petersen graphs $\mathrm{sP}(4,2)$, Journal of Physics: Conference Series, 1338, pp.1-6, 2019.
[14] A. Irawan, Asmiati, S. Suharsono, K. Muludi, L. Zakaria, Certain operation of generalized petersen graphs having locating-chromatic number five, Advances and Applications in Discrete Mathematics, vol.24, no.2, pp.83-97, 2020.
[15] A. Irawan, Asmiati, L. Zakaria, K. Muludi, The locatingchromatic number of origami graphs, Algorithms, vol.14, no.167, pp.1-15, 2021.
[16] A. Irawan, Asmiati, S. Suharsono, K. Muludi, The LocatingChromatic Number of Certain Barbell Origami Graphs, Journal of Physics: Conference Series, 1750, pp.1-13, 2021.
[17] Asmiati, E. T. Baskoro, Characterizing all graphs containing cycles with locating-chromatic number 3, AIP Conference Proceedings, 1450, pp.351-357, 2012.
[18] S. Nabila, A. N. M.Salman, The Rainbow Conection Number of Origami Graphs and Pizza Graphs, Procedia Computer Science, 74, pp.162-167, 2015.

