

CERTAIN OPERATION OF GENERALIZED PETERSEN GRAPHS HAVING LOCATING-CHROMATIC NUMBER FIVE

Agus Irawan $^{1,2}, Asmiati^{3,*}, S. Suharsono^3, Kurnia Muludi^4 and La Zakaria^3$

¹Faculty of Mathematics and Natural Sciences Lampung University Jl. Sumantri Brodjonegoro No. 1 Bandar Lampung Indonesia

²Information System, STMIK Pringsewu Jl. Wisma Rini No. 09 Pringsewu Lampung, Indonesia

³Department of Mathematics Faculty of Mathematics and Natural Sciences Lampung University Jl. Sumantri Brodjonegoro No. 1 Bandar Lampung Indonesia e-mail: asmiati.1976@fmipa.unila.ac.id; asmiati308@yahoo.com

⁴Computer Sciences Faculty of Mathematics and Natural Sciences Lampung University Jl. Sumantri Brodjonegoro No. 1 Bandar Lampung Indonesia

Received: March 6, 2020; Accepted: May 2, 2020

2010 Mathematics Subject Classification: 05C12, 05C15.

Keywords and phrases: coloring, generalized Petersen graph, locating-chromatic number. *Corresponding author

Agus Irawan et al.

Abstract

The locating-chromatic number of a graph is combined two graph concept, coloring vertices and partition dimension of a graph. The locating-chromatic number, denoted by $\chi_L(G)$, is the smallest *k* such that *G* has a locating *k*-coloring. In this paper, we discuss the locating-chromatic number for certain operation of generalized Petersen graphs sP(n, 1).

1. Introduction

In 2002, Chartrand et al. [7] introduced the locating-chromatic number of a graph, with derived two graph concept, coloring vertices and partition dimension of a graph. Let G = (V, E) be a connected graph and cbe a proper k-coloring of G with color 1, 2, ..., k. Let $\prod = \{C_1, C_2, ..., C_k\}$ be a partition of V(G) which is induced by coloring c. The color code $c_{\prod}(v)$ of v is the ordered k-tuple $(d(v, C_1), d(v, C_2), ..., d(v, C_k))$, where $d(v, C_i) = \min\{d(v, x) | x \in C_i\}$ for any i. If all distinct vertices of G have distinct color codes, then c is called k-locating coloring of G. The locatingchromatic number, denoted by $\chi_L(G)$, is the smallest k such that G has a locating k-coloring. Next, Chartrand et al. [6] determined the locatingchromatic number for some graph classes. On P_n it is a path of order $n \ge 3$, and hence $\chi_L(P_n) = 3$; for a cycle C_n if $n \ge 3$ odd, $\chi_L(C_n) = 3$, and if neven, then $\chi_L(C_n) = 4$; for double star graph $(S_{a,b}), 1 \le a \le b$ and $b \ge 2$, obtained $\chi_L(S_{a,b}) = b + 1$.

The following definition of a generalized Petersen graph is taken from Watkins [8]. Let $\{u_1, u_2, ..., u_n\}$ be some vertices on the outer cycle and $\{v_1, v_2, ..., v_n\}$ be some vertices on the inner cycle, for $n \ge 3$. The generalized Petersen graph, denoted by P(n, k), $n \ge 3$, $1 \le k \le \lfloor \frac{n-1}{2} \rfloor$,

 $1 \le i \le n$ is a graph that has 2n vertices $\{u_i\} \bigcup \{v_i\}$, and edges $\{u_i u_{i+1}\} \bigcup \{v_i v_{i+k}\} \bigcup \{u_i v_i\}$.

Now, we define a new kind of generalized Petersen graph called sP(n, k). Suppose there are *s* generalized Petersen graphs P(n, k). Some vertices on the outer cycle u_i , i = 1, 2, ..., n for the generalized Petersen graph *t*th, $t = 1, 2, ..., s, s \ge 1$ denoted by u_i^t , while some vertices on the inner cycle v_i , i = 1, 2, ..., n for the generalized Petersen graph *t*th, $t = 1, 2, ..., s, s \ge 1$ denoted by v_i^t . Generalized Petersen graph sP(n, k) obtained from $s \ge 1$ is the graph P(n, k), in which each of vertices on the outer cycle u_i^t , $i \in [1, n]$, $t \in [1, s]$ is connected by a path $(u_i^t u_i^{t+1})$, $t = 1, 2, ..., s - 1, s \ge 2$.

The locating-chromatic number for corona product is determined by Baskoro and Purwasih [5], and locating-chromatic number for join graphs is determined by Behtoei and Ambarloei [1]. Additionally, Welyyanti et al. [9, 10] discussed locating-chromatic number for graphs with dominant vertices and locating chromatic number for graph with two homogeneous components. Asmiati obtained the locating-chromatic number of nonhomogeneous amalgamation of stars [3]. Next, Asmiati et al. [4] determined some generalized Petersen graphs P(n, 1) having locating-chromatic number 4 for odd $n \ge 3$ or 5; for even $n \ge 4$, certain operation of generalized Petersen graphs sP(4, 2) determined by Irawan et al. [2]. Besides that, in this paper, we will discuss the locating-chromatic number of generalized Petersen graphs sP(n, 1).

The following theorems are basics to determine the lower bound of the locating-chromatic of a graph. The set of neighbours of a vertex y in G is denoted by N(y).

Theorem 1.1 [7]. Let c be a locating coloring in a connected graph G. If x and y are distinct vertices of G such that d(x, w) = d(y, w) for all $w \in V(G) - \{x, y\}$, then $c(x) \neq c(y)$. In particular, if x and y are nonadjacent vertices such that $N(x) \neq N(y)$, then $c(x) \neq c(y)$.

Theorem 1.2 [7]. *The locating-chromatic number of a cycle* C_n *is 3 for odd n and 4 for otherwise.*

Theorem 1.3 [4]. *The locating-chromatic number for generalized Petersen graphs* P(n, 1) *is* 4 *for odd* $n \ge 3$ *or* 5 *for even* $n \ge 4$.

2. Main Results

In this section, we will discuss the locating-chromatic number of new kind generalized Petersen graphs sP(n, 1).

Theorem 2.1. $\chi_L(sP(3, 1)) = 5$, for $s \ge 2$.

Proof. First, we determine the lower bound of $\chi_L(sP(3, 1))$ for $s \ge 2$. Because a new kind generalized Petersen graph sP(3, 1), $s \ge 2$ contains some generalized Petersen graph P(n, 1), then by Theorem 1.3, $\chi_L(sP(3, 1)) \ge 4$. Suppose that *c* is a 4-locating coloring on sP(3, 1). Consider $c(u_i^1) = i$, i = 1, 2, 3 and $c(v_j^1) = j$, j = 1, 2, 3 such that $c(u_i^1) \ne$ $c(v_j^1)$ for $c(u_i^1)$ adjacent to $c(v_j^1)$. Observe that if we assign color 4 for any vertices in u_i^2 or v_i^2 , then we have two vertices whose the same color codes. Therefore, *c* is not locating 4-coloring on sP(3, 1). As the result, $\chi_L(sP(3, 1)) \ge 5$ for $s \ge 2$.

Next, we determine the upper bound of $\chi_L(sP(3, 1)) \le 5$ for $s \ge 2$. Assign the 5-coloring *c* on sP(3, 1) as follows:

•
$$c(u_i^t) = \begin{cases} 1 & \text{for } i = 1 \text{ and odd } s; \\ 2 & \text{for } i = 2 \text{ and odd } s; \\ 3 & \text{for } i = 3 \text{ and odd } s; \\ 3 & \text{for } i = 1 \text{ and even } s; \\ 1 & \text{for } i = 2 \text{ and even } s; \\ 4 & \text{for } i = 2 \text{ and even } s; \\ 4 & \text{for } i = 3 \text{ and even } s. \end{cases}$$

• $c(v_i^1) = \begin{cases} 2 & \text{for } i = 1; \\ 3 & \text{for } i = 2; \\ 5 & \text{for } i = 3. \end{cases}$
• $c(v_i^t) = \begin{cases} 3 & \text{for } i = 1 \text{ and odd } s \ge 3; \\ 1 & \text{for } i = 2 \text{ and odd } s \ge 3; \\ 2 & \text{for } i = 3 \text{ and odd } s \ge 3; \\ 4 & \text{for } i = 1 \text{ and even } s; \\ 2 & \text{for } i = 2 \text{ and even } s; \\ 3 & \text{for } i = 3 \text{ and even } s. \end{cases}$

The coloring *c* will create the partition \prod on V(sP(3, 1)). We show that the color codes of all vertices in sP(3, 1) are different. For s = 1, we have $c_{\Pi}(u_1^1) = (0, 1, 1, 2, 2);$ $c_{\Pi}(u_2^1) = (1, 0, 1, 2, 2);$ $c_{\Pi}(u_3^1) = (1, 1, 0, 1, 1);$ $c_{\Pi}(v_1^1) = (1, 0, 1, 3, 1);$ $c_{\Pi}(v_2^1) = (2, 1, 0, 3, 1);$ $c_{\Pi}(v_3^1) = (2, 1, 1, 2, 0).$ For $s \ge 3$ odd, we have $c_{\Pi}(u_1^t) = (0, 1, 1, 2, i + s);$ $c_{\Pi}(u_2^t) =$ (1, 0, 1, 2, i + s); $c_{\Pi}(u_3^t) = (1, 1, 0, 1, s);$ $c_{\Pi}(v_1^t) = (1, 1, 0, 3, s + 2);$ $c_{\Pi}(v_2^t)$ = (0, 1, 1, 3, i + s); $c_{\Pi}(v_3^t) = (1, 0, 1, 2, s + 1).$ For $s \ge 2$ even, we have $c_{\Pi}(u_1^t) = (1, 1, 0, 1, s + 1);$ $c_{\Pi}(u_2^t) = (0, 1, 1, 1, s);$ $c_{\Pi}(u_3^t) = (1, 2, 1, 0, s);$ $c_{\Pi}(v_1^t) = (2, 1, 1, 0, s + 2);$ $c_{\Pi}(v_2^t) = (1, 0, 1, 1, s + 2);$ $c_{\Pi}(v_3^t) = (1, 1, 0, 1, s + 1).$ Since the color codes of all vertices in sP(3, 1) are different, it follows that $\chi_L(sP(3, 1)) \le 5$ for $s \ge 2$. Agus Irawan et al.

Theorem 2.2. $\chi_L(sP(n, 1)) = 5$, for $s \ge 2$ and odd $n \ge 5$.

Proof. The new kind generalized Petersen graphs sP(n, 1), for $s \ge 2$ and odd $n \ge 5$, contain some even cycles. Then, by Theorem 1.2, $\chi_L(sP(n, 1)) \ge 4$. Suppose that c is a locating coloring of sP(n, 1), for $s \ge 2$ and odd $n \ge 5$. Let $C_1 = \{u_1^t | \text{ for odd } s\} \cup \{u_n^t | \text{ for even } s\} \cup \{v_1^t | \text{ for even } s\} \cup \{v_n^t | \text{ for odd } s, s \ge 3\}; C_2 = \{u_{2j}^t | \text{ for odd } i \text{ and odd } s, i > 0\} \cup \{v_{2j-1}^t | \text{ for odd } i \text{ and odd } s, j > 0\} \cup \{v_{2j-1}^t | \text{ for odd } i \text{ and odd } s, j > 0\} \cup \{u_{2j-1}^t | \text{ for odd } i \text{ and odd } s, j > 0\} \cup \{v_{2j}^t | \text{ for odd } i \text{ and even } s, j > 0\} \cup \{v_{2j}^t | \text{ for odd } i \text{ and odd } s, j > 0\} \cup \{u_{2j}^t | \text{ for odd } i \text{ and odd } s, j > 0\} \cup \{v_{2j+1}^t | \text{ for odd } i \text{ and even } s, j > 0\} \cup \{v_{2j+1}^t | \text{ for odd } i \text{ and odd } s, j > 0\} \cup \{u_{2j}^t | \text{ for odd } i \text{ and even } s, j > 0\} \cup \{v_{2j+1}^t | \text{ for odd } i \text{ and even } s, j > 0\} \cup \{v_{2j+1}^t | \text{ for odd } i \text{ and even } s, j > 0\} \cup \{v_{2j+1}^t | \text{ for odd } i \text{ and even } s, j > 0\}$. Then there are some vertices with same color codes, $c_{\Pi}(u_{n-1}^t) = c_{\Pi}(v_1^t)$ for even s and $c_{\Pi}(u_2^t) = c_{\Pi}(v_1^t)$ for odd; $s \ge 2$, a contradiction. Therefore, $\chi_L(sP(n, 1)) \ge 5$, for $s \ge 2$ and odd $n \ge 5$.

We determine the upper bound of $\chi_L(sP(n, 1)) \le 5$, for $n \ge 5$ odd. The coloring *c* will create the partition Π on V(sP(n, 1)):

$$C_{1} = \{u_{1}^{t} | \text{ for odd } s\} \cup \{u_{n}^{t} | \text{ for even } s\};$$

$$C_{2} = \{u_{2j}^{t} | \text{ for odd } i \text{ and odd } s, j > 0\}$$

$$\cup \{v_{2j-1}^{t} | \text{ for odd } i \text{ and odd } s, j > 0\}$$

$$\cup \{u_{2j-1}^{t} | \text{ for odd } i \text{ and even } s, j > 0\}$$

$$\cup \{v_{2j}^{t} | \text{ for odd } i \text{ and even } s, j > 0\};$$

Certain Operation of Generalized Petersen Graphs ...

$$C_{3} = \{u_{2j+1}^{t} | \text{ for odd } i \text{ and odd } s, j > 0\}$$

$$\bigcup \{v_{2j}^{t} | \text{ for odd } i \text{ and odd } s, j > 0\}$$

$$\bigcup \{u_{2j}^{t} | \text{ for odd } i \text{ and even } s, j > 0\}$$

$$\bigcup \{v_{2j+1}^{t} | \text{ for odd } i \text{ and even } s, j > 0\};$$

$$C_{4} = \{v_{n}^{t} | \text{ for odd } s\} \bigcup \{v_{1}^{t} | \text{ for even } s\};$$

$$C_{5} = \{v_{n}^{1}\}.$$

Therefore, the color codes of all the vertices of *G* are:

(a) $C_{1} = \{u_{1}^{t} | \text{ for odd } s\} \cup \{u_{n}^{t} | \text{ for even } s\};$ $c_{\Pi}(u_{1}^{1}) = (0, 1, 2, 2, 1); \ c_{\Pi}(u_{n}^{t}) = (0, 1, 1, 2, s - 1) \text{ for even } s \ge 2;$ $c_{\Pi}(u_{1}^{t}) = (0, 1, 2, 2, s) \text{ for odd } s \ge 3.$ (b) $C_{2} = \{u_{2j}^{t} | \text{ for odd } i \text{ and odd } s, j > 0\}$ $\cup \{v_{2j-1}^{t} | \text{ for odd } i \text{ and odd } s, j > 0\}$ $\cup \{v_{2j-1}^{t} | \text{ for odd } i \text{ and even } s, j > 0\}$ $\cup \{v_{2j}^{t} | \text{ for odd } i \text{ and even } s, j > 0\}.$ Let $u_{1}^{t}, 1 \le i \le n - 1; i = 2j; 1 \le j \le \left\lfloor \frac{n}{2} \right\rfloor \text{ for odd } s; u_{1}^{t}, 1 \le i \le n - 2;$ $i = 2j - 1; 1 \le j \le \left\lfloor \frac{n}{2} \right\rfloor \text{ for even } s \text{ and } v_{1}^{t}, 1 \le i \le n - 2; i = 2j - 1; 1 \le j$

$$\leq \left\lfloor \frac{n}{2} \right\rfloor$$
 for odd *s*; v_i^t , $2 \leq i \leq n-2$; $i = 2j$; $1 \leq j \leq \left\lfloor \frac{n}{2} \right\rfloor$ for even $s \geq 2$.

For $i < \left\lceil \frac{n}{2} \right\rceil$, we have: $c_{\Pi}(u_i^t) = (i - 1, 0, 1, i + 1, s + i - 1)$ for odd s; $c_{\Pi}(v_i^t) = (i, 0, 1, i, s+i)$ for odd s; $c_{\Pi}(u_i^t) = (i, 0, 1, i, s + i - 1)$ for even s; $c_{\Pi}(v_i^t) = (i+1, 0, 1, i-1, s+i)$ for even s. For $i = \left\lceil \frac{n}{2} \right\rceil$, we have: $c_{\Pi}(u_i^t) = c_{\Pi}(u_{n-2\,i+1}^t) = (i-1, 0, 1, i, 2j + s - 1)$ for odd s; $c_{\Pi}(v_i^t) = c_{\Pi}(v_{n-2i}^t) = (i, 0, 1, i-1, 2j + s + 1)$ for odd s; $c_{\Pi}(u_i^t) = c_{\Pi}(u_{n-2,i}^t) = (i-1, 0, 1, i, 2j + s - 1)$ for even s; $c_{\Pi}(v_i^t) = c_{\Pi}(v_{n-2\,i+1}^t) = (i, 0, 1, i-1, 2\,j+s-1)$ for even s. For $i > \left\lceil \frac{n}{2} \right\rceil$, we have: $c_{\Pi}(u_i^t) = c_{\Pi}(u_{n-2\,i+1}^t) = (2j, 0, 1, 2j, 2j + s - 2)$ for odd s; $c_{\Pi}(v_i^t) = c_{\Pi}(v_{n-2,i}^t) = (2j+2, 0, 1, 2j, 2j+s)$ for odd s; $c_{\Pi}(u_i^t) = c_{\Pi}(u_{n-2,i}^t) = (2j, 0, 1, 2j+2, 2j+s-1)$ for even s; $c_{\Pi}(v_i^t) = c_{\Pi}(v_{n-2\,j+1}^t) = (2\,j,\,0,\,1,\,2\,j,\,2\,j+s-1)$ for even s. (c)

 $C_3 = \{u_{2j+1}^t | \text{ for odd } i \text{ and odd } s, j > 0\}$ $\bigcup \{v_{2j}^t | \text{ for odd } i \text{ and odd } s, j > 0\}$

91

 $\bigcup \{u_{2j}^t \mid \text{for odd } i \text{ and even } s, j > 0\}$

 $\bigcup \{v_{2\,i+1}^t \mid \text{ for odd } i \text{ and even } s, \ j > 0\}.$

Let $u_i^t, 1 \le i \le n-2; i = 2j+1; 1 \le j \le \left|\frac{n}{2}\right| - 1$ for $s = 1; u_i^t, 1 \le i$ $\leq n; i = 2j + 1; 1 \leq j \leq \left| \frac{n}{2} \right|$ for odd $s \geq 3; u_i^t, 1 \leq i \leq n - 1; i = 2j; 1 \leq j$ $\leq \left\lceil \frac{n}{2} \right\rceil$ for even *s* and v_i^t , $1 \leq i \leq n-1$; i = 2j; $1 \leq j \leq \left| \frac{n}{2} \right|$ for odd *s*; v_i^t , $1 \le i \le n; \ i = 2j + 1; 1 \le j \le \left\lceil \frac{n}{2} \right\rceil$ for even $s \ge 1$. For $i < \left\lceil \frac{n}{2} \right\rceil$, we have: $c_{\Pi}(u_i^t) = (i - 1, 1, 0, i + 1, i + s - 1)$ for odd s; $c_{\Pi}(v_i^t) = (i, 1, 0, i, i + s)$ for odd s; $c_{\Pi}(u_i^t) = (i, 1, 0, i, i + s)$ for even s; $c_{\Pi}(v_i^t) = (i+1, 1, 0, i-1, i+s)$ for even s. For $i = \left\lceil \frac{n}{2} \right\rceil$, we have: $c_{\Pi}(u_i^t) = c_{\Pi}(u_{n-2\,i+1}^t) = (i-1, 1, 0, i, 2j+s-1)$ for odd s; $c_{\Pi}(v_i^t) = c_{\Pi}(v_{n-2i}^t) = (i, 1, 0, i-1, 2j+s)$ for odd s; $c_{\Pi}(u_i^t) = c_{\Pi}(u_{n-2i}^t) = (i-1, 1, 0, i, 2j + s - 1)$ for even s; $c_{\Pi}(v_i^t) = c_{\Pi}(v_{n-2\,i+1}^t) = (i, 1, 0, i-1, 2j+s+1)$ for even s.

For
$$i > \left\lceil \frac{n}{2} \right\rceil$$
, we have:
 $c_{\Pi}(u_i^t) = c_{\Pi}(u_{n-2j}^t) = (2j+1, 1, 0, 2j, 2j+s-1)$ for odd s;
 $c_{\Pi}(v_i^t) = c_{\Pi}(v_{n-2j+1}^t) = (2j+1, 1, 0, 2j-1, 2j+s-1)$ for odd s;
 $c_{\Pi}(u_i^t) = c_{\Pi}(u_{n-2j+1}^t) = (2j-1, 1, 0, 2j+1, 2j+s-2)$ for even s;
 $c_{\Pi}(v_i^t) = c_{\Pi}(v_{n-2j+2}^t) = (2j-1, 1, 0, 2j-1, 2j+s-2)$ for even s.
(d)
 $C_4 = \{v_n^t \mid \text{ for odd } s\} \cup \{v_1^t \mid \text{ for even } s\};$

 $C_4 = \{v_n^t | \text{ for odd } s\} \cup \{v_1^t | \text{ for even } s\};$ $c_{\Pi}(v_n^t) = (2, 1, 1, 0, s) \text{ for odd } s;$ $c_{\Pi}(v_1^t) = (1, 2, 1, 0, s+1) \text{ for even } s.$

(e)

$$C_5 = \{v_n^1\},\$$

 $c_{\Pi}(v_n^1) = (1, 1, 2, 1, 0).$

Since all the vertices have different color codes, c is a locating coloring of new kind generalized Petersen graphs sP(n, 1), so $\chi_L(sP(n, 1)) \le 5$, for odd $n \ge 5$.

Theorem 2.3. $\chi_L(sP(n, 1)) = 5$ for $s \ge 2$ and even $n \ge 4$.

Proof. First, we determine the lower bound of $\chi_L(sP(n, 1))$ for $s \ge 2$ and even $n \ge 4$. The new kind generalized Petersen graph sP(n, 1), for $s \ge 2$ and even $n \ge 4$, contains some generalized Petersen graph P(n, 1), then by Theorem 1.3, $\chi_L(sP(n, 1)) \ge 5$.

93

Next, we determine the upper bound of $\chi_L(sP(n, 1)) \le 5$ for $s \ge 2$ and $n \ge 4$ even. The coloring *c* will create the partition Π on V(sP(n, 1)):

 $C_{1} = \{u_{1}^{t} | \text{ for odd } s\} \cup \{u_{n}^{t} | \text{ for even } s\};$ $C_{2} = \{u_{2j}^{t} | \text{ for odd } i \text{ and odd } s, j > 0\}$ $\cup \{v_{2j-1}^{t} | \text{ for odd } i \text{ and odd } s, j > 0\}$ $\cup \{u_{2j-1}^{t} | \text{ for odd } i \text{ and even } s, j > 0\}$ $\cup \{v_{2j}^{t} | \text{ for odd } i \text{ and even } s, j > 0\};$ $C_{3} = \{u_{2j+1}^{t} | \text{ for odd } i \text{ odd } s, j > 0\}$ $\cup \{v_{2j}^{t} | \text{ for odd } i \text{ and odd } s, j > 0\}$ $\cup \{v_{2j}^{t} | \text{ for odd } i \text{ and odd } s, j > 0\}$ $\cup \{u_{2j}^{t} | \text{ for odd } i \text{ and odd } s, j > 0\}$ $\cup \{v_{2j+1}^{t} | \text{ for odd } i \text{ and even } s, j > 0\}$ $\cup \{v_{2j+1}^{t} | \text{ for odd } i \text{ and even } s, j > 0\};$ $C_{4} = \{u_{n}^{t} | \text{ for odd } s\} \cup \{u_{n-1}^{t} | \text{ for even } s\};$ $C_{5} = \{v_{n}^{1}\}.$

Therefore, the color codes of all the vertices of G are:

$$C_1 = \{u_1^t \mid \text{ for odd } s\} \bigcup \{u_n^t \mid \text{ for even } s\};$$

$$c_{\Pi}(u_1^1) = (0, 1, 2, 1, 2); u_n^t = (0, 1, 2, 1, s) \text{ for even } s \ge 2;$$

$$c_{\Pi}(u_1^t) = (0, 1, 2, 1, s+1) \text{ for odd } s \ge 3.$$

(b)

$$C_{2} = \{u_{2j}^{t} | \text{ for odd } i \text{ and odd } s, j > 0\}$$

$$\bigcup \{v_{2j-1}^{t} | \text{ for odd } i \text{ and odd } s, j > 0\}$$

$$\bigcup \{u_{2j-1}^{t} | \text{ for odd } i \text{ and even } s, j > 0\}$$

$$\bigcup \{v_{2j}^{t} | \text{ for odd } i \text{ and even } s, j > 0\}.$$

$$1 \le i \le n-2; \quad i = 2i; \quad 1 \le i \le \frac{n}{2} - 2 \text{ for odd } s; u_{2j}^{t}$$

Let u_i^t , $1 \le i \le n-2$; i = 2j; $1 \le j \le \frac{n}{2} - 2$ for odd s; u_i^t , $1 \le i \le n-3$; i = 2j-1; $1 \le j \le \frac{n}{2}$ for even s and v_i^t , $1 \le i \le n-1$; i = 2j-1; $1 \le j \le \frac{n}{2}$ for odd s; v_i^t , $1 \le i \le n-1$; i = 2j; $1 \le j \le \frac{n}{2}$ for even $s \ge 2$. For $i \le \left\lceil \frac{n}{2} \right\rceil$, we have: $c_{\prod}(u_i^t) = (i-1, 0, 1, i, i+s)$ for odd s; $c_{\prod}(v_i^t) = (i, 0, 1, i, i+s+1)$ for odd s; $c_{\prod}(v_i^t) = (i, 0, 1, i+1, i+s)$ for even s; $c_{\prod}(v_i^t) = (i+1, 0, 1, i+2, i+s+1)$ for even s. For $i > \left\lceil \frac{n}{2} \right\rceil$, we have: $c_{\prod}(u_i^t) = c_{\prod}(u_{n-2j}^t) = (2j+1, 0, 1, 2j, 2j+s)$ for odd s; $c_{\prod}(v_i^t) = c_{\prod}(u_{n-2j-1}^t) = (2j+1, 0, 1, 2j, 2j+s)$ for odd s; $c_{\prod}(v_i^t) = c_{\prod}(u_{n-2j-1}^t) = (2j-1, 0, 1, 2j, 2j+s-1)$ for even s.

95

(c)

$$C_{3} = \{u_{2j+1}^{t} | \text{ for odd } i \text{ and odd } s, j > 0\}$$
$$\bigcup \{v_{2j}^{t} | \text{ for odd } i \text{ and odd } s, j > 0\}$$
$$\bigcup \{u_{2j}^{t} | \text{ for odd } i \text{ and even } s, j > 0\}$$
$$\bigcup \{v_{2j+1}^{t} | \text{ for odd } i \text{ and even } s, j > 0\}.$$

Let u_i^t , $1 \le i \le n-1$; i = 2j+1; $1 \le j \le \frac{n}{2} - 1$ for odd s; u_i^t , $1 \le i \le n-2$; i = 2j; $1 \le j \le \frac{n}{2} - 1$ for even s and v_i^t , $1 \le i \le n-2$; i = 2j; $1 \le j \le \frac{n}{2} - 1$ for odd s; v_i^t , $1 \le i \le n-1$; i = 2j-1; $1 \le j \le \frac{n}{2}$ for even $s \ge 2$.

For $i \leq \left\lceil \frac{n}{2} \right\rceil$, we have: $c_{\Pi}(u_i^t) = (i - 1, 1, 0, i, i + s)$ for odd s; $c_{\Pi}(v_i^1) = (i, 1, 0, i + 1, i)$; $c_{\Pi}(v_i^t) = (i, 1, 0, i + 1, i + 2s - 2)$ for odd $s \geq 3$; $c_{\Pi}(u_i^t) = (i, 1, 0, i + 1, i + s)$ for even s; $c_{\Pi}(v_i^t) = (i + 1, 1, 0, i + 1, i + s)$ for even s. For $i > \left\lceil \frac{n}{2} \right\rceil$, we have: $c_{\Pi}(u_i^t) = c_{\Pi}(u_{n-2j+1}^t) = (2j + 1, 1, 0, 2j - 1, 2j + s - 1)$ for odd s; $c_{\Pi}(v_i^1) = c_{\Pi}(v_{n-2j}^t) = (2j + 2, 1, 0, 2j + 1, 2j)$; Agus Irawan et al.

$$c_{\Pi}(v_{i}^{t}) = c_{\Pi}(v_{n-2j}^{t}) = (2j+2, 1, 0, 2j+1, 2j+s+1) \text{ for odd } s \ge 3;$$

$$c_{\Pi}(u_{i}^{t}) = c_{\Pi}(u_{n-2j+1}^{t}) = (2j, 1, 0, 2j-1, 2j+s) \text{ for even } s;$$

$$c_{\Pi}(v_{i}^{t}) = c_{\Pi}(v_{n-2j}^{t}) = (2j, 1, 0, 2j-1, 2j+s) \text{ for even } s.$$
(d)
$$C_{4} = \{u_{n}^{t} | \text{ for odd } s\} \cup \{u_{n-1}^{t} | \text{ for even } s\};$$

$$c_{\Pi}(u_{n}^{t}) = (1, 2, 1, 0, s) \text{ for odd } s;$$

$$c_{\Pi}(u_{n-1}^{t}) = (1, 2, 1, 0, s+1) \text{ for even } s.$$
(e)
$$C_{5} = \{v_{n}^{1}\},$$

 $c_{\Pi}(v_n^1) = (2, 1, 2, 1, 0).$

Since all the vertices have different color codes, *c* is a locating coloring of new kind generalized Petersen graphs (sP(n, 1)), so $\chi_L(sP(n, 1)) \le 5$, for even $n \ge 4$.

3. Conclusion

Based on the results, locating-chromatic number of new kind generalized Petersen graphs sP(n, 1) is 5 for $s \ge 2$ and $n \ge 3$.

References

- A. Behtoei and M. Anbarloei, The locating chromatic number of the join graphs, Bull. Iranian Math. Soc. 40(6) (2014), 1491-1504.
- [2] A. Irawan, Asmiati, S. Suharsono and K. Muludi, The locating-chromatic number for certain operation of generalized Petersen graphs sP(4, 2), Journal of Physics: Conference Series 1338(1) (2019), 1-6.
- [3] Asmiati, The locating-chromatic number of non-homogeneous amalgamation of starts, Far East J. Math. Sci. (FJMS) 93(1) (2014), 89-96.

- [4] Asmiati, Wamiliana, Devriyadi and L. Yulianti, On some Petersen graphs having locating chromatic number four or five, Far East J. Math. Sci. (FJMS) 102(4) (2017), 769-778.
- [5] E. T. Baskoro and I. A. Purwasih, The locating-chromatic number for corona product of graphs, Southeast-Asian J. Sciences 1(1) (2012), 124-134.
- [6] G. Chartrand, D. Erwin, M. A. Henning, P. J. Slater and P. Zhang, Graphs of order *n* with locating-chromatic number *n* − 1, Discrete Math. 269 (2003), 65-79.
- [7] G. Chartrand, D. Erwin, M. A. Henning, P. J. Slater and P. Zhang, The locatingchromatic number of a graph, Bull. Inst. Combin. Appl. 36 (2002), 89-101.
- [8] M. E. Watkins, A theorem on Tait colorings with application to the generalized Petersen graphs, Journal of Combinatorial Theory 6(2) (1969), 152-164.
- [9] T. Welyyanti, E. T. Baskoro, R. Simanjuntak and S. Uttunggadewa, On locatingchromatic number for graphs with dominant vertices, Procedia Computer Science 74 (2015), 89-92.
- [10] T. Welyyanti, E. T. Baskoro, R. Simanjuntak and S. Uttunggadewa, On the locating-chromatic number for graphs with two homogeneous components, Journal of Physics: Conference Series 893(1) (2017), 1-8.