Advances and Applications in Discrete Mathematics
© 2020 Pushpa Publishing House, Prayagraj, India http://www.pphmj.com
http://dx.doi.org/10.17654/DM024020083
Volume 24, Number 2, 2020, Pages 83-97

CERTAIN OPERATION OF GENERALIZED PETERSEN GRAPHS HAVING LOCATING-CHROMATIC NUMBER FIVE

Agus Irawan ${ }^{1,2}$, Asmiati ${ }^{3, *}$, S. Suharsono ${ }^{3}$, Kurnia Muludi ${ }^{4}$ and La Zakaria ${ }^{3}$
${ }^{1}$ Faculty of Mathematics and Natural Sciences
Lampung University
Jl. Sumantri Brodjonegoro No. 1 Bandar Lampung Indonesia
${ }^{2}$ Information System, STMIK Pringsewu
Jl. Wisma Rini No. 09 Pringsewu
Lampung, Indonesia
${ }^{3}$ Department of Mathematics
Faculty of Mathematics and Natural Sciences
Lampung University
Jl. Sumantri Brodjonegoro No. 1 Bandar Lampung
Indonesia
e-mail: asmiati.1976@fmipa.unila.ac.id; asmiati308@yahoo.com
${ }^{4}$ Computer Sciences
Faculty of Mathematics and Natural Sciences
Lampung University
Jl. Sumantri Brodjonegoro No. 1 Bandar Lampung
Indonesia

Received: March 6, 2020; Accepted: May 2, 2020
2010 Mathematics Subject Classification: 05C12, 05C15.
Keywords and phrases: coloring, generalized Petersen graph, locating-chromatic number.
*Corresponding author

Abstract

The locating-chromatic number of a graph is combined two graph concept, coloring vertices and partition dimension of a graph. The locating-chromatic number, denoted by $\chi_{L}(G)$, is the smallest k such that G has a locating k-coloring. In this paper, we discuss the locatingchromatic number for certain operation of generalized Petersen graphs $s \mathrm{P}(n, 1)$.

1. Introduction

In 2002, Chartrand et al. [7] introduced the locating-chromatic number of a graph, with derived two graph concept, coloring vertices and partition dimension of a graph. Let $G=(V, E)$ be a connected graph and c be a proper k-coloring of G with color $1,2, \ldots, k$. Let $\Pi=\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ be a partition of $V(G)$ which is induced by coloring c. The color code $c_{\Pi}(v)$ of v is the ordered k-tuple $\left(d\left(v, C_{1}\right), d\left(v, C_{2}\right), \ldots, d\left(v, C_{k}\right)\right)$, where $d\left(v, C_{i}\right)=\min \left\{d(v, x) \mid x \in C_{i}\right\}$ for any i. If all distinct vertices of G have distinct color codes, then c is called k-locating coloring of G. The locatingchromatic number, denoted by $\chi_{L}(G)$, is the smallest k such that G has a locating k-coloring. Next, Chartrand et al. [6] determined the locatingchromatic number for some graph classes. On P_{n} it is a path of order $n \geq 3$, and hence $\chi_{L}\left(P_{n}\right)=3$; for a cycle C_{n} if $n \geq 3$ odd, $\chi_{L}\left(C_{n}\right)=3$, and if n even, then $\chi_{L}\left(C_{n}\right)=4$; for double star graph $\left(S_{a, b}\right), 1 \leq a \leq b$ and $b \geq 2$, obtained $\chi_{L}\left(S_{a, b}\right)=b+1$.

The following definition of a generalized Petersen graph is taken from Watkins [8]. Let $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be some vertices on the outer cycle and $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be some vertices on the inner cycle, for $n \geq 3$. The generalized Petersen graph, denoted by $\mathrm{P}(n, k), n \geq 3,1 \leq k \leq\left\lfloor\frac{n-1}{2}\right\rfloor$,
$1 \leq i \leq n$ is a graph that has $2 n$ vertices $\left\{u_{i}\right\} \cup\left\{v_{i}\right\}$, and edges $\left\{u_{i} u_{i+1}\right\} \cup$ $\left\{v_{i} v_{i+k}\right\} \cup\left\{u_{i} v_{i}\right\}$.

Now, we define a new kind of generalized Petersen graph called $s \mathrm{P}(n, k)$. Suppose there are s generalized Petersen graphs $\mathrm{P}(n, k)$. Some vertices on the outer cycle $u_{i}, i=1,2, \ldots, n$ for the generalized Petersen graph t th, $t=1,2, \ldots, s, s \geq 1$ denoted by u_{i}^{t}, while some vertices on the inner cycle $v_{i}, \quad i=1,2, \ldots, n$ for the generalized Petersen graph t th, $t=1,2, \ldots, s, s \geq 1$ denoted by v_{i}^{t}. Generalized Petersen graph $s \mathrm{P}(n, k)$ obtained from $s \geq 1$ is the graph $\mathrm{P}(n, k)$, in which each of vertices on the outer cycle $u_{i}^{t}, \quad i \in[1, n], t \in[1, s]$ is connected by a path $\left(u_{i}^{t} u_{i}^{t+1}\right)$, $t=1,2, \ldots, s-1, s \geq 2$.

The locating-chromatic number for corona product is determined by Baskoro and Purwasih [5], and locating-chromatic number for join graphs is determined by Behtoei and Ambarloei [1]. Additionally, Welyyanti et al. [9,10] discussed locating-chromatic number for graphs with dominant vertices and locating chromatic number for graph with two homogeneous components. Asmiati obtained the locating-chromatic number of nonhomogeneous amalgamation of stars [3]. Next, Asmiati et al. [4] determined some generalized Petersen graphs $\mathrm{P}(n, 1)$ having locating-chromatic number 4 for odd $n \geq 3$ or 5 ; for even $n \geq 4$, certain operation of generalized Petersen graphs $s \mathrm{P}(4,2)$ determined by Irawan et al. [2]. Besides that, in this paper, we will discuss the locating-chromatic number of generalized Petersen graphs $s \mathrm{P}(n, 1)$.

The following theorems are basics to determine the lower bound of the locating-chromatic of a graph. The set of neighbours of a vertex y in G is denoted by $N(y)$.

Theorem 1.1 [7]. Let c be a locating coloring in a connected graph G. If x and y are distinct vertices of G such that $d(x, w)=d(y, w)$ for all $w \in V(G)-\{x, y\}$, then $c(x) \neq c(y)$. In particular, if x and y are nonadjacent vertices such that $N(x) \neq N(y)$, then $c(x) \neq c(y)$.

Theorem 1.2 [7]. The locating-chromatic number of a cycle C_{n} is 3 for odd n and 4 for otherwise.

Theorem 1.3 [4]. The locating-chromatic number for generalized Petersen graphs $\mathrm{P}(n, 1)$ is 4 for odd $n \geq 3$ or 5 for even $n \geq 4$.

2. Main Results

In this section, we will discuss the locating-chromatic number of new kind generalized Petersen graphs $s \mathrm{P}(n, 1)$.

Theorem 2.1. $\chi_{L}(s \mathrm{P}(3,1))=5$, for $s \geq 2$.
Proof. First, we determine the lower bound of $\chi_{L}(s \mathrm{P}(3,1))$ for $s \geq 2$. Because a new kind generalized Petersen graph $s \mathrm{P}(3,1), s \geq 2$ contains some generalized Petersen graph $\mathrm{P}(n, 1)$, then by Theorem 1.3, $\chi_{L}(s \mathrm{P}(3,1)) \geq 4$. Suppose that c is a 4-locating coloring on $s \mathrm{P}(3,1)$. Consider $c\left(u_{i}^{1}\right)=i, i=1,2,3$ and $c\left(v_{j}^{1}\right)=j, j=1,2,3$ such that $c\left(u_{i}^{1}\right) \neq$ $c\left(v_{j}^{1}\right)$ for $c\left(u_{i}^{1}\right)$ adjacent to $c\left(v_{j}^{1}\right)$. Observe that if we assign color 4 for any vertices in u_{i}^{2} or v_{i}^{2}, then we have two vertices whose the same color codes. Therefore, c is not locating 4 -coloring on $s \mathrm{P}(3,1)$. As the result, $\chi_{L}(s \mathrm{P}(3,1)) \geq 5$ for $s \geq 2$.

Next, we determine the upper bound of $\chi_{L}(s \mathrm{P}(3,1)) \leq 5$ for $s \geq 2$. Assign the 5 -coloring c on $s \mathrm{P}(3,1)$ as follows:

- $c\left(u_{i}^{t}\right)= \begin{cases}1 & \text { for } i=1 \text { and odd } s ; \\ 2 & \text { for } i=2 \text { and odd } s ; \\ 3 & \text { for } i=3 \text { and odd } s ; \\ 3 & \text { for } i=1 \text { and even } s ; \\ 1 & \text { for } i=2 \text { and even } s ; \\ 4 & \text { for } i=3 \text { and even } s .\end{cases}$
- $c\left(v_{i}^{1}\right)= \begin{cases}2 & \text { for } i=1 ; \\ 3 & \text { for } i=2 ; \\ 5 & \text { for } i=3 .\end{cases}$
- $c\left(v_{i}^{t}\right)= \begin{cases}3 & \text { for } i=1 \text { and odd } s \geq 3 ; \\ 1 & \text { for } i=2 \text { and odd } s \geq 3 ; \\ 2 & \text { for } i=3 \text { and odd } s \geq 3 ; \\ 4 & \text { for } i=1 \text { and even } s ; \\ 2 & \text { for } i=2 \text { and even } s ; \\ 3 & \text { for } i=3 \text { and even } s .\end{cases}$

The coloring c will create the partition Π on $V(s \mathrm{P}(3,1))$. We show that the color codes of all vertices in $s \mathrm{P}(3,1)$ are different. For $s=1$, we have $c_{\Pi}\left(u_{1}^{1}\right)=(0,1,1,2,2) ; \quad c_{\Pi}\left(u_{2}^{1}\right)=(1,0,1,2,2) ; \quad c_{\Pi}\left(u_{3}^{1}\right)=(1,1,0,1,1) ;$ $c_{\Pi}\left(v_{1}^{1}\right)=(1,0,1,3,1) ; \quad c_{\Pi}\left(v_{2}^{1}\right)=(2,1,0,3,1) ; \quad c_{\Pi}\left(v_{3}^{1}\right)=(2,1,1,2,0)$. For $\quad s \geq 3$ odd, we have $c_{\Pi}\left(u_{1}^{t}\right)=(0,1,1,2, i+s) ; \quad c_{\Pi}\left(u_{2}^{t}\right)=$ $(1,0,1,2, i+s) ; c_{\Pi}\left(u_{3}^{t}\right)=(1,1,0,1, s) ; c_{\Pi}\left(v_{1}^{t}\right)=(1,1,0,3, s+2) ; c_{\Pi}\left(v_{2}^{t}\right)$ $=(0,1,1,3, i+s) ; \quad c_{\Pi}\left(v_{3}^{t}\right)=(1,0,1,2, s+1)$. For $s \geq 2$ even, we have $c_{\Pi}\left(u_{1}^{t}\right)=(1,1,0,1, s+1) ; c_{\Pi}\left(u_{2}^{t}\right)=(0,1,1,1, s) ; c_{\Pi}\left(u_{3}^{t}\right)=(1,2,1,0, s) ;$ $c_{\Pi}\left(v_{1}^{t}\right)=(2,1,1,0, s+2) ; \quad c_{\Pi}\left(v_{2}^{t}\right)=(1,0,1,1, s+2) ; \quad c_{\Pi}\left(v_{3}^{t}\right)=(1,1,0$, $1, s+1)$. Since the color codes of all vertices in $s \mathrm{P}(3,1)$ are different, it follows that $\chi_{L}(s \mathrm{P}(3,1)) \leq 5$ for $s \geq 2$.

Theorem 2.2. $\chi_{L}(s \mathrm{P}(\mathrm{n}, 1))=5$, for $s \geq 2$ and odd $n \geq 5$.
Proof. The new kind generalized Petersen graphs $s \mathrm{P}(n, 1)$, for $s \geq 2$ and odd $n \geq 5$, contain some even cycles. Then, by Theorem 1.2, $\chi_{L}(s \mathrm{P}(\mathrm{n}, 1)) \geq 4$. Suppose that c is a locating coloring of $s \mathrm{P}(n, 1)$, for $s \geq 2$ and odd $n \geq 5$. Let $C_{1}=\left\{u_{1}^{t} \mid\right.$ for odd $\left.s\right\} \cup\left\{u_{n}^{t} \mid\right.$ for even $\left.s\right\} \cup$ $\left\{v_{1}^{t} \mid\right.$ for even $\left.s\right\} \cup\left\{v_{n}^{t} \mid\right.$ for odd $\left.s, s \geq 3\right\} ; \quad C_{2}=\left\{u_{2 j}^{t} \mid\right.$ for odd i and odd s, $j>0\} \cup\left\{v_{2 j-1}^{t} \mid\right.$ for odd i and odd $\left.s, j>0\right\} \cup\left\{u_{2 j-1}^{t} \mid\right.$ for odd i and even s, $j>0\} \cup\left\{v_{2 j}^{t} \mid\right.$ for odd i and even $\left.s, j>0\right\} ; C_{3}=\left\{u_{2 j+1}^{t} \mid\right.$ for odd i and odd $s, j>0\} \cup\left\{v_{2 j}^{t} \mid\right.$ for odd i and odd $\left.s, j>0\right\} \cup\left\{u_{2 j}^{t} \mid\right.$ for odd i and even $s, j>0\} \bigcup\left\{v_{2 j+1}^{t} \mid\right.$ for odd i and even $\left.s, j>0\right\} ; C_{4}=\left\{v_{n}^{t} \mid\right.$ for odd $\left.s\right\} \bigcup\left\{v_{1}^{t} \mid\right.$ for even $s\}$ for $\{i>0 ; j>0\}$. Then there are some vertices with same color codes, $c_{\Pi}\left(u_{n-1}^{t}\right)=c_{\Pi}\left(v_{1}^{t}\right)$ for even s and $c_{\Pi}\left(u_{2}^{t}\right)=c_{\Pi}\left(v_{1}^{t}\right)$ for odd; $s \geq 2$, a contradiction. Therefore, $\chi_{L}(s \mathrm{P}(n, 1)) \geq 5$, for $s \geq 2$ and odd $n \geq 5$.

We determine the upper bound of $\chi_{L}(s \mathrm{P}(n, 1)) \leq 5$, for $n \geq 5$ odd. The coloring c will create the partition Π on $V(s \mathrm{P}(n, 1))$:

$$
\begin{aligned}
C_{1}= & \left\{u_{1}^{t} \mid \text { for odd } s\right\} \cup\left\{u_{n}^{t} \mid \text { for even } s\right\} ; \\
C_{2}= & \left\{u_{2 j}^{t} \mid \text { for odd } i \text { and odd } s, j>0\right\} \\
& \cup\left\{v_{2 j-1}^{t} \mid \text { for odd } i \text { and odd } s, j>0\right\} \\
& \cup\left\{u_{2 j-1}^{t} \mid \text { for odd } i \text { and even } s, j>0\right\} \\
& \cup\left\{v_{2 j}^{t} \mid \text { for odd } i \text { and even } s, j>0\right\} ;
\end{aligned}
$$

$$
\begin{aligned}
C_{3}= & \left\{u_{2 j+1}^{t} \mid \text { for odd } i \text { and odd } s, j>0\right\} \\
& \cup\left\{v_{2 j}^{t} \mid \text { for odd } i \text { and odd } s, j>0\right\} \\
& \cup\left\{u_{2 j}^{t} \mid \text { for odd } i \text { and even } s, j>0\right\} \\
& \cup\left\{v_{2 j+1}^{t} \mid \text { for odd } i \text { and even } s, j>0\right\} ; \\
C_{4}= & \left\{v_{n}^{t} \mid \text { for odd } s\right\} \cup\left\{v_{1}^{t} \mid \text { for even } s\right\} ; \\
C_{5}= & \left\{v_{n}^{1}\right\} .
\end{aligned}
$$

Therefore, the color codes of all the vertices of G are:
(a)
$C_{1}=\left\{u_{1}^{t} \mid\right.$ for odd $\left.s\right\} \cup\left\{u_{n}^{t} \mid\right.$ for even $\left.s\right\} ;$
$c_{\Pi}\left(u_{1}^{1}\right)=(0,1,2,2,1) ; c_{\Pi}\left(u_{n}^{t}\right)=(0,1,1,2, s-1)$ for even $s \geq 2 ;$ $c_{\Pi}\left(u_{1}^{t}\right)=(0,1,2,2, s)$ for odd $s \geq 3$.
(b)

$$
\begin{aligned}
C_{2}= & \left\{u_{2 j}^{t} \mid \text { for odd } i \text { and odd } s, j>0\right\} \\
& \cup\left\{v_{2 j-1}^{t} \mid \text { for odd } i \text { and odd } s, j>0\right\} \\
& \cup\left\{u_{2 j-1}^{t} \mid \text { for odd } i \text { and even } s, j>0\right\} \\
& \cup\left\{v_{2 j}^{t} \mid \text { for odd } i \text { and even } s, j>0\right\} .
\end{aligned}
$$

Let $u_{i}^{t}, 1 \leq i \leq n-1 ; i=2 j ; 1 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor$ for odd $s ; u_{i}^{t}, 1 \leq i \leq n-2$; $i=2 j-1 ; 1 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor$ for even s and $v_{i}^{t}, 1 \leq i \leq n-2 ; i=2 j-1 ; 1 \leq j$ $\leq\left\lfloor\frac{n}{2}\right\rfloor$ for odd $s ; v_{i}^{t}, 2 \leq i \leq n-2 ; i=2 j ; 1 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor$ for even $s \geq 2$.

For $i<\left\lceil\frac{n}{2}\right\rceil$, we have:

$$
\begin{aligned}
& c_{\Pi}\left(u_{i}^{t}\right)=(i-1,0,1, i+1, s+i-1) \text { for odd } s \\
& c_{\Pi}\left(v_{i}^{t}\right)=(i, 0,1, i, s+i) \text { for odd } s \\
& c_{\Pi}\left(u_{i}^{t}\right)=(i, 0,1, i, s+i-1) \text { for even } s \\
& c_{\Pi}\left(v_{i}^{t}\right)=(i+1,0,1, i-1, s+i) \text { for even } s
\end{aligned}
$$

For $i=\left\lceil\frac{n}{2}\right\rceil$, we have:

$$
\begin{aligned}
& c_{\Pi}\left(u_{i}^{t}\right)=c_{\Pi}\left(u_{n-2 j+1}^{t}\right)=(i-1,0,1, i, 2 j+s-1) \text { for odd } s \\
& c_{\Pi}\left(v_{i}^{t}\right)=c_{\Pi}\left(v_{n-2 j}^{t}\right)=(i, 0,1, i-1,2 j+s+1) \text { for odd } s ; \\
& c_{\Pi}\left(u_{i}^{t}\right)=c_{\Pi}\left(u_{n-2 j}^{t}\right)=(i-1,0,1, i, 2 j+s-1) \text { for even } s ; \\
& c_{\Pi}\left(v_{i}^{t}\right)=c_{\Pi}\left(v_{n-2 j+1}^{t}\right)=(i, 0,1, i-1,2 j+s-1) \text { for even } s
\end{aligned}
$$

For $i>\left\lceil\frac{n}{2}\right\rceil$, we have:

$$
\begin{aligned}
& c_{\Pi}\left(u_{i}^{t}\right)=c_{\Pi}\left(u_{n-2 j+1}^{t}\right)=(2 j, 0,1,2 j, 2 j+s-2) \text { for odd } s ; \\
& c_{\Pi}\left(v_{i}^{t}\right)=c_{\Pi}\left(v_{n-2 j}^{t}\right)=(2 j+2,0,1,2 j, 2 j+s) \text { for odd } s ; \\
& c_{\Pi}\left(u_{i}^{t}\right)=c_{\Pi}\left(u_{n-2 j}^{t}\right)=(2 j, 0,1,2 j+2,2 j+s-1) \text { for even } s ; \\
& c_{\Pi}\left(v_{i}^{t}\right)=c_{\Pi}\left(v_{n-2 j+1}^{t}\right)=(2 j, 0,1,2 j, 2 j+s-1) \text { for even } s .
\end{aligned}
$$

(c)

$$
C_{3}=\left\{u_{2 j+1}^{t} \mid \text { for odd } i \text { and odd } s, j>0\right\}
$$

$\bigcup\left\{v_{2 j}^{t} \mid\right.$ for odd i and odd $\left.s, j>0\right\}$

$$
\begin{aligned}
& \cup\left\{u_{2 j}^{t} \mid \text { for odd } i \text { and even } s, j>0\right\} \\
& \cup\left\{v_{2 j+1}^{t} \mid \text { for odd } i \text { and even } s, j>0\right\} .
\end{aligned}
$$

Let $u_{i}^{t}, 1 \leq i \leq n-2 ; i=2 j+1 ; 1 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor-1$ for $s=1 ; u_{i}^{t}, 1 \leq i$ $\leq n ; i=2 j+1 ; 1 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor$ for odd $s \geq 3 ; u_{i}^{t}, 1 \leq i \leq n-1 ; i=2 j ; 1 \leq j$ $\leq\left\lceil\frac{n}{2}\right\rceil$ for even s and $v_{i}^{t}, 1 \leq i \leq n-1 ; i=2 j ; 1 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor$ for odd $s ; v_{i}^{t}$, $1 \leq i \leq n ; i=2 j+1 ; 1 \leq j \leq\left\lceil\frac{n}{2}\right\rceil$ for even $s \geq 1$.

For $i<\left\lceil\frac{n}{2}\right\rceil$, we have:

$$
\begin{aligned}
& c_{\Pi}\left(u_{i}^{t}\right)=(i-1,1,0, i+1, i+s-1) \text { for odd } s \\
& c_{\Pi}\left(v_{i}^{t}\right)=(i, 1,0, i, i+s) \text { for odd } s \\
& c_{\Pi}\left(u_{i}^{t}\right)=(i, 1,0, i, i+s) \text { for even } s \\
& c_{\Pi}\left(v_{i}^{t}\right)=(i+1,1,0, i-1, i+s) \text { for even } s
\end{aligned}
$$

For $i=\left\lceil\frac{n}{2}\right\rceil$, we have:

$$
\begin{aligned}
& c_{\Pi}\left(u_{i}^{t}\right)=c_{\Pi}\left(u_{n-2 j+1}^{t}\right)=(i-1,1,0, i, 2 j+s-1) \text { for odd } s \\
& c_{\Pi}\left(v_{i}^{t}\right)=c_{\Pi}\left(v_{n-2 j}^{t}\right)=(i, 1,0, i-1,2 j+s) \text { for odd } s \\
& c_{\Pi}\left(u_{i}^{t}\right)=c_{\Pi}\left(u_{n-2 j}^{t}\right)=(i-1,1,0, i, 2 j+s-1) \text { for even } s \\
& c_{\Pi}\left(v_{i}^{t}\right)=c_{\Pi}\left(v_{n-2 j+1}^{t}\right)=(i, 1,0, i-1,2 j+s+1) \text { for even } s
\end{aligned}
$$

For $i>\left\lceil\frac{n}{2}\right\rceil$, we have:
$c_{\Pi}\left(u_{i}^{t}\right)=c_{\Pi}\left(u_{n-2 j}^{t}\right)=(2 j+1,1,0,2 j, 2 j+s-1)$ for odd $s ;$
$c_{\Pi}\left(v_{i}^{t}\right)=c_{\Pi}\left(v_{n-2 j+1}^{t}\right)=(2 j+1,1,0,2 j-1,2 j+s-1)$ for odd $s ;$
$c_{\Pi}\left(u_{i}^{t}\right)=c_{\Pi}\left(u_{n-2 j+1}^{t}\right)=(2 j-1,1,0,2 j+1,2 j+s-2)$ for even $s ;$
$c_{\Pi}\left(v_{i}^{t}\right)=c_{\Pi}\left(v_{n-2 j+2}^{t}\right)=(2 j-1,1,0,2 j-1,2 j+s-2)$ for even s.
(d)

$$
\begin{aligned}
& C_{4}=\left\{v_{n}^{t} \mid \text { for odd } s\right\} \cup\left\{v_{1}^{t} \mid \text { for even } s\right\} \\
& c_{\Pi}\left(v_{n}^{t}\right)=(2,1,1,0, s) \text { for odd } s \\
& c_{\Pi}\left(v_{1}^{t}\right)=(1,2,1,0, s+1) \text { for even } s .
\end{aligned}
$$

(e)

$$
\begin{aligned}
& C_{5}=\left\{v_{n}^{1}\right\}, \\
& c_{\Pi}\left(v_{n}^{1}\right)=(1,1,2,1,0) .
\end{aligned}
$$

Since all the vertices have different color codes, c is a locating coloring of new kind generalized Petersen graphs $s \mathrm{P}(n, 1)$, so $\chi_{L}(s \mathrm{P}(n, 1)) \leq 5$, for odd $n \geq 5$.

Theorem 2.3. $\chi_{L}(s \mathrm{P}(n, 1))=5$ for $s \geq 2$ and even $n \geq 4$.
Proof. First, we determine the lower bound of $\chi_{L}(s \mathrm{P}(n, 1))$ for $s \geq 2$ and even $n \geq 4$. The new kind generalized Petersen graph $s \mathrm{P}(n, 1)$, for $s \geq 2$ and even $n \geq 4$, contains some generalized Petersen graph $\mathrm{P}(n, 1)$, then by Theorem 1.3, $\chi_{L}(s \mathrm{P}(n, 1)) \geq 5$.

Next, we determine the upper bound of $\chi_{L}(s \mathrm{P}(n, 1)) \leq 5$ for $s \geq 2$ and $n \geq 4$ even. The coloring c will create the partition Π on $V(s \mathrm{P}(n, 1))$:

$$
\begin{aligned}
C_{1}= & \left\{u_{1}^{t} \mid \text { for odd } s\right\} \cup\left\{u_{n}^{t} \mid \text { for even } s\right\} ; \\
C_{2}= & \left\{u_{2 j}^{t} \mid \text { for odd } i \text { and odd } s, j>0\right\} \\
& \cup\left\{v_{2 j-1}^{t} \mid \text { for odd } i \text { and odd } s, j>0\right\} \\
& \cup\left\{u_{2 j-1}^{t} \mid \text { for odd } i \text { and even } s, j>0\right\} \\
& \cup\left\{v_{2 j}^{t} \mid \text { for odd } i \text { and even } s, j>0\right\} ; \\
C_{3}= & \left\{u_{2 j+1}^{t} \mid \text { for odd } i \text { odd } s, j>0\right\} \\
& \cup\left\{v_{2 j}^{t} \mid \text { for odd } i \text { and odd } s, j>0\right\} \\
& \cup\left\{u_{2 j}^{t} \mid \text { for odd } i \text { and even } s, j>0\right\} \\
& \cup\left\{v_{2 j+1}^{t} \mid \text { for odd } i \text { and even } s, j>0\right\} ; \\
C_{4}= & \left\{u_{n}^{t} \mid \text { for odd } s\right\} \cup\left\{u_{n-1}^{t} \mid \text { for even } s\right\} ; \\
C_{5}= & \left\{v_{n}^{1}\right\} .
\end{aligned}
$$

Therefore, the color codes of all the vertices of G are:
(a)

$$
\begin{aligned}
& C_{1}=\left\{u_{1}^{t} \mid \text { for odd } s\right\} \cup\left\{u_{n}^{t} \mid \text { for even } s\right\} ; \\
& c_{\Pi}\left(u_{1}^{1}\right)=(0,1,2,1,2) ; u_{n}^{t}=(0,1,2,1, s) \text { for even } s \geq 2 ; \\
& c_{\Pi}\left(u_{1}^{t}\right)=(0,1,2,1, s+1) \text { for odd } s \geq 3 .
\end{aligned}
$$

(b)

$$
\begin{aligned}
C_{2}= & \left\{u_{2 j}^{t} \mid \text { for odd } i \text { and odd } s, j>0\right\} \\
& \cup\left\{v_{2 j-1}^{t} \mid \text { for odd } i \text { and odd } s, j>0\right\} \\
& \cup\left\{u_{2 j-1}^{t} \mid \text { for odd } i \text { and even } s, j>0\right\} \\
& \cup\left\{v_{2 j}^{t} \mid \text { for odd } i \text { and even } s, j>0\right\} .
\end{aligned}
$$

Let $u_{i}^{t}, \quad 1 \leq i \leq n-2 ; \quad i=2 j ; \quad 1 \leq j \leq \frac{n}{2}-2$ for odd $s ; u_{i}^{t}, \quad 1 \leq i \leq$ $n-3 ; \quad i=2 j-1 ; \quad 1 \leq j \leq \frac{n}{2}$ for even s and $v_{i}^{t}, \quad 1 \leq i \leq n-1 ; \quad i=2 j-1$; $1 \leq j \leq \frac{n}{2}$ for odd $s ; v_{i}^{t}, 1 \leq i \leq n-1 ; i=2 j ; 1 \leq j \leq \frac{n}{2}$ for even $s \geq 2$.

For $i \leq\left\lceil\frac{n}{2}\right\rceil$, we have:

$$
\begin{aligned}
& c_{\Pi}\left(u_{i}^{t}\right)=(i-1,0,1, i, i+s) \text { for odd } s \\
& c_{\Pi}\left(v_{i}^{t}\right)=(i, 0,1, i, i+s+1) \text { for odd } s \\
& c_{\Pi}\left(u_{i}^{t}\right)=(i, 0,1, i+1, i+s) \text { for even } s \\
& c_{\Pi}\left(v_{i}^{t}\right)=(i+1,0,1, i+2, i+s+1) \text { for even } s .
\end{aligned}
$$

For $i>\left\lceil\frac{n}{2}\right\rceil$, we have:

$$
\begin{aligned}
& c_{\Pi}\left(u_{i}^{t}\right)=c_{\Pi}\left(u_{n-2 j}^{t}\right)=(2 j+1,0,1,2 j, 2 j+s) \text { for odd } s ; \\
& c_{\Pi}\left(v_{i}^{t}\right)=c_{\Pi}\left(v_{n-2 j-1}^{t}\right)=(2 j+1,0,1,2 j, 2 j+s) \text { for odd } s ; \\
& c_{\Pi}\left(u_{i}^{t}\right)=c_{\Pi}\left(u_{n-2 j-1}^{t}\right)=(2 j+1,0,1,2 j, 2 j+s+1) \text { for even } s ; \\
& c_{\Pi}\left(v_{i}^{t}\right)=c_{\Pi}\left(v_{n-2 j}^{t}\right)=(2 j-1,0,1,2 j, 2 j+s-1) \text { for even } s .
\end{aligned}
$$

(c)

$$
\begin{aligned}
C_{3}= & \left\{u_{2 j+1}^{t} \mid \text { for odd } i \text { and odd } s, j>0\right\} \\
& \cup\left\{v_{2 j}^{t} \mid \text { for odd } i \text { and odd } s, j>0\right\} \\
& \cup\left\{u_{2 j}^{t} \mid \text { for odd } i \text { and even } s, j>0\right\} \\
& \cup\left\{v_{2 j+1}^{t} \mid \text { for odd } i \text { and even } s, j>0\right\} .
\end{aligned}
$$

Let $u_{i}^{t}, 1 \leq i \leq n-1 ; \quad i=2 j+1 ; \quad 1 \leq j \leq \frac{n}{2}-1$ for odd $s ; u_{i}^{t}, 1 \leq i \leq$ $n-2 ; \quad i=2 j ; \quad 1 \leq j \leq \frac{n}{2}-1$ for even s and $v_{i}^{t}, 1 \leq i \leq n-2 ; i=2 j ; 1 \leq$ $j \leq \frac{n}{2}-1$ for odd $s ; \quad v_{i}^{t}, \quad 1 \leq i \leq n-1 ; \quad i=2 j-1 ; \quad 1 \leq j \leq \frac{n}{2}$ for even $s \geq 2$.

For $i \leq\left\lceil\frac{n}{2}\right\rceil$, we have:

$$
\begin{aligned}
& c_{\Pi}\left(u_{i}^{t}\right)=(i-1,1,0, i, i+s) \text { for odd } s ; \\
& c_{\Pi}\left(v_{i}^{1}\right)=(i, 1,0, i+1, i) ; \\
& c_{\Pi}\left(v_{i}^{t}\right)=(i, 1,0, i+1, i+2 s-2) \text { for odd } s \geq 3 ; \\
& c_{\Pi}\left(u_{i}^{t}\right)=(i, 1,0, i+1, i+s) \text { for even } s ; \\
& c_{\Pi}\left(v_{i}^{t}\right)=(i+1,1,0, i+1, i+s) \text { for even } s .
\end{aligned}
$$

For $i>\left\lceil\frac{n}{2}\right\rceil$, we have:
$c_{\Pi}\left(u_{i}^{t}\right)=c_{\Pi}\left(u_{n-2 j+1}^{t}\right)=(2 j+1,1,0,2 j-1,2 j+s-1)$ for odd $s ;$
$c_{\Pi}\left(v_{i}^{1}\right)=c_{\Pi}\left(v_{n-2 j}^{t}\right)=(2 j+2,1,0,2 j+1,2 j) ;$
$c_{\Pi}\left(v_{i}^{t}\right)=c_{\Pi}\left(v_{n-2 j}^{t}\right)=(2 j+2,1,0,2 j+1,2 j+s+1)$ for odd $s \geq 3 ;$
$c_{\Pi}\left(u_{i}^{t}\right)=c_{\Pi}\left(u_{n-2 j+1}^{t}\right)=(2 j, 1,0,2 j-1,2 j+s)$ for even $s ;$
$c_{\Pi}\left(v_{i}^{t}\right)=c_{\Pi}\left(v_{n-2 j}^{t}\right)=(2 j, 1,0,2 j-1,2 j+s)$ for even s.
(d)

$$
\begin{aligned}
& C_{4}=\left\{u_{n}^{t} \mid \text { for odd } s\right\} \cup\left\{u_{n-1}^{t} \mid \text { for even } s\right\} ; \\
& c_{\Pi}\left(u_{n}^{t}\right)=(1,2,1,0, s) \text { for odd } s ; \\
& c_{\Pi}\left(u_{n-1}^{t}\right)=(1,2,1,0, s+1) \text { for even } s .
\end{aligned}
$$

(e)

$$
\begin{aligned}
& C_{5}=\left\{v_{n}^{1}\right\}, \\
& c_{\Pi}\left(v_{n}^{1}\right)=(2,1,2,1,0) .
\end{aligned}
$$

Since all the vertices have different color codes, c is a locating coloring of new kind generalized Petersen graphs $(s \mathrm{P}(n, 1))$, so $\chi_{L}(s \mathrm{P}(n, 1)) \leq 5$, for even $n \geq 4$.

3. Conclusion

Based on the results, locating-chromatic number of new kind generalized Petersen graphs $s \mathrm{P}(n, 1)$ is 5 for $s \geq 2$ and $n \geq 3$.

References

[1] A. Behtoei and M. Anbarloei, The locating chromatic number of the join graphs, Bull. Iranian Math. Soc. 40(6) (2014), 1491-1504.
[2] A. Irawan, Asmiati, S. Suharsono and K. Muludi, The locating-chromatic number for certain operation of generalized Petersen graphs $s \mathrm{P}(4,2)$, Journal of Physics: Conference Series 1338(1) (2019), 1-6.
[3] Asmiati, The locating-chromatic number of non-homogeneous amalgamation of starts, Far East J. Math. Sci. (FJMS) 93(1) (2014), 89-96.
[4] Asmiati, Wamiliana, Devriyadi and L. Yulianti, On some Petersen graphs having locating chromatic number four or five, Far East J. Math. Sci. (FJMS) 102(4) (2017), 769-778.
[5] E. T. Baskoro and I. A. Purwasih, The locating-chromatic number for corona product of graphs, Southeast-Asian J. Sciences 1(1) (2012), 124-134.
[6] G. Chartrand, D. Erwin, M. A. Henning, P. J. Slater and P. Zhang, Graphs of order n with locating-chromatic number $n-1$, Discrete Math. 269 (2003), 65-79.
[7] G. Chartrand, D. Erwin, M. A. Henning, P. J. Slater and P. Zhang, The locatingchromatic number of a graph, Bull. Inst. Combin. Appl. 36 (2002), 89-101.
[8] M. E. Watkins, A theorem on Tait colorings with application to the generalized Petersen graphs, Journal of Combinatorial Theory 6(2) (1969), 152-164.
[9] T. Welyyanti, E. T. Baskoro, R. Simanjuntak and S. Uttunggadewa, On locatingchromatic number for graphs with dominant vertices, Procedia Computer Science 74 (2015), 89-92.
[10] T. Welyyanti, E. T. Baskoro, R. Simanjuntak and S. Uttunggadewa, On the locating-chromatic number for graphs with two homogeneous components, Journal of Physics: Conference Series 893(1) (2017), 1-8.

