The Locating-Chromatic Number for Certain Operation of Generalized Petersen Graphs $s P(4,2)$

To cite this article: A Irawan et al 2019 J. Phys.: Conf. Ser. 1338012033

View the article online for updates and enhancements.

IOP ebooks"

Bringing you innovative digital publishing with leading voices to create your essential collection of books in STEM research.

Start exploring the collection - download the first chapter of every title for free.

The Locating-Chromatic Number for Certain Operation of Generalized Petersen Graphs $\boldsymbol{s P}(4,2)$

A Irawan ${ }^{1,2, a}$, Asmiati $^{3, \mathrm{~b}}$, Suharsono ${ }^{3, \mathrm{c}}$, and K Muludi ${ }^{4, \mathrm{~d}}$
${ }^{1}$ Posgraduate student, Faculty of Mathematics and Natural Sciences Lampung University, Jl. Sumantri Brodjonegoro No.1, Bandar Lampung, Indonesia.
${ }^{2}$ School of Information and Computer Management (STMIK) Pringsewu Lampung. Jl. Wisma Rini No.09, Pringsewu, Lampung, Indonesia
${ }^{3}$ Departement Mathematics, Faculty of Mathematics and Natural Sciences Lampung University. Jl. Sumantri Brodjonegoro No.1, Bandar Lampung, Indonesia
${ }^{4}$ Computer Sciences, Faculty of Mathematics and Natural Sciences Lampung University. Jl. Sumantri Brodjonegoro No.1, Bandar Lampung, Indonesia
${ }^{\text {a agusirawan814@gmail.com; basmiati.1976@fmipa.unila.ac.id; }}$

Abstract

The locating-chromatic number of a graph combined two graph concept, coloring vertices and partition dimension of a graph. The locating-chromatic number, denoted by $\chi_{L}(G)$, is the smallest k such that G has a locating k-coloring. In this paper, we discuss the locatingchromatic number for certain operation of generalized Petersen graphs $s P(4,2)$.

1. Introduction

Chartrand et al. [1] in 2002 introduced the locating-chromatic number of a graph, with derived two graph concept, coloring vertices and partition dimension of a graph. Let $G=(V, E)$ be a connected graph and c be a proper k-coloring of G with color $1,2, \ldots, k$. Let $\Pi=\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ be a partition of $V(G)$ which is induced by coloring c. The color code $c_{\Pi}(v)$ of v is the ordered k-tuple $\left(d\left(v, C_{1}\right), d\left(v, C_{2}\right), \ldots, d\left(v, C_{k}\right)\right)$ where $d\left(v, C_{i}\right)=\min \left\{d(v, x) \mid x \in C_{i}\right\}$ for any i. If all distinct vertices of G have distinct color codes, then c is called k-locating coloring of G. The locating-chromatic number, denoted by $\chi_{L}(G)$, is the smallest k such that G has a locating k-coloring.

In 2003, Chartrand et al. [2] successed in constructing $n \geq 5$ tree graphs with locating-chromatic numbers ranging from 3 to n, except $(n-l)$. Behtoe and Omoomi [3] found the locating-chromatic numbers on the Kneser graph. Furthermore, Baskoro and Purwasih [4] found the locating chromatic number for corona product of graphs. Next, Asmiati [5] determined the locating chromatic number of banana tree graph and Asmiati et al. [6] for amalgamation of stars graphs. Asmati et al. [7] also found the locating chromatic number of firecracker graphs and Syofyan et al. [8] for lobster graph.

Specially for non-homogenous tree graph in 2014, Asmiati [9] determined the locating-chromatic number of non-homogeneous amalgamation of stars, then Asmiati [10] for caterpillar graphs and nonhomogenous firecracker graphs. In 2017, Asmiati et al. [11] determined some generalized Petersen graphs $P(n, 1)$ having locating-chromatic number 4 for odd $n \geq 3$ or 5 for even $n \geq 4$.

The generalized Petersen graph $P(n, k), n \geq 3$ and $1 \leq k \leq\lfloor(n-1) / 2\rfloor$, consists of an outer n cycle $u_{1}, u_{2}, \ldots, u_{n}$, a set of n spokes $u_{i}, v_{i}, 1 \leq i \leq n$, and n edges $v_{i}, v_{i+k}, 1 \leq i \leq n$, with indices taken modulo n. The generalized Petersen graph was introduced by Watkins in [12].

To define the generalized Petersen graph $s P(4,2)$, suppose there are sgeneralized Petersen graph $P(4,2)$. Some vertices on the outer cycle $u_{i}, i=1,2,3,4$ for the generalized Petersen graph $t^{t h}, t=$ $1,2, \ldots, s, s \geq 1$ denoted by u_{i}^{t}, while some vertices on the inner cycle $v_{i}, i=1,2,3,4$ for the generalized Petersen graph $t^{t h}, t=1,2, \ldots, s, s \geq 1$ denoted by v_{i}^{t}. Generalized Petersen graph $s P(4,2)$ obtained from $s \geq 1$ graph $P(4,2)$, which every vertices on the outer cycle $u_{i}^{t}, i \in[1,4], t \in$ $[1, s]$ connected by a path $\left(u_{i}^{t} u_{i}^{t+1}\right) t=1,2, \ldots, s-1, s \geq 2$.

Some researchers have determined the locating-chromatic number for certain operation. Behtoei and Omoomi [13] obtained locating-chromatic number from the grid, cartesian multiplication for trajectories and complete graphs, and cartesian multiplication of two complete graphs. Furthermore Behtoei and Omoomi [14] determined the locating-chromatic number of the fan graph, wheel and friendship graph for join multiplication of two graphs. Asmiati [15] foundlocating-chromatic number for certain operation of tree. In this paper, we discuss the locating-chromatic number for certain operation of generalized Petersen graphs $s P(4,2)$.

The following theoremsis basic to determine the locating chromatic number of a graph.The set of neighbours of a vertex s in G, denoted by $N(s)$.

Theorem 1.1.Chartrand et al.[1] Let c be a locating coloring in a connected graph G. If r and s are distinct vertices of G such that $d(r, w)=d(s, w)$ for all $w \in V(G)-\{r, s\}$, then $c(r) \neq c(s)$. In particular, if x and y are non-adjacent vertices of Gsuch that $N(x) \neq N(y)$, then $c(x) \neq c(y)$.

Theorem 1.2.Chartrand et al.[1] The locating chromatic number of a cycle C_{n}, is 3 for odd n and 4 for otherwise.

2. Results and Discussion

In this section we will discuss the locating chromatic number of $P(4,2)$.
Theorem 2.1.The locating chromatic number of generalized Petersen graph $s P(4,2)$ is 5 for $s \geq 2$.
Proof : First, we determine lower bound of $\chi_{L}(s P(4,2))$ for $s \geq 2$. Because generalized Petersen graph $P(4,2)$, for $s \geq 2$, contains some even cycles. Then by Theorem $2, \chi_{L}(s P(4,2)) \geq 4$. Next, we will show that $\chi_{L}(s P(4,2)) \geq 5$, for $s \geq 2$. For a contradiction, suppose that c is 4-locating coloring on $s P_{4,1}$ fors ≥ 2. Consider $c\left(u_{i}^{1}\right)=i, i=1,2,3,4$ and $c\left(v_{j}^{1}\right)=j, j=1,2,3,4$ such that $c\left(u_{i}^{1}\right) \neq c\left(v_{j}^{1}\right)$ for $c\left(u_{i}^{1}\right)$ adjacent toc $\left(v_{j}^{1}\right)$. Observe that if we assign color 4 for any vertices in u_{i}^{2} or v_{i}^{2}, then we have two vertices which have color codes. Therefore, c is not locating 4-coloring on $s P(4,2)$. As the result $\chi_{L}(s P(4,2)) \geq 5$ for $s \geq 2$.

Next, we determine the upper bound of $\chi_{L}(s P(4,2))$ for $s \geq 2$. Let c be a coloring of generalized Petersen graph $s P(4,2)$ for $s \geq 2$. We make the partition of the vertices of $V(s P(4,2))$:
$C_{1}=\left\{u_{1}^{t} \mid\right.$ for odd $\left.s\right\} \cup\left\{u_{2}^{t}, v_{4}^{t} \mid\right.$ for even $\left.s\right\}$
$C_{2}=\left\{u_{2}^{t}, u_{4}^{t} \mid\right.$ for odd $\left.s\right\} \cup\left\{u_{3}^{t}, v_{1}^{t} \mid\right.$ for even $\left.s\right\}$
$C_{3}=\left\{u_{3}^{t}, v_{1}^{t}, v_{2}^{t} \mid\right.$ for odd $\left.s\right\} \cup\left\{u_{4}^{t}, v_{2}^{t}, v_{3}^{t} \mid\right.$ for even $\left.s\right\}$
$C_{4}=\left\{v_{3}^{t} \mid\right.$ for odd $\left.s\right\} \cup\left\{u_{1}^{t} \mid\right.$ untuk s genap $\} \cup\left\{v_{4}^{t} \mid\right.$ for odd $\left.s \geq 3\right\}$
$C_{5}=\left\{v_{4}^{1}\right\}$
Therefore the color codes of all the vertices of G are :
(a) $C_{1}=\left\{u_{1}^{t} \mid\right.$ for odd $\left.s\right\} \cup\left\{u_{2}^{t}, v_{4}^{t} \mid\right.$ for even $\left.s\right\}$

For odd s, the color codes of $s P(4,2)$ are:

$$
c_{\Pi}\left(u_{1}^{t}\right)=\left\{\begin{array}{cl}
0 & \text { for } 1^{s t} \text { component } \\
1 & , \text { for } 2^{\text {nd }}, 3^{\text {rd }} \text { and } 4^{\text {th }} \text { component } \\
s+1 & , \text { for } 5^{\text {th }} \text { component }
\end{array}\right.
$$

For even s, the color codes of $s P(4,2)$ are:

$$
\begin{aligned}
& c_{\Pi}\left(u_{2}^{t}\right)=\left\{\begin{array}{cl}
0, & \text { for } 1^{\text {st }} \text { component } \\
1, & \text { for } 2^{\text {nd }}, 3^{\text {rd }} \text { and } 4^{\text {th }} \text { component } \\
s+1 & \text { for } 5^{\text {th }} \text { component }
\end{array}\right. \\
& c_{\Pi}\left(v_{4}^{t}\right)=\left\{\begin{array}{cl}
0, & \text { for } 1^{\text {st }} \text { component } \\
2, & \text { for } 2^{\text {nd }} \text { and } 4^{\text {th }} \text { component } \\
1, & \text { for } 3^{\text {rd }} \text { component } \\
s+1, & \text { for } 5^{\text {th }} \text { component }
\end{array}\right.
\end{aligned}
$$

(b) $C_{2}=\left\{u_{2}^{t}, u_{4}^{t} \mid\right.$ for odd $\left.s\right\} \cup\left\{u_{3}^{t}, v_{1}^{t} \mid\right.$ for even $\left.s\right\}$

For odd s the color codes of $s P(4,2)$ are:

$$
\begin{aligned}
& c_{\Pi}\left(u_{2}^{t}\right)=\left\{\begin{array}{cll}
1 & , & \text { for } 1^{\text {st }} \text { and } 3^{\text {rd }} \text { component } \\
0, & \text { for } 2^{\text {nd }} \text { component } \\
4, & \text { for } 4^{\text {th }} \text { component } \\
s+1, & \text { for } 5^{\text {th }} \text { component }
\end{array}\right. \\
& c_{\Pi}\left(u_{4}^{1}\right)= \begin{cases}1, & \text { for } 1^{\text {st }}, 3^{\text {rd }} \text { and } 5^{\text {th }} \text { component } \\
0, & \text { for } 2^{\text {nd }} \text { component } \\
2, & \text { for } 4^{\text {th }} \text { component }\end{cases}
\end{aligned}
$$

For odd $s \geq 3$, the color codes of $s P(4,2)$ are:

$$
c_{\Pi}\left(u_{4}^{t}\right)= \begin{cases}1, & \text { for } 1^{\text {st }}, 3^{\text {rd }} \text { and } 4^{t h} \text { component } \\ 0, & \text { for } 2^{n d} \text { component } \\ s, & \text { for } 5^{t h} \text { component }\end{cases}
$$

For even s, the color codes of $s P(4,2)$ are:

$$
\begin{aligned}
& c_{\Pi}\left(u_{3}^{t}\right)=\left\{\begin{array}{cll}
1 & , & \text { for } 1^{s t} \text { and } 3^{r d} \text { component } \\
0, & \text { for } 2^{\text {nd }} \text { component } \\
2 & \text { for } 4^{t h} \text { component } \\
s+1 & , & \text { for } 5^{t h} \text { component }
\end{array}\right. \\
& c_{\Pi}\left(v_{1}^{t}\right)=\left\{\begin{array}{cl}
2, & \text { for } 1^{\text {st }} \text { component } \\
0, & \text { for } 2^{\text {nd }} \text { component } \\
1, & \text { for } 3^{r d} \text { and } 4^{\text {th }} \text { component } \\
s+2, & \text { for } 5^{\text {th }} \text { component }
\end{array}\right.
\end{aligned}
$$

(c) $C_{3}=\left\{u_{3}^{t}, v_{1}^{t}, v_{2}^{t} \mid\right.$ for odd $\left.s\right\} \cup\left\{u_{4}^{t}, v_{2}^{t}, v_{3}^{t} \mid\right.$ for even $\left.s\right\}$.

For odd s, the color codes of $s P(4,2)$ are:

$$
\begin{aligned}
& c_{\Pi}\left(u_{3}^{t}\right)=\left\{\begin{array}{cll}
2 & , & \text { for } 1^{s t} \text { component } \\
1 & \text { for } 2^{\text {nd }} \text { and } 4^{t h} \text { component } \\
0 & , & \text { for } 3^{\text {rd }} \text { component }
\end{array}\right. \\
& c_{\Pi}\left(v_{1}^{t}\right)=\left\{\begin{array}{cl}
1 & \text { for } 5^{\text {th }} \text { component } 1^{s t} \text { and } 4^{t h} \text { component } \\
2, & \text { for } 2^{n d} \text { component } \\
0, & \text { for } 3^{r d} \text { component } \\
s+2, & \text { for } 5^{t h} \text { component }
\end{array}\right.
\end{aligned}
$$

$$
c_{\Pi}\left(v_{2}^{1}\right)= \begin{cases}2, & \text { for } 1^{\text {st }} \text { component } \\ 1, & \text { for } 2^{\text {nd }} \text { and } 5^{\text {th }} \text { component } \\ 0, & \text { for } 3^{\text {rd }} \text { component } \\ 3, & \text { for } 4^{\text {th }} \text { component }\end{cases}
$$

For odd $s \geq 3$ the color codes of $s P(4,2)$ are:

$$
c_{\Pi}\left(v_{2}^{t}\right)=\left\{\begin{array}{cl}
2 & , \text { for } 1^{\text {st }} \text { and } 4^{\text {th }} \text { component } \\
1 & \text { for } 2^{\text {nd }} \text { component } \\
0, & \text { for } 3^{\text {rd }} \text { component } \\
s+2, & \text { for } 5^{\text {th }} \text { component }
\end{array}\right.
$$

For even s the color codes of $s P(4,2)$ are:

$$
\begin{aligned}
& c_{\Pi}\left(u_{4}^{t}\right)= \begin{cases}1, & \text { for } 1^{\text {st }}, 2^{\text {nd }} \text { and } 4^{\text {th }} \text { component } \\
0, & \text { for } 3^{\text {rd }} \text { component } \\
s, & \text { for } 5^{\text {th }} \text { component }\end{cases} \\
& c_{\Pi}\left(v_{2}^{t}\right)=\left\{\begin{array}{cl}
1 & , \\
2, & \text { for } 1^{\text {st }} \text { component } \\
0, & \text { for } 3^{\text {rd }} \text { and } 4^{\text {th }} \text { component } \\
s+2, & \text { for } 5^{\text {th }} \text { component }
\end{array}\right. \\
& c_{\Pi}\left(v_{3}^{t}\right)=\left\{\begin{array}{cl}
2 & , \text { for } 1^{s t} \text { and } 4^{\text {th }} \text { component } \\
1, & \text { for } 2^{\text {nd }} \text { component } \\
0, & \text { for } 3^{\text {rd }} \text { component } \\
s+2, & \text { for } 5^{\text {th }} \text { component }
\end{array}\right.
\end{aligned}
$$

(d) $C_{4}=\left\{v_{3}^{t} \mid\right.$ for odd $\left.s\right\} \cup\left\{u_{1}^{t} \mid\right.$ for even $\left.s\right\} \cup\left\{v_{4}^{t} \mid\right.$ for odd $\left.s \geq 3\right\}$

For odd s the color codes of $s P(4,2)$ are:

$$
c_{\Pi}\left(v_{3}^{t}\right)=\left\{\begin{array}{cl}
2 & , \text { for } 1^{s t} \text { and } 2^{\text {nd }} \text { component } \\
1 & \text { for } 3^{r d} \text { component } \\
0, & \text { for } 4^{\text {th }} \text { component } \\
s+2, & \text { for } 5^{t h} \text { component }
\end{array}\right.
$$

For odd $s \geq 3$ the color codes of $s P(4,2)$ are:

$$
c_{\Pi}\left(v_{4}^{t}\right)=\left\{\begin{array}{cl}
2 & , \text { for } 1^{\text {st }} \text { component } \\
0, & \text { for } 2^{\text {nd }} \text { and } 3^{\text {rd }} \text { component } \\
s+1, & \text { for } 5^{\text {th }} \text { component } \\
s+1
\end{array}\right.
$$

For even s the color codes of $s P(4,2)$ are:

$$
c_{\Pi}\left(v_{4}^{t}\right)=\left\{\begin{array}{cl}
1, & \text { for } 1^{s t}, 2^{\text {nd }} \text { and } 3^{\text {rd }} \text { component } \\
0, & \text { for } 4^{\text {th }} \text { component } \\
s+1, & \text { for } 5^{t h} \text { component }
\end{array}\right.
$$

IOP Conf. Series: Journal of Physics: Conf. Series 1338 (2019) 012033 doi:10.1088/1742-6596/1338/1/012033
(e) $C_{5}=\left\{v_{4}^{1}\right\}$

$$
c_{\Pi}\left(v_{4}^{1}\right)= \begin{cases}2 & , \text { for } 1^{\text {st }} \text { component } \\ 1 & , \text { for } 2^{\text {nd }} \text { and } 3^{\text {rd }} \text { component } \\ 3 & , \text { for } 4^{\text {th }} \text { component } \\ 0 & , \text { for } 5^{\text {th } \text { component }}\end{cases}
$$

Since all the vertices have different color codes, c is a locating coloring of generalized Petersen graphs $s P(4,2)$, so $\chi_{L}(s P(4,2))=5$, for even $s \geq 2$.

In figure 1 is illustrated a locating coloring of generalized Petersen graphs $4 P(4,2)$ with the locating chromatic number 5 .

Figure 1. A minimum locating coloring of $4 P(4,2)$

3. Conclusion

Based on the results, locating chromatic number of generalized Petersen graph $s P(4,2)$ is 5 for $s \geq 2$.

References

[1] Chartrand G, Erwin D, Henning M, Slater P and Zhang P 2002 The locating-chromatic number of a graph Bull. Inst. Combin. Appl. 36 pp 89-101
[2] Chartrand G, Erwin D, Henning M, Slater P, and Zhang P 2003 Graph of order n with locatingchromatic number $n-1$ Discrete Math 269 1-3 pp 65-79
[3] Behtoei A and Omoomi B 2011 On the locating chromatic number of kneser graphs Discrete Applied Mathematics $\mathbf{1 5 9}$ pp 2214-2221
[4] Baskoro E T and Purwasih I 2012 The locating-chromatic number for corona product of graphs Southeast-Asian J. Of Sciences 1 pp 124-134
[5] Asmiati 2017 Locating chromatic number of banana tree International Mathematical Forum 12 (1) pp 39-45
[6] Asmiati, Assiyatun H and Baskoro E T 2011 Locating-chromatic number of amalgamation of stars ITB J.of Sci. 431 pp 1-8
[7] Asmiati, Baskoro E T, Assiyatun H, Suprijanto D, Simanjuntak R, and Uttunggadewa S 2012 The Locating-chromatic number of firecracker graphs Far East Journal of Mathematical Sciences 631 pp 11-23
[8] Syofyan D K, Baskoro E T, Assiyatun H 2013 The locating-chromatic number of homogeneous lobsters AKCE Int. J. Graphs Comb. 103 pp 215 - 252
[9] Asmiati 2014 The locating-chromatic number of non-homogeneous amalgamation of stars Far East Journal of Mathematical Sciences 931 pp 89 - 96
[10] Asmiati 2016 On the locating-chromatic numbers of non-homogeneous caterpillars and firecrackers graphs Far East Journal of Mathematical Sciences 1008 pp 1305-1316
[11] Asmiati, Wammiliana, Devriyadi and Yulianti L 2017 On some Petersen graphs having locating chromatic number four or five Far East Journal of Mathematical Sciences 1024 pp 769 778
[12] Watkins M E 1969 A theorem on tait colorings with application to the generalized Petersen graphs Journal of Combinatorial Theory 6 pp 152-164

