Variations of Graceful Labelling of Subgraph of Millipede Graph

D E Nurvazly ${ }^{1}$, S L Chasanah ${ }^{1}$ and A R Wiranto ${ }^{1}$
${ }^{1}$ Departement of Mathematics, Faculty of Mathematics and Natural Scineces, Universitas Lampung, Jl. Sumantri Brojonegoro no. 1, Bandar Lampung, Indonesia
a) dina.eka@fmipa.unila.ac.id
${ }^{\text {b) }}$ siti.chasanah@fmipa.unila.ac.id
${ }^{\text {c) }}$ ahmadrizkiwirantomath19@gmail.com

Abstract

In graph theory, there is the topics name by labelling. In 1967, Alex Rosa introduced the theory of labelling. Furthermore, Alex Rosa initiate the β-labelling known as the graceful labelling that Golomb introduced. There is various variations in graceful labelling, some of them are $\hat{\rho}$ labelling and odd-even graceful labelling. A Millipede graph $L_{n} \odot \bar{K}_{r}$ is a modification from ladder graph L_{n} by adding r number of path graph which has length 1 at each vertex of the ladder graph so that the result of the graph resembles a millipede. We show that the subgraph of the millipede graph that is $L_{2} \odot \bar{K}_{r}$ graph and $L_{3} \odot \bar{K}_{r}$ graph is graceful, have $\hat{\rho}$ labelling, and also an odd-even graceful graph.

INTRODUCTION

One of the topics in graph theory is labelling. Labelling is a valuation of a graph, that is a mapping of vertices, arcs, or even both (vertices and arcs) to positive integers. A Label is a positive integer that satisfy some properties based on the category of labelling which we considered [1]. According to Gallian in 2019, in these 50 years, there are more than 200 graph labeling types had studied in more than 3000 papers [2].

In 1967, Alex Rosa introduced the theory of labelling. He introduced the β-labelling subsequently known as the graceful labelling that Golomb introduced. The definition of graceful labelling is a mapping of its vertex f : $V(G) \rightarrow\{0,1, \ldots, n\}$ where n is a number of vertices and the created function is an injective, so each edge $p q \in E$ is labelled by $|f(p)-f(q)|$ so the value is distinct [3].

The variations of Graceful labelling have many various types. One of the variations of graceful labelling is $\hat{\rho}$ labelling. The definition of $\hat{\rho}$ labelling is a mapping of its vertex $f: V(G) \rightarrow\{0,1, \ldots, n+1\}$ where n is the number of edges that the function is injective with the result that its edge has a bijective function $f^{*}: V(E) \rightarrow\{1,2, \ldots, n\}$ or $f^{*}: V(E) \rightarrow\{1,2, \ldots, n-1, n+1\}$ so the edge $p q \in E$ and vertices $p, q \in V$ has $f^{*}=|f(p)-f(q)|[3]$.

Another types from graceful labelling is the odd-even graceful labelling. Sridevi, Navaneethakrishnan, Nagarajan and Nagarajanin in 2012 introduced the odd-even graceful labelling. The definition of odd-even graceful graph is if its graph has an odd-even graceful labelling. Odd-even graceful labelling is a mapping of its vertex $f: V(G) \rightarrow\{1,3,5, \ldots, 2 n+1\}$ where n is the number of its vertex, so that the function is injective which was the result of edge $p q \in E$ is defined by $|f(p)-f(q)|$, so that the the label of the edge is $\{2,4,6, \ldots, 2 n\}[4]$.

In 2012 Haryono constructed a millipede graph as a graph that has a modification from ladder graph L_{n} which was the result resembles a millipede [5]. A Millipede graph $L_{n} \odot \bar{K}_{r}$ is a modification from ladder graph L_{n} by adding r number of path graph which has length 1 at each vertex of the ladder graph so that the result of the graph resembles a millipede [6].

The studies in graceful labelling on the modification of ladder graph is graceful labelling on bat $B_{i}(n, r, s)$ graph [7], graceful labeling of some new graphs [8], and graceful labeling on a new family of graphs [9].

- Definition 1. Millipede graph $L_{n} \odot \bar{K}_{r}$ is a graph made from ladder graph L_{n} by adding r number of path graph which has length 1 at each vertex of the ladder graph.

MAIN RESULT

In this section, it would be shown that $L_{2} \odot \bar{K}_{r}$ and $L_{3} \odot \bar{K}_{r}$ graph had various types from graceful labelling, there is graceful labelling, $\hat{\rho}$ labelling, and odd-even graceful labelling.

- Theorem 1. An $L_{2} \odot \bar{K}_{r}$ is graceful.

Proof. Define the notation of vertices of $L_{2} \odot \bar{K}_{r}$ graph such that we could see in Figure 1 below.

FIGURE 1. Notation of vertices of $L_{2} \odot \bar{K}_{r}$ graph
From the notation in Figure 1, the set of vertices that we have is $V\left(L_{2} \odot \bar{K}_{r}\right)=$ $\left\{v_{1}, v_{2}, u_{1}, u_{2}, v_{1}^{1}, v_{1}^{2}, \ldots, v_{1}^{r}, v_{2}^{1}, v_{2}^{2}, \ldots, v_{2}^{r}, u_{1}^{1}, u_{1}^{2}, \ldots, u_{1}^{r}, u_{2}^{1}, u_{2}^{2}, \ldots, u_{2}^{r}\right\}$, and we have the set of edges $E\left(L_{2} \odot \bar{K}_{r}\right)=$ $\left\{v_{1} v_{1}^{1}, \ldots, v_{1} v_{1}^{r}, v_{2} v_{2}^{1}, \ldots, v_{2} v_{2}^{r}, u_{1} u_{1}^{1}, \ldots, u_{1} u_{1}^{r}, u_{2} u_{2}^{1}, \ldots, u_{2} u_{2}^{r}, v_{1} u_{1}, v_{1} v_{2}, v_{2} u_{2}, u_{1} u_{2}\right\}$. So that, we have the number of elements V and E were $4 r+4$, or $|V|=|E|=4 r+4$, where r was the number of path graph which has length 1 at each vertex of $L_{2} \odot \bar{K}_{r}$ graph.

Denote the function f for vertices of $L_{2} \odot \bar{K}_{r}$ graph as the function below:

$$
\begin{gather*}
f\left(v_{1}\right)=0 \tag{1}\\
f\left(v_{2}\right)=r+2 \tag{2}\\
f\left(u_{1}\right)=3 r+4 \tag{3}\\
f\left(u_{2}\right)=r+1 \tag{4}\\
f\left(v_{1}^{i}\right)=3 r+4+i ; i=1,2, \ldots, r \tag{5}\\
f\left(v_{2}^{i}\right)=r+3+i ; i=1,2, \ldots, r \tag{6}\\
f\left(u_{1}^{i}\right)= \tag{7}\\
f\left(u_{2}^{i}\right)= \tag{8}\\
2 r+1-i ; i=1,2, \ldots, r \\
\end{gather*}
$$

As we could see from each function f above, that give the label to each vertex, all vertices have different label and has a mapping to $\{0,1,2, \ldots,|E|\}$. The function f which is construct at equation (1) $-(8)$, are injective and has a mapping from V to $\{0,1,2, \ldots,|E|\}$. All edges $p q \in E$ have different value from f as $f^{\prime}(p q)=|f(p)-f(q)|$.

So, function f^{\prime} at each edge $L_{2} \odot \bar{K}_{r}$ graph could be defined as the function below:

$$
\begin{gather*}
f^{\prime}\left(v_{1} u_{1}\right)=|0-(3 r+4)|=3 r+4 \tag{9}\\
f^{\prime}\left(v_{1} v_{2}\right)=|0-(r+2)|=r+2 \tag{10}\\
f^{\prime}\left(u_{1} u_{2}\right)=|(3 r+4)-(r+1)|=2 r+3 \tag{11}\\
f^{\prime}\left(u_{2} v_{2}\right)=|(r+1)-(r+2)|=1 \tag{12}\\
f^{\prime}\left(v_{1} v_{1}^{i}\right)=|0-(3 r+4+i)|=3 r+4+i ; i=1,2, \ldots, r \tag{13}\\
f^{\prime}\left(v_{2} v_{2}^{i}\right)=\mid(r+2)-(r+3+i)=1+i ; i=1,2, \ldots, r \tag{14}
\end{gather*}
$$

$$
\begin{align*}
& f^{\prime}\left(u_{1} u_{1}^{i}\right)=|(3 r+4)-(r+1-i)|=2 r+3+i ; i=1,2, \ldots, r \tag{15}\\
& f^{\prime}\left(u_{2} u_{2}^{i}\right)=|(r+1)-(2 r+3+i)|=r+2+i ; i=1,2, \ldots, r \tag{16}
\end{align*}
$$

As we could see, the equation in (9)-(16) give each edge different label. The labels construct a set $\{0,1,2, \ldots,|E|\}$. So that, the function f and f^{\prime} have different label for all edges as well the labelling for each vertex set had different values in $\{0,1,2, \ldots,|E|\}$. In addition, we can assume that $L_{2} \odot \bar{K}_{r}$ graph was graceful.

The graph that shown in Figure 2 is one of graceful labelling of $L_{2} \odot \bar{K}_{2}$ graph.

FIGURE 2. Graceful labelling of $L_{2} \odot \bar{K}_{2}$ graph

- Theorem 2. An $L_{2} \odot \bar{K}_{r}$ graph has $\hat{\rho}$ labelling.

Proof. Define the notation of vertices of $L_{2} \odot \bar{K}_{r}$ graph as in Figure 1.
Thus $V\left(L_{2} \odot \bar{K}_{r}\right)=\left\{v_{1}, v_{2}, u_{1}, u_{2}, v_{1}^{1}, v_{1}^{2}, \ldots, v_{1}^{r}, v_{2}^{1}, v_{2}^{2}, \ldots, v_{2}^{r}, u_{1}^{1}, u_{1}^{2}, \ldots, u_{1}^{r}, u_{2}^{1}, u_{2}^{2}, \ldots, u_{2}^{r}\right\}$, and the set of edges $E\left(L_{2} \odot \bar{K}_{r}\right)=\left\{v_{1} v_{1}^{1}, \ldots, v_{1} v_{1}^{r}, v_{2} v_{2}^{1}, \ldots, v_{2} v_{2}^{r}, u_{1} u_{1}^{1}, \ldots, u_{1} u_{1}^{r}, u_{2} u_{2}^{1}, \ldots, u_{2} u_{2}^{r}, v_{1} u_{1}, v_{1} v_{2}, v_{2} u_{2}, u_{1} u_{2}\right\} \quad$ and $\quad|V|=$ $|E|=4 r+4$, where r was the number of path graph which has length 1 at each vertex of $L_{2} \odot \bar{K}_{r}$ graph.
Defined function f for vertices of $L_{2} \odot \bar{K}_{r}$ graph as the function below:

$$
\begin{gather*}
f\left(v_{1}\right)=1 \tag{17}\\
f\left(v_{2}\right)=r+3 \tag{18}\\
f\left(u_{1}\right)=3 r+5 \tag{19}\\
f\left(u_{2}\right)=r+2 \tag{20}\\
f\left(v_{1}^{i}\right)=3 r+5+i ; i=1,2, \ldots, r \tag{21}\\
f\left(v_{2}^{i}\right)=r+4+i ; i=1,2, \ldots, r \tag{22}\\
f\left(u_{1}^{i}\right)=r+2-i ; i=1,2, \ldots, r \tag{23}\\
f\left(u_{2}^{i}\right)= \tag{24}\\
2 r+4+i ; i=1,2, \ldots, r
\end{gather*}
$$

From the function f above that is construct by equation (17) - (24), we could see that all vertices have different label and have a mapping to a set $\{0,1,2, \ldots,|E|+1\}$. So that, the function f of equation (17) - (24) is injective that has a mapping from V to $\{0,1,2, \ldots,|E|+1\}$. All edges $p q \in E$ had different label, and the label from $f^{\prime}(p q)=$ $|f(p)-f(q)|$.

Function f^{\prime} at each edge $L_{2} \odot \bar{K}_{r}$ graph could be defined as the function below::

$$
\begin{align*}
& f^{\prime}\left(v_{1} u_{1}\right)=|1-(3 r+5)|=3 r+4 \tag{25}\\
& f^{\prime}\left(v_{1} v_{2}\right)=|1-(r+3)|=r+2 \tag{26}\\
& f^{\prime}\left(u_{1} u_{2}\right)=|(3 r+5)-(r+2)|=2 r+3 \tag{27}\\
& f^{\prime}\left(u_{2} v_{2}\right)=|(r+2)-(r+3)|=1 \tag{28}\\
& f^{\prime}\left(v_{1} v_{1}^{i}\right)=|1-(3 r+5+i)|=3 r+4+i ; i=1,2, \ldots, r \tag{29}\\
& f^{\prime}\left(v_{2} v_{2}^{i}\right)=\mid(r+3)-(r+4+i)=1+i ; i=1,2, \ldots, r \tag{30}\\
& f^{\prime}\left(u_{1} u_{1}^{i}\right)=|(3 r+5)-(r+2-i)|=2 r+3+i ; i=1,2, \ldots, r \tag{31}\\
& f^{\prime}\left(u_{2} u_{2}^{i}\right)=|(r+2)-(2 r+4+i)|=r+2+i ; i=1,2, \ldots, r \tag{32}
\end{align*}
$$

We could see that the label of each edge that construct in equation (25)-(32) have distinct value and have a mapping to $\{0,1,2, \ldots,|E|+1\}$. So that, the function f and the created function f^{\prime} have different values for each edge as well the label for vertices have different values and has a mapping to $\{0,1,2, \ldots,|E|+1\}$. So, we can concluded that $L_{2} \odot \bar{K}_{r}$ graph has $\hat{\rho}$ labelling.

In Figure 3 below there is one of $\hat{\rho}$ labelling of $L_{2} \odot \bar{K}_{3}$ graph.

FIGURE 3. $\hat{\rho}$ labelling of $L_{2} \odot \bar{K}_{3}$ graph

- Theorem 3. An $L_{2} \odot \bar{K}_{r}$ graph is an odd-even graceful graph.

Proof. Denote the vertices of $L_{2} \odot \bar{K}_{r}$ graph as in Figure 1.
From the notation in Figure 1, we have $V\left(L_{2} \odot \bar{K}_{r}\right)=$ $\left\{v_{1}, v_{2}, u_{1}, u_{2}, v_{1}^{1}, v_{1}^{2}, \ldots, v_{1}^{r}, v_{2}^{1}, v_{2}^{2}, \ldots, v_{2}^{r}, u_{1}^{1}, u_{1}^{2}, \ldots, u_{1}^{r}, u_{2}^{1}, u_{2}^{2}, \ldots, u_{2}^{r}\right\}$, and also we have the set of edges $E\left(L_{2} \odot \bar{K}_{r}\right)=\left\{v_{1} v_{1}^{1}, \ldots, v_{1} v_{1}^{r}, v_{2} v_{2}^{1}, \ldots, v_{2} v_{2}^{r}, u_{1} u_{1}^{1}, \ldots, u_{1} u_{1}^{r}, u_{2} u_{2}^{1}, \ldots, u_{2} u_{2}^{r}, v_{1} u_{1}, v_{1} v_{2}, v_{2} u_{2}, u_{1} u_{2}\right\} \quad$ thus $\quad|V|=$ $|E|=4 r+4$, where r was the number of path graph which has length 1 at each vertex of $L_{2} \odot \bar{K}_{r}$ graph. The labels of the vertices of $L_{2} \odot \bar{K}_{r}$ is defined by function f as the function below:

$$
\begin{align*}
& f\left(v_{1}\right)=1 \tag{33}\\
& f\left(v_{2}\right)=2 r+5 \tag{34}\\
& f\left(u_{1}\right)=6 r+9 \tag{35}\\
& f\left(u_{2}\right)=2 r+3 \tag{36}\\
& f\left(v_{1}^{i}\right)= 6 r+9+2 i ; i=1,2, \ldots, r \tag{37}\\
& f\left(v_{2}^{i}\right)= 2 r+7+2 i ; i=1,2, \ldots, r \tag{38}\\
& f\left(u_{1}^{i}\right)= 2 r+3-2 i ; i=1,2, \ldots, r \tag{39}\\
& f\left(u_{2}^{i}\right)= 4 r+7+2 i ; i=1,2, \ldots, r \tag{40}
\end{align*}
$$

By equation (33) - (40), we could see that the label for vertices has distinct value and has a mapping to $\{1,3,7, \ldots, 2|E|+1\}$. So that, the function f is injective and has a mapping from V to $\{1,3,7, \ldots, 2|E|+1\}$. Each edge in graph $G p q \in E$ has different value from function f by $f^{\prime}(p q)=|f(p)-f(q)|$.

So that, the function f^{\prime} that is the label at edges $L_{2} \odot \bar{K}_{r}$ graph could be defined as the function below:

$$
\begin{gather*}
f^{\prime}\left(v_{1} u_{1}\right)=|1-(6 r+9)|=6 r+8 \tag{41}\\
f^{\prime}\left(v_{1} v_{2}\right)=|1-(2 r+5)|=2 r+4 \tag{42}\\
f^{\prime}\left(u_{1} u_{2}\right)=|(6 r+9)-(2 r+3)|=4 r+6 \tag{43}\\
f^{\prime}\left(u_{2} v_{2}\right)=|(2 r+3)-(2 r+5)|=2 \tag{44}\\
f^{\prime}\left(v_{1} v_{1}^{i}\right)=|1-(6 r+9+2 i)|=6 r+8+2 i ; i=1,2, \ldots, r \tag{45}\\
f^{\prime}\left(v_{2} v_{2}^{i}\right)=\mid(2 r+5)-(2 r+7+2 i)=2+2 i ; i=1,2, \ldots, r \tag{46}\\
f^{\prime}\left(u_{1} u_{1}^{i}\right)=|(6 r+9)-(2 r+3-2 i)|=4 r+6+2 i ; i=1,2, \ldots, r \tag{47}
\end{gather*}
$$

$$
\begin{equation*}
f^{\prime}\left(u_{2} u_{2}^{i}\right)=|(2 r+3)-(4 r+7+2 i)|=2 r+4+2 i ; i=1,2, \ldots, r \tag{48}
\end{equation*}
$$

From function f^{\prime} that construct in equation (41)-(48), we could see all edges have different value and has a mapping to $\{2,4,6, \ldots, 2|E|\}$. We could see that the function f^{\prime} give different values at each edge and has a mapping to $\{2,4,6, \ldots, 2|E|\}$. So that, the function f and the created function f^{\prime} give different values for each edge as well the labels for each vertex had different values and has a mapping to $\{2,4,6, \ldots, 2|E|\}$. So, $L_{2} \odot \bar{K}_{r}$ graph is an odd-even graceful graph.

In Figure 4 we could see one of an odd-even graceful labelling of $L_{2} \odot \bar{K}_{3}$ graph.

FIGURE 4. Odd-even labelling of $L_{2} \odot \bar{K}_{3}$ graph

- Theorem 4. An $L_{3} \odot \bar{K}_{r}$ graph is graceful.

Proof. Define the notation of vertices of $L_{3} \odot \bar{K}_{r}$ graph as shown in Figure 5.

FIGURE 5. Notation of vertices of $L_{3} \odot \bar{K}_{r}$ graph
From the notation in Figure 5, we have the set of vertices $V\left(L_{3} \odot \bar{K}_{r}\right)=$ $\left\{v_{1}, v_{2}, v_{3}, u_{1}, u_{2}, u_{3}, v_{1}^{1}, v_{1}^{2}, \ldots, v_{1}^{r}, v_{2}^{1}, v_{2}^{2}, \ldots, v_{2}^{r}, v_{3}^{1}, v_{3}^{2}, \ldots, v_{3}^{r}, u_{1}^{1}, u_{1}^{2}, \ldots, u_{1}^{r}, u_{2}^{1}, u_{2}^{2}, \ldots, u_{3}^{r}, u_{3}^{1}, u_{3}^{2}, \ldots, u_{3}^{r}\right\}$, and the set of edges $E\left(L_{3} \odot \bar{K}_{r}\right)=\left\{\begin{array}{c}v_{1} v_{1}^{1}, \ldots, v_{1} v_{1}^{r}, v_{2} v_{2}^{1}, \ldots, v_{2} v_{2}^{r}, v_{3} v_{3}^{1}, \ldots, v_{3} v_{3}^{r}, u_{1} u_{1}^{1}, \ldots, u_{1} u_{1}^{r}, u_{2} u_{2}^{1}, \ldots, \\ u_{2} u_{2}^{r}, u_{3} u_{3}^{1}, \ldots, u_{3} u_{3}^{r}, v_{1} u_{1}, v_{1} v_{2}, v_{2} u_{2}, v_{2} v_{3}, v_{3} u_{3}, u_{1} u_{2}, u_{2} u_{3}\end{array}\right\}$. So the number elements of V and E is $6 r+6$ and $6 r+7$ or $|V|=6 r+6$ and $|E|=6 r+7$ and r is the number of path graph which has length 1 at each vertex of $L_{3} \odot \bar{K}_{r}$ graph.

Construct function f for each vertice of $L_{3} \odot \bar{K}_{r}$ graph as the function below:

$$
\left.\begin{array}{c}
f\left(v_{1}\right)=0 \\
f\left(v_{2}\right)=2 r+3 \\
f\left(v_{3}\right)=2 r+2 \\
f\left(u_{1}\right)=5 r+7 \\
f\left(u_{2}\right)=r+1 \\
f\left(u_{3}\right)=4 r+6 \\
f\left(v_{1}^{i}\right)=5 r+7+i ; i=1,2, \ldots, r \\
f\left(v_{2}^{i}\right)=3 r+5+i ; i=1,2, \ldots, r \\
f\left(v_{3}^{i}\right)=2 r+3+i ; i=1,2, \ldots, r \\
f\left(u_{1}^{i}\right)=r+1-i ; i=1,2, \ldots, r \\
f\left(u_{2}^{i}\right)=4 r+6+i ; i=1,2, \ldots, r \\
f\left(u_{3}^{i}\right)= \tag{60}
\end{array}\right) r+2-i ; i=1,2, \ldots, r .
$$

From function f that gives value to each vertex, each vertices have different label and has a mapping to $\{0,1,2, \ldots,|E|\}$. So, the function f that is construct by equation (49) - (60), is injective and has a mapping from V to $\{0,1,2, \ldots,|E|\}$. Edge $p q \in E$ have label from function f as $f^{\prime}(p q)=|f(p)-f(q)|$.

So that, the label f^{\prime} at edges $L_{3} \odot \bar{K}_{r}$ graph could be define as the function below:

$$
\begin{gather*}
f^{\prime}\left(v_{1} u_{1}\right)=|0-(5 r+7)|=5 r+7 \tag{61}\\
f^{\prime}\left(v_{1} v_{2}\right)=|0-(2 r+3)|=2 r+3 \tag{62}\\
f^{\prime}\left(v_{2} u_{2}\right)=|(2 r+3)-(r+1)|=r+2 \tag{63}\\
f^{\prime}\left(v_{2} v_{3}\right)=|(2 r+3)-(2 r+2)|=1 \tag{64}\\
f^{\prime}\left(v_{3} u_{3}\right)=|(2 r+2)-(4 r+6)|=2 r+4 \tag{65}\\
f^{\prime}\left(u_{1} u_{2}\right)=|(5 r+7)-(r+1)|=4 r+6 \tag{66}\\
f^{\prime}\left(u_{2} u_{3}\right)=|(r+1)-(4 r+6)|=3 r+5 \tag{67}\\
f^{\prime}\left(v_{1} v_{1}^{i}\right)=|0-(5 r+7+i)|=5 r+7+i ; i=1,2, \ldots, r \tag{68}\\
f^{\prime}\left(v_{2} v_{2}^{i}\right)=\mid(2 r+3)-(3 r+5+i)=r+2+i ; i=1,2, \ldots, r \tag{69}\\
f^{\prime}\left(v_{3} v_{3}^{i}\right)=\mid(2 r+2)-(2 r+3+i)=1+i ; i=1,2, \ldots, r \tag{70}\\
f^{\prime}\left(u_{1} u_{1}^{i}\right)=|(5 r+7)-(r+1-i)|=4 r+6+i ; i=1,2, \ldots, r \tag{71}\\
f^{\prime}\left(u_{2} u_{2}^{i}\right)=|(r+1)-(4 r+6+i)|=3 r+5+i ; i=1,2, \ldots, r \tag{72}\\
f^{\prime}\left(u_{3} u_{3}^{i}\right)=|(4 r+6)-(2 r+2-i)|=2 r+4+i ; i=1,2, \ldots, r \tag{73}
\end{gather*}
$$

By equation (61)-(73) we could see that the function have different value and has a mapping to $\{0,1,2, \ldots,|E|\}$. So, the function f and the created function f^{\prime} have different label for all edges as well the label for all vertices have different label and has a mapping to $\{0,1,2, \ldots,|E|\}$. So that, we can assume that $L_{3} \odot \bar{K}_{r}$ graph was graceful.

The graph in Figure 6 is one of graceful labelling of $L_{3} \odot \bar{K}_{1}$ graph.

FIGURE 6. Graceful labelling of $L_{3} \odot \bar{K}_{1}$ graph

- Theorem 5. An $L_{3} \odot \bar{K}_{r}$ graph has graceful labelling.

Proof. Define the notation of each vertex of $L_{3} \odot \bar{K}_{r}$ graph as shown in Figure 5
Thus $V\left(L_{3} \odot \bar{K}_{r}\right)=\left\{\begin{array}{c}v_{1}, v_{2}, v_{3}, u_{1}, u_{2}, u_{3}, v_{1}^{1}, v_{1}^{2}, \ldots, v_{1}^{r}, v_{2}^{1}, v_{2}^{2}, \ldots, v_{2}^{r}, \\ v_{3}^{1}, v_{3}^{2}, \ldots, v_{3}^{r}, u_{1}^{1}, u_{1}^{2}, \ldots, u_{1}^{r}, u_{2}^{1}, u_{2}^{2}, \ldots, u_{3}^{r}, u_{3}^{1}, u_{3}^{2}, \ldots, u_{3}^{r}\end{array}\right\}$, and the set of edges $E\left(L_{3} \odot \bar{K}_{r}\right)=$ $\left\{\begin{array}{c}v_{1} v_{1}^{1}, \ldots, v_{1} v_{1}^{r}, v_{2} v_{2}^{1}, \ldots, v_{2} v_{2}^{r}, v_{3} v_{3}^{1}, \ldots, v_{3} v_{3}^{r}, u_{1} u_{1}^{1}, \ldots, u_{1} u_{1}^{r}, u_{2} u_{2}^{1}, \\ \ldots, u_{2} u_{2}^{r}, u_{3} u_{3}^{1}, \ldots, u_{3} u_{3}^{r}, v_{1} u_{1}, v_{1} v_{2}, v_{2} u_{2}, v_{2} v_{3}, v_{3} u_{3}, u_{1} u_{2}, u_{2} u_{3}\end{array}\right\}$ and $|V|=6 r+6$ and $|E|=6 r+7$ where r was the number of path graph which has length 1 at each vertex of $L_{3} \odot \bar{K}_{r}$ graph.

Defined function f for vertices of $L_{3} \odot \bar{K}_{r}$ graph as follows:

$$
\begin{align*}
& f\left(v_{1}\right)=1 \tag{74}\\
& f\left(v_{2}\right)=2 r+4 \tag{75}\\
& f\left(v_{3}\right)=2 r+3 \tag{76}\\
& f\left(u_{1}\right)=5 r+8 \tag{77}\\
& f\left(u_{2}\right)=r+2 \tag{78}\\
& f\left(u_{3}\right)=4 r+7 \tag{79}\\
& f\left(v_{1}^{i}\right)=5 r+8+i ; i=1,2, \ldots, r \tag{80}\\
& f\left(v_{2}^{i}\right)=3 r+6+i ; i=1,2, \ldots, r \tag{81}\\
& f\left(v_{3}^{i}\right)=2 r+4+i ; i=1,2, \ldots, r \tag{82}\\
& f\left(u_{1}^{i}\right)=r+2-i ; i=1,2, \ldots, r \tag{83}\\
& f\left(u_{2}^{i}\right)=4 r+7+i ; i=1,2, \ldots, r \tag{84}\\
& f\left(u_{3}^{i}\right)=2 r+3-i ; i=1,2, \ldots, r \tag{85}
\end{align*}
$$

From function f that is defined in equation (74) - (85), we have all vertices had different label and construct a set $\{0,1,2, \ldots,|E|+1\}$. So, the function f is injective and has a mapping from V to $\{0,1,2, \ldots,|E|+1\}$. The value that we have for edge $p q \in E$ is from function f^{\prime} as $f^{\prime}(p q)=|f(p)-f(q)|$.

Function f^{\prime} at edges $L_{3} \odot \bar{K}_{r}$ graph could be defined as the function below:

$$
\begin{gather*}
f^{\prime}\left(v_{1} u_{1}\right)=|1-(5 r+8)|=5 r+7 \tag{86}\\
f^{\prime}\left(v_{1} v_{2}\right)=|1-(2 r+4)|=2 r+3 \tag{87}\\
f^{\prime}\left(v_{2} u_{2}\right)=|(2 r+4)-(r+2)|=r+2 \tag{88}\\
f^{\prime}\left(v_{2} v_{3}\right)=|(2 r+4)-(2 r+3)|=1 \tag{89}\\
f^{\prime}\left(v_{3} u_{3}\right)=|(2 r+3)-(4 r+7)|=2 r+4 \tag{90}\\
f^{\prime}\left(u_{1} u_{2}\right)=|(5 r+8)-(r+2)|=4 r+6 \tag{91}\\
f^{\prime}\left(u_{2} u_{3}\right)=|(r+2)-(4 r+7)|=3 r+5 \tag{92}\\
f^{\prime}\left(v_{1} v_{1}^{i}\right)=|1-(5 r+8+i)|=5 r+7+i ; i=1,2, \ldots, r \tag{93}\\
f^{\prime}\left(v_{2} v_{2}^{i}\right)=\mid(2 r+4)-(3 r+6+i)=r+2+i ; i=1,2, \ldots, r \tag{94}\\
f^{\prime}\left(v_{3} v_{3}^{i}\right)=\mid(2 r+3)-(2 r+4+i)=1+i ; i=1,2, \ldots, r \tag{95}\\
f^{\prime}\left(u_{1} u_{1}^{i}\right)=|(5 r+8)-(r+2-i)|=4 r+6+i ; i=1,2, \ldots, r \tag{96}\\
f^{\prime}\left(u_{2} u_{2}^{i}\right)=|(r+2)-(4 r+7+i)|=3 r+5+i ; i=1,2, \ldots, r \tag{97}\\
f^{\prime}\left(u_{3} u_{3}^{i}\right)=|(4 r+7)-(2 r+3-i)|=2 r+4+i ; i=1,2, \ldots, r \tag{98}
\end{gather*}
$$

From the function above, the label for each edge that construct by equation (86)-(98) are distinct and has a mapping to $\{0,1,2, \ldots,|E|+1\}$. So, the function f and f^{\prime} have different label for each edge as well the label for each vertex have different label and has a mapping to $\{0,1,2, \ldots,|E|+1\}$. So that, $L_{3} \odot \bar{K}_{r}$ graph has $\hat{\rho}$ labelling.

In Figure 7 there is one of $\hat{\rho}$ labelling of $L_{3} \odot \bar{K}_{2}$ graph.

FIGURE 7. $\hat{\rho}$ labelling of $L_{3} \odot \bar{K}_{2}$ graph

- Theorem 6. An $L_{3} \odot \bar{K}_{r}$ graph is an odd-even graceful graph.

Proof. Define the notation of vertices of $L_{3} \odot \bar{K}_{r}$ graph as shown in Figure 5.
From the notation in Figure 5, we have that $V\left(L_{3} \odot \bar{K}_{r}\right)=$ $\left\{\begin{array}{c}v_{1}, v_{2}, v_{3}, u_{1}, u_{2}, u_{3}, v_{1}^{1}, v_{1}^{2}, \ldots, v_{1}^{r}, v_{2}^{1}, v_{2}^{2}, \ldots, v_{2}^{r}, v_{3}^{1}, v_{3}^{2}, \ldots, v_{3}^{r}, u_{1}^{1}, \\ u_{1}^{2}, \ldots, u_{1}^{r}, u_{2}^{1}, u_{2}^{2}, \ldots, u_{3}^{r}, u_{3}^{1}, u_{3}^{2}, \ldots, u_{3}^{r}\end{array}, \quad\right.$ and $\quad E\left(L_{3} \odot \bar{K}_{r}\right)=$ $\left\{\begin{array}{c}v_{1} v_{1}^{1}, \ldots, v_{1} v_{1}^{r}, v_{2} v_{2}^{1}, \ldots, v_{2} v_{2}^{r}, v_{3} v_{3}^{1}, \ldots, v_{3} v_{3}^{r}, u_{1} u_{1}^{1}, \ldots, u_{1} u_{1}^{r}, u_{2} u_{2}^{1}, \ldots, \\ u_{2} u_{2}^{r}, u_{3} u_{3}^{1}, \ldots, u_{3} u_{3}^{r}, v_{1} u_{1}, v_{1} v_{2}, v_{2} u_{2}, v_{2} v_{3}, v_{3} u_{3}, u_{1} u_{2}, u_{2} u_{3}\end{array}\right\}$ so $|V|=6 r+6$ and $|E|=6 r+7$, where r was the number of path graph which has length 1 at each vertex of $L_{3} \odot \bar{K}_{r}$ graph.

Defined the function f that give labels to all vertices of $L_{3} \odot \bar{K}_{r}$ graph as the function below:

$$
\begin{align*}
& f\left(v_{1}\right)=1 \tag{99}\\
& f\left(v_{2}\right)=4 r+7 \tag{100}\\
& f\left(v_{3}\right)=4 r+5 \tag{101}\\
& f\left(u_{1}\right)=10 r+15 \tag{102}\\
& f\left(u_{2}\right)=2 r+3 \tag{103}\\
& f\left(u_{3}\right)=8 r+13 \tag{104}\\
& f\left(v_{1}^{i}\right)=10 r+15+2 i ; i=1,2, \ldots, r \tag{105}\\
& f\left(v_{2}^{i}\right)= 6 r+11+2 i ; i=1,2, \ldots, r \tag{106}\\
& f\left(v_{3}^{i}\right)= 4 r+7+2 i ; i=1,2, \ldots, r \tag{107}\\
& f\left(u_{1}^{i}\right)= 2 r+3-2 i ; i=1,2, \ldots, r \tag{108}\\
& f\left(u_{2}^{i}\right)= 8 r+13+2 i ; i=1,2, \ldots, r \tag{109}\\
& f\left(u_{3}^{i}\right)= 4 r+5-2 i ; i=1,2, \ldots, r \tag{110}
\end{align*}
$$

From the function f that is define at equation (99) - (110), each vertex have distinct label and has a mapping to $\{1,3,7, \ldots, 2|E|+1\}$. So, the function f is injective and has a mapping from V to $\{1,3,7, \ldots, 2|E|+1\}$. Each edge $p q \in E$ have different label by $f^{\prime}(p q)=|f(p)-f(q)|$.

So, the function f^{\prime} is the label at each edges $L_{3} \odot \bar{K}_{r}$ graph like the function below:

$$
\begin{align*}
& f^{\prime}\left(v_{1} u_{1}\right)=|1-(10 r+15)|=10 r+14 \tag{111}\\
& f^{\prime}\left(v_{1} v_{2}\right)=|1-(4 r+7)|=4 r+6 \tag{112}\\
& f^{\prime}\left(v_{2} u_{2}\right)=|(4 r+7)-(2 r+3)|=2 r+4 \tag{113}\\
& f^{\prime}\left(v_{2} v_{3}\right)=|(4 r+7)-(4 r+5)|=2 \tag{114}\\
& f^{\prime}\left(v_{3} u_{3}\right)=|(4 r+5)-(8 r+13)|=4 r+8 \tag{115}\\
& f^{\prime}\left(u_{1} u_{2}\right)=|(10 r+15)-(2 r+3)|=8 r+12 \tag{116}
\end{align*}
$$

$$
\begin{align*}
& f^{\prime}\left(u_{2} u_{3}\right)=|(2 r+3)-(8 r+13)|=6 r+10 \tag{117}\\
& f^{\prime}\left(v_{1} v_{1}^{i}\right)=|1-(10 r+15+2 i)|=10 r+14+2 i ; i=1,2, \ldots, r \tag{118}\\
& f^{\prime}\left(v_{2} v_{2}^{i}\right)=\mid(4 r+7)-(6 r+11+2 i)=2 r+4+2 i ; i=1,2, \ldots, r \tag{119}\\
& f^{\prime}\left(v_{3} v_{3}^{i}\right)=\mid(4 r+5)-(4 r+7+2 i)=2+2 i ; i=1,2, \ldots, r \tag{120}\\
& f^{\prime}\left(u_{1} u_{1}^{i}\right)=|(10 r+15)-(2 r+3-2 i)|=8 r+12+2 i ; i=1,2, \ldots, r \tag{121}\\
& f^{\prime}\left(u_{2} u_{2}^{i}\right)=|(2 r+3)-(8 r+13+2 i)|=6 r+10+2 i ; i=1,2, \ldots, r \tag{122}\\
& f^{\prime}\left(u_{3} u_{3}^{i}\right)=|(8 r+13)-(4 r+5-2 i)|=4 r+8+2 i ; i=1,2, \ldots, r \tag{123}
\end{align*}
$$

By equation (111)-(123), all edges have different value and has a mapping to $\{2,4,6, \ldots, 2|E|\}$. Function f^{\prime} have differentt values for each edge and has a mapping to $\{2,4,6, \ldots, 2|E|\}$. So, the value of f and f^{\prime} construct different label for each edge as well the label for each vertex have different label and has a mapping to $\{2,4,6, \ldots, 2|E|\}$. So that, $L_{3} \odot \bar{K}_{r}$ graph is an odd-even graceful graph.

In Figure 8 there is one of an odd-even graceful labelling of $L_{3} \odot \bar{K}_{2}$ graph.

FIGURE 8. Odd-even graceful labelling of $L_{3} \odot \bar{K}_{2}$ graph

CONCLUSION

$L_{2} \odot \bar{K}_{r}$ graph and $L_{3} \odot \bar{K}_{r}$ graph is graceful, have $\hat{\rho}$ labelling, and an odd-even graceful graph.

ACKNOWLEDGMENTS

The research was supported by Universitas Lampung with Penelitian Dosen Pemula (PDP) research grant scheme 2021 .

REFERENCES

1. Lopez, S.C. \& Muntaner-Batle, F.A., Graceful, Harmonious and Magic Type Labelings Relations and Techniques (Springer, Spain, 2016), pp. 15
2. Gallian, J.A., A Dynamic Survey of Graph Labeling. (The Electronic Journal of Combinatorics, \#DS6, 2019)
3. Gallian, J. A., A Dynamic Survey of Graph Labelling (The Electronic Journal of Combinatorics, \#DS6, 2017), pp. 5
4. Sridevi, R., S. Navaneethakrishnan, A. Nagarajan \& K. Nagarajan., Odd-Even Graceful Graphs, (J. Apl. Math. \& Informatics, 30, 2012) pp. 5-6.
5. Haryono, M., (Tesis: Pelabelan Jumlah Eksklusif pada Graf Tangga, Gabungan Graf Tangga, dan Graf Kaki Seribu. Tesis. Program Studi Magister Matematika FMIPA UI, Depok, 2012).
6. Sugeng, K.A., Slamet S., \& Silaban, D.R., (Teori Graf dan Aplikasinya, Departemen Matematika FMIPA Universitas Indonesia, Depok, 2014).
7. Handayani, A.D., \& Sugeng, K.A., Graceful Labeling on Bat Graph $B_{L} n, r, s$. , (Mathematics Education And Graph Theory Proceedings of International Seminar on Mathematics Education and Graph Theory, 2014), pp. 491-494.
8. Jesintha, J.J., Subashini, K., \& Beula J.R.R., Graceful Labeling of some New Graphs. (Bull. Pure Appl. Sci. Sect. E Math. Stat, 38E, 2019) pp. 60-64.
9. Jesintha, J.J., Subashini, K., \& Sabu A.M., Graceful Labeling on a New Family of Graphs, (Bull. Pure Appl. Sci. Sect. E Math. Stat, 38E, 2019) pp. 1-6.
