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Abstract. The Noetherian property of the generalized power series module can determine in 

several ways. This paper uses the sub-exact sequence of modules over a ring R to determine 

this property. This investigation not only determines the Noetherian property of the generalized 

power series module but also the Noetherian property of its submodule. Furthermore, we give a 

construction of R[[S]]-homomorphism between the generalized power series modules. 
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1. Introduction 

The exact sequence of modules is one of the essential concepts in module theory [1], [2]. In [3], 

Fitriani et al. introduced a sub-exact sequence of modules. This concept is motivated by the quasi 

exact sequence established by Davvaz and Parnian-Garamaleky [4]. Furthermore, they use this 

concept to generalize the generator of modules related to a family of modules over a ring R [5]. 

Moreover, using a generalization of a linearly independent set of modules [6], they obtained a basis 

and free modules related to a family of modules [7].  

 Given ring R, monoid (S, ≤) with a strictly ordered, and a monoid homomorphism  from S to 

End(R). In 2019, Faisol and Fitriani gave some conditions for skew GPSM to be a T[[S, ]]-

Noetherian module over a ring R[[S, ]] [8]. This sufficient condition is a generalization of the 

previous results [9], which were obtained by applying the properties in [10], generalizing the sufficient 

conditions in [11], and using the relations specified in [12].  

 Varadarajan [13] introduce the generalized power series module (GPSM). This module is a module 

over the generalized power series ring (we call it by GPSR), introduced by Ribenboim [14]. Moreover, 

the results of Ribenboim construction were generalized by Mazurek and Ziembowski [15] by utilizing 

the monoid homomorphism used in the convolution multiplication operation. In addition to 

constructing GPSM, Varadarajan [16] also provides necessary and sufficient conditions that GPSM is 

a Noetherian module. In this paper, we give a method to determine the Noetherian property of the 

generalized power series module. We use the concept of the sub-exact sequence to determine this 

property. In this way, we also can determine the Noetherian property of its submodules. Moreover, we 

give a construction of R[[S]]-homomrphism between the generalized power series modules. 
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2. The Main Results 

Let R be a commutative ring with 1R  R and S be a monoid with strictly ordered. Let N1, N2, and N3 

be three modules over ring R. The set Ni[[S]] consists of all function µ from S to Ni such that the 

support of f is Artinian and narrow (we denote support of f by supp(f), that is the set of s  S, where f 

(s) is not equal to 0), for i = 1, 2, 3. We can write the set as follow: 

Ni[[S]] = {µ : S  Ni | supp(µ) is Artinian and narrow}, 

i = 1, 2, 3.  

 Before we give a condition when a submodule L[[S]] of N2[[S]] is Noetherian R[[S]]-module, we 

recall that if L is a submodule of N, then L[[S]] is a submodule of N2[[S]] as a module over R[[S]]. Let 

L[[S]] = {µ  N2[[S]] | µ(s) L, for all s  S}. 

The set L[[S]] is a submodule of N2[[S]]. 

Let K, L, M be R-modules and X be R-submodules of L. Recall that the triple (K, L, M) is said to be 

X-sub-exact at L if there exist f and g such that the sequence 𝐾
𝑓
→𝑋

𝑔
→  𝑀 is exact. In the following 

proposition, we give a condition when a submodule L[[S]] of N2[[S]] is Noetherian. 

 

Proposition 1. Let R be a commutative ring with 1  R and (S, ) be a monoid with a strictly ordered. 

Let N1, N2, and N3 are R-modules, and L is a submodule of N2 over R.  
If the triple (N1[[S]], N2[[S]], N3[[S]]) is L[[S]]-sub-exact as an R[[S]]-module, N1[[S]] and N3[[S]] are 

Noetherian R[[S]]-modules, then L[[S]] is a Noetherian R[[S]]-module. 

 

Proof.    Since the triple (N1[[S]], N2[[S]], N3[[S]]) is L[[S]]-sub-exact, based on [3], we have the 

following sequence of a module over R[[S]] is exact. 

                                                    𝑁1[[𝑆]]⟶ 𝐿[[𝑆]] ⟶ 𝑁3[[𝑆]]                                                       (1) 

Since (1) is exact, there are R[[S]]-homomorphism f and g, where f is an R[[S]]-homomorphism from 

𝑁1[[𝑆]] to 𝐿[[𝑆]], g is an R[[S]]-homomorphism from 𝐿[[𝑆]] to 𝑁3[[𝑆]], and Im(f) = Ker(g). By 

hypothesis, N1[[S]] and N3[[S]] are Noetherian modules over R[[S]]. Hence based on [17], we have 

N[[S]] is a Noetherian as a module over R[[S]].        

 

Given three R-modules N1, N2, and N3. Fitriani et al. [3] construct a set  (N1, N2, N3) that consists of 

all submodules X of N2 such that the triple (N1, N2, N3) is an X-sub-exact at N2, i.e.: 

 (N1, N2, N3) ={X submodule of N2| (N1, N2, N3) is an X-sub exact at N2}. 

In this case, we construct the set  (N1[[S]], N2[[S]], N3[[S]]) that consist of all submodules X of 

N2[[S]] such that the triple of generalized power series modules (N1[[S]], N2[[S]], N3[[S]]) is an X-sub 

exact at N2[[S]], i.e.:  (N1 [[S]], N2 [[S]], N3 [[S]]) ={X ≤ N2 [[S]]| the triple (N1[[S]], N2[[S]], N3[[S]]) is 

an X-sub exact at N2[[S]]}. 

 

As a direct consequence of Proposition 1, we have the following result. 

Corollary 1. Let R be a commutative ring with 1  R and (S, ) be a monoid with strictly ordered. Let 

M1, M2, and M3 are modules over ring R. If N1[[S]] and N3[[S]] are Noetherian modules over R[[S]], 

then a submodule X of N2 is Noetherian, for every X   (N1[[S]], N2[[S]], N3[[S]]). 

Proof. Let X   (N1[[S]], N2[[S]], N3[[S]]). We have the following exact sequence of R[[S]]-modules: 

𝑁1[[𝑆]] ⟶ 𝑋 ⟶ 𝑁3[[𝑆]] 
From Proposition 1, we have X is Noether.               

 

 In [18], Ziembowski gives a construction of a homomorphism of skew GPSR. Based on his 

construction, we construct a homomorphism of generalized power series modules in the following 

proposition. 

 

Proposition 2. Given a commutative ring R with identity element 1. Given a monoid (S, ≤) with a 

strictly ordered, an endomorphism  of S such that for every subset Artinian and narrow T  S,  (T) 
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is Artinian, narrow, and h( -1(x)) = h(x), for every x is in S, and h is in R[[S]]. Let  be an R-

homomorphism from N2 to N3, where N2, N3 be R-modules. For µ  N2[[S]], we define: 

𝜙:𝑁2[[𝑆]] → 𝑁3[[𝑆]] 
      𝜇 ↦ 𝜇̅, 

where 

    𝜇̅(𝑥) = { ∘ 𝜇 ∘ 𝜔
−1(𝑥)

0

   ;  if 𝑥 ∈ 𝜔(𝑆),
;   otherwise.

  ……………………  (1) 

 

Then 𝜙 is an R[[S]]-homomorphism from 𝑁2[[𝑆]] to 𝑁3[[𝑆]].  
 

Proof. Since supp(𝜇̅)  𝜔(supp (𝜇)), we have 𝜇̅ ∈ 𝑁3[[𝑆]]. Now, we will show that 𝜙 is a R[[S]]-

homomorphism from 𝑁2[[𝑆]] to 𝑁3[[𝑆]]. 
a. Let 𝜇,   N2[[S]], and x  S. By (1), we have: 

 𝜇 + 𝛽̅̅ ̅̅ ̅̅ ̅(𝑥)  =   ∘ (𝜇 + 𝛽) ∘ 𝜔−1(𝑥) 
   =  ((𝜇 + 𝛽) ∘ 𝜔−1(𝑥)) 
              =  (𝜇(𝜔−1(𝑥)) + 𝛽(𝜔−1(𝑥)))  

              =  (𝜇(𝜔−1(𝑥))) + (𝛽(𝜔−1(𝑥))) 
              =  ∘ 𝜇 ∘ 𝜔−1(𝑥) +  ∘ 𝛽 ∘ 𝜔−1(𝑥) 
              = 𝜇̅(𝑥) + 𝛽̅(𝑥). 
 This equation implies that 𝜇 + 𝛽̅̅ ̅̅ ̅̅ ̅ = 𝜇̅ + 𝛽̅, and hence 𝜙(𝜇 + 𝛽) = 𝜙(𝜇) + 𝜙(𝛽), for every 𝜇,  

 N2[[S]]. 

b. Let 𝜇  N2[[S]], h  R[[S]], and x  S. By (1), we get: 

 ℎ𝜇̅̅̅̅ (𝑥)       =   ∘ (ℎ𝜇) ∘ 𝜔−1(𝑥) 

   =  ((ℎ𝜇)(𝜔−1(𝑥))) 

              =  (∑ ℎ(𝑠)𝑠+𝑡=𝜔−1(𝑥) 𝜇(𝑡))  

              = ∑ (ℎ(𝑠)𝜇(𝑡))𝑠+𝑡=𝜔−1(𝑥)  

              = ∑ ℎ(𝑠)(𝜇(𝑡))𝑠+𝑡=𝜔−1(𝑥)  

              = ∑ ℎ(𝜔−1(𝑢))(𝜇(𝜔−1(𝑣)))𝜔−1(𝑢)+𝜔−1(𝑣)=𝜔−1(𝑥)  ; 𝑠 = 𝜔−1(𝑢) dan 𝑡 = 𝜔−1(𝑣)  

              = ∑ ℎ(𝑢)(𝜇(𝜔−1(𝑣)))𝜔−1(𝑢)+𝜔−1(𝑣)=𝜔−1(𝑥)

𝜔−1(𝑢+𝑣)=𝜔−1(𝑥)
𝑢+𝑣=𝑥

 ; ℎ(𝜔−1(𝑢)) = ℎ(𝑢)  

              = ∑ ℎ(𝑢)( ∘ 𝜇 ∘ 𝜔−1)(𝑣)𝑢+𝑣=𝑥   

  

              = ∑ ℎ(𝑢)𝜇̅(𝑣)𝑢+𝑣=𝑥  

  

              = ℎ𝜇̅(𝑥). 
 Hence, for every 𝜇  N2[[S]], h  R[[S]], we have 𝜙(ℎ𝜇) = ℎ𝜇̅̅̅̅ = ℎ𝜇̅ = ℎ 𝜙(𝜇). 
 

From a-b, we can conclude that 𝜙 is an R[[S]]-homomorphism from 𝑁2[[𝑆]] to 𝑁3[[𝑆]].   

 

 Given an R-module M, we recall that a submodule N of M is a direct summand of M if there exists 

K ≤ M such that 𝑀 = 𝑁⊕𝐾, i.e., 𝑀 = 𝑁 + 𝐾, and 𝑁 ∩ 𝐾 = 0. In this case, every 𝑚 ∈ 𝑀 can be 

uniquely written as m = a + b, where a  N, and b  K [17]. Next, we will use the construction of 

R[[S]]-homomorphism in Proposition 2 to provide the Noetherian property of the GPSM. 

 

Proposition 3. Given a commutative ring R with 1  R and a monoid (S, ) with a strictly ordered. Let 

N1, N2, and N3 are R-modules, and L[[S]] is a direct summand of N2[[S]] as an R[[S]]-module. If 

(N1[[S]], N2[[S]], N3[[S]]) is L[[S]]-sub-exact as an R[[S]]-module, N1[[S]] and N3[[S]] are Noetherian 

R[[S]]-modules, then N2[[S]] is Noether. 
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Proof. By hypothesis (N1[[S]], N2[[S]], N3[[S]]) is L[[S]]-sub-exact as an R[[S]]-module. Since N1[[S]] 

and N3[[S]] are Noetherian R[[S]]-modules, based on Proposition 1, we get L[[S]] is Noether.  

Since L[[S]] is a direct summand, there exists a submodule K of N2[[S]] such that 𝑁2[[𝑆]] = 𝐿[[𝑆]] ⊕
𝐾. Then every 𝜇  M2[[S]] can uniquely write as 𝜇 = 𝜇′ + 𝜇′′  2, where 𝜇′  L[[S]], and 𝜇′′  K.  

Besides that, the triple (N1[[S]], N2[[S]], N3[[S]]) is L[[S]]-sub-exact implies that there are two R[[S]]-

homomorphisms f and g such that the following sequence is exact. 

𝑁1[[𝑆]]
𝑓
→ 𝐿[[𝑆]]

𝑔
→ 𝑁3[[𝑆]], 

i.e., Im(𝑓) = Ker(𝑔). 
Thus, we can define an R[[S]]-homomorphism  

𝑔′: 𝑁2[[𝑆]] → 𝑁3[[𝑆]],  

where 𝑔′ = {
𝑔(𝜇);
0      ;

if 𝜇 ∈ 𝐿[[𝑆]];

otherwise.
 

Hence, we get the following diagram of R[[S]]-module: 

 

 

 

 

 

 

 

 

Based on [3], the following sequence of R[[S]]-module is exact. 

𝑁1[[𝑆]]
𝑖∘𝑓
→ 𝑁2[[𝑆]]

𝑔′

→ 𝑁3[[𝑆]]. 
Since N1[[S]] and N3[[S]] are Noetherian, based on Proposition 1, 𝑁2[[𝑆]] is Noetherian.        

 

Conclusion 

Based on the results, we can conclude that we can use the concept of a sub-exact sequence of modules 

over R[[S]] to determine the Noetherian property of generalized power series modules. Besides that, 

we also can determine the Noetherian property of its submodule.  
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