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Abstract: In this present research, a spectroscopic method based on UV–Vis spectroscopy is utilized to
quantify the level of corn adulteration in peaberry ground roasted coffee by chemometrics. Peaberry
coffee with two types of bean processing of wet and dry-processed methods was used and inten-
tionally adulterated by corn with a 10–50% level of adulteration. UV–Vis spectral data are obtained
for aqueous samples in the range between 250 and 400 nm with a 1 nm interval. Three multivariate
regression methods, including partial least squares regression (PLSR), multiple linear regression
(MLR), and principal component regression (PCR), are used to predict the level of corn adulteration.
The result shows that all individual regression models using individual wet and dry samples are
better than that of global regression models using combined wet and dry samples. The best calibra-
tion model for individual wet and dry and combined samples is obtained for the PLSR model with a
coefficient of determination in the range of 0.83–0.93 and RMSE below 6% (w/w) for calibration and
validation. However, the error prediction in terms of RMSEP and bias were highly increased when
the individual regression model was used to predict the level of corn adulteration with differences
in the bean processing method. The obtained results demonstrate that the use of the global PLSR
model is better in predicting the level of corn adulteration. The error prediction for this global model
is acceptable with low RMSEP and bias for both individual and combined prediction samples. The
obtained RPDp and RERp in prediction for the global PLSR model are more than two and five for
individual and combined samples, respectively. The proposed method using UV–Vis spectroscopy
with a global PLSR model can be applied to quantify the level of corn adulteration in peaberry
ground roasted coffee with different bean processing methods.

Keywords: UV–Vis spectroscopy; peaberry coffee; individual model; global model; dry bean pro-
cessing; wet bean processing; adulteration; authentication; partial least squares regression; multiple
linear regression

1. Introduction

Specialty coffee is a premium product and, according to the Specialty Coffee Associa-
tion of Europe [1], “Specialty coffee is defined as a crafted quality coffee-based beverage,
which is judged by the consumer (in a limited marketplace at a given time) to have a unique
quality, a distinct taste and personality different from, and superior to, the common coffee
beverages offered. The beverage is based on beans that have been grown in an accurately
defined area, and which meet the highest standards for green coffee and its roasting, stor-
age, and brewing”. In Indonesia, specialty coffee can be Coffea liberica, Coffea arabica, or
Coffea canephora. In the market, three types of commercially traded specialty coffee are avail-
able: single-origin coffees (including Gayo coffee, Kalosi coffee, Mandailing coffee, Toraja
coffee, and Lampung coffee), digested animal coffees (including wild civet coffee, feeding
civet coffee, and bat coffee), and peaberry coffee (a single bean/monocotyledon) [2,3].
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Nowadays, the growth of specialty coffee consumption is faster than that of the
traditional one [2]. Mostly driven by economic motivation, food fraud, both in terms
of mislabeling and adulteration, is now increasing and becoming a serious problem in
specialty coffee trading. For example, it was reported that 42% of commercial civet coffee
was fake or adulterated with normal non-civet coffee [4]. For peaberry specialty coffee,
the adulteration frequently happens in the form of ground roasted coffee, since after
roasting and grinding, the discrimination of ground coffee made from peaberry and
traditional (normal) coffee is almost impossible with the conventional methods [5,6]. For
this reason, several sensitive emerging analytical methods to quantify adulterants in coffee
have been developed in the past ten years: high-performance liquid chromatography
(HPLC) [7], gas chromatography-mass spectrometry (GC-MS) [8], electrospray ionization
mass spectrometry (ESI-MS) [9], and real-time polymerase chain reaction (RT-PCR) [10].
However, these accurate methods are expensive in instrumentation and require a highly
trained person.

The spectroscopic-based method, using different electromagnetic regions along with
chemometrics, has been successfully applied for cereal adulteration quantification in
ground roasted coffee, both in single and multiple adulterants using near-infrared (NIR),
ultraviolet–visible (UV–Vis), mid-infrared, Raman, nuclear magnetic resonance (NMR),
and laser-induced breakdown spectroscopy (LIBS) [11–16]. Most of these methods are
less expensive in the device and faster in sample preparation (little or no need for sample
preparation). Some previous works have incorporated the variation of postharvest treat-
ments in coffee samples such as differences in coffee roasting (light, medium, and dark)
in the developed calibration model [17,18]. However, in the aforementioned studies, no
reported works included the influence of other important postharvest factors especially
the bean processing method in the developed calibration models. Previously, Suhandy and
Yulia [19] showed a significant influence of differences in the bean processing method (dry,
wet, and semi-dry) on the discrimination of Lampung robusta specialty ground roasted
coffee. For green bean coffee, Barrios-Rodríguez et al. [20] successfully demonstrated
the significant discrimination between the wet, dry, and semi-dry processing method of
Coffea arabica L. var. Colombia using infrared spectroscopy coupled with chemometrics.

In this study, corn was selected as an adulterant material due to its low cost and huge
availability in the Indonesian market. Additionally, corn is one of the most used diluents in
coffee adulteration as reported in several previous works [15,16,21–23]. Therefore, in this
present research, we evaluate a spectroscopic method based on UV–Vis spectroscopy and
chemometrics to quantify the corn adulteration in coffee involving two common types of
bean processing of wet and dry-processed methods. More specifically, the objective of this
study is to investigate a robust calibration model using three different linear regression
methods, including PLSR, MLR, and PCR, for the quantification of corn adulteration in
peaberry specialty coffee incorporated with different bean processing methods.

2. Materials and Methods
2.1. Peaberry Samples and Their Adulteration

Green bean peaberry coffee samples with two types of bean processing method (wet
and dry with about 1 kg each) were obtained from a certified coffee supplier located in
Garut, West Java province, Indonesia. The peaberry green bean samples are specialty
grade from mixed cultivars of Coffea arabica L. and its hybrid (mostly Sigarar utang, Lini S,
Ateng super, Catimor, and Typica) harvested in the year 2019 and originating from Cikuray,
Papandayan, and Kamojang mountainous coffee plantation in Garut, West Java province,
Indonesia (latitude and longitude coordinates 7◦19′22.4′′ S and 107◦51′37.9′′ E, respectively;
altitude, ±1600 m).

Before roasting by portable roaster (at 200 ◦C for 15 min), all beans were visually
inspected and showed no defective grains. After roasting, the unroasted and over-roasted
beans were removed carefully by hand. After grinding, particles of size 40 mesh (400 µm)
were obtained, which were used to perform all physicochemical analyzes.



Molecules 2021, 26, 6091 3 of 12

Corn with its low cost and huge availability in the Indonesian market was selected
as an adulterant. Corn samples were collected from a local farmer in Lampung province,
Indonesia. According to Sezer et al. [16], with modification, corn was roasted in two steps:
at 100 ◦C for 7 min and followed by 200 ◦C for 10 min, ground (Sayota home grinder), and
mechanically sieved through a U.S. mesh size 40 to obtain the same particle size for all
the samples (400 µm). The wet and dry-processed peaberry ground roasted coffees were
intentionally adulterated with the ground roasted corn in the range of 10–50% (w/w) with
an increment of 10% (w/w). This adulteration range was chosen according to several previ-
ous works [15,16]. It is also the most common adulteration level found in the Indonesian
markets [12].

Total 199 samples (1 g each) of adulterated peaberry dry and wet-processed coffees
were provided. They consisted of 20 samples for each level of corn adulteration, resulting
in a total of 100 samples for dry-processed peaberry coffees and 99 samples for wet-
processed peaberry coffees (19 samples were provided at a level of 40% for wet-processed
peaberry coffees). Figure 1 shows its visual appearance with 10–50% of corn adulteration
level before extraction with hot distilled water. The adulterated peaberry wet-processed
samples were darker than that of peaberry dry ones. However, it was visually difficult to
discriminate between the different levels of adulteration in both wet and dry adulterated
peaberry samples.
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Figure 1. The visual appearance of peaberry dry-processed (A) and wet-processed (B) coffee with
10–50% of corn adulteration.

2.2. Sample Extraction and UV–Vis Spectral Data Measurement

Coffee samples were extracted based on a standard procedure as reported by previous
studies [5,12]. Raw UV–Vis spectral data was obtained for aqueous samples in the range
between 250 and 400 nm with 1 nm interval using a UV–visible spectrometer (Genesys™
10S UV–Vis, Thermo Scientific, Waltham, MA, USA) in .csv format. After reformatting
into .xls, the raw spectral data were imported to the Unscrambler X ver. 10.4 (CAMO
Software AS, Oslo, Norway) for chemometrics analysis.

2.3. Chemometrics

Since there is no standard protocol for spectral pre-processing, a trial and error ap-
proach was adopted. Different spectral pre-preprocessing was available in the Unscrambler
X ver. 10.4 (CAMO Software AS, Oslo, Norway) to reduce or to remove the effect of several
different unwanted interfering phenomena such as particle size influence (baseline different
and light scattering), etc. As mentioned by Roger et al. [24] and Bian et al. [25], it is hard
to determine which pre-processing can successfully improve the given original spectral
data. For this reason, instead of selecting the best pre-processing, to optimize the effect of
spectral pre-processing, the combination of several spectral pre-processing methods is often
used [19]. To eliminate noise and systematic spectra variation, three consecutive spectral
pre-processing methods were found to be the best applied: moving averaging smoothing
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with 5 segments (MAS), standard normal variate (SNV), and Savitzky–Golay first deriva-
tive with 11 smoothing gaps and second-order polynomial (SG1d). MAS was widely used
to smooth the spectral data before applying various pre-processing methods [26]. SNV
was effective in normalizing the spectra for canceling the scattering effect, while SG1d
was used to correct the baseline effect [27,28]. Due to similarity in coffee species of both
samples of wet and dry-processed coffees, it was expected that the spectral difference
in peaberry coffee samples due to differences in the level of adulteration between wet
and dry-processed coffees was small. The SG1d spectral pre-processing was also used to
enhance these small spectral differences [26].

PCA (principal component analysis), which is widely used in analytical chemistry [18],
was used to study any possible clustering of adulterated peaberry samples according to
the differences in bean processing methods. The plot of the score and its corresponding
x-loadings from the first two principal components (PCs) was presented for raw and
preprocessed spectra.

Among numerous multivariate linear regression methods for quantification of adulter-
ation in coffee, the partial least squares regression (PLSR) is widely used. In this research,
we applied PLSR and compared it to other linear methods of multiple linear regression
(MLR) and principal component regression (PCR) to quantify the level of corn adulteration.
PLSR and PCR were developed using spectral data from 250 to 400 nm (number of vari-
ables = 161). In MLR, a selected few variables were obtained from a plot of x-loadings.
Wavelengths that were associated with the positive and negative peaks were used as input.
All regression models were validated by the full cross-validation method to optimize the
model parameters.

According to Costa et al. [29] and Macedo et al. [30], the samples were manually
selected and separated into two sets: a calibration and prediction set as presented in
Table 1. The procedure of this separation of the samples was as follows: order the samples
concerning the corn adulteration level (from minimum to maximum values); then, four
samples were selected every five samples for the calibration and the rest for prediction. By
doing this, as seen in Table 1, a more uniform selection of the calibration and prediction
sample sets could be obtained.

Table 1. Individual and global peaberry wet and dry-processed samples with 10–50% of corn
adulteration in calibration and prediction sets. The range, mean, and standard deviations were
expressed in % (w/w).

Individual Wet Samples Calibration Set Prediction Set

Number of samples 83 16
Range 10–50 10–50
Mean 29.88 30.00

Standard deviation (SD) 14.36 14.14

Individual Dry Samples

Number of samples 84 16
Range 10–50 10–50
Mean 30.00 30.00

Standard deviation (SD) 14.31 14.14

Global Samples

Number of samples 167 32
Range 10–50 10–50
Mean 29.94 30.00

Standard deviation (SD) 14.29 13.91

Table 2 shows the statistical parameters used to assess the quality of the calibration
model and evaluate the performance of its prediction [31,32]. For model evaluation, the
following statistical parameters were used, including the coefficient of determination of
calibration and cross-validation (R2

c and R2
cv), root means squared errors of calibration,
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and cross-validation (RMSEC and RMSECV), and the ratio of prediction to deviation in
cross-validation (RPDcv). Limit of detection (LOD) and limit of quantification (LOQ) were
also calculated according to Milani et al. [15] and Rambla-Alegre et al. [33].

Table 2. Statistical parameters and their equations were used to assess the calibration model and its
prediction performance.

Steps Parameters Equations 1 Accepted Values

Calibration R2
c and R2

cv 1− ∑n
i=1(yi−ŷi)

2

∑n
i=1(yi−yi)

2
Close to 1

RMSEC and
RMSECV

√
∑n

i=1(yi−ŷi)
2

n
As low as possible

RPDcv
SDcv

RMSCV More than 2
LOD 3σ

S As low as possible
LOQ 10σ

S As low as possible

Prediction RMSEP
√

∑n
i=1(yi−ŷi)

2

n
As low as possible

SEP
√
(RMSEP)2 − (bias)2 As low as possible

bias (y̌− y) Close to 0
RPDp

SDpred
RMSEP

More than 2
RERp

ymax−ymin
RMSEP More than 10

1 n—number of samples; yi—actual corn adulteration values; ŷi—predicted corn adulteration values; y̌i—mean
of predicted corn adulteration values; yi—mean of actual corn adulteration values; σ—standard deviation of
residual between actual and predicted corn adulteration values or SEC; S—the slope of the regression line.

In the prediction step, the performance of the regression model was evaluated using
the following statistical parameters: the coefficient of determination for prediction (R2

p),
standard error of prediction (SEP), bias, root mean square error of prediction (RMSEP),
RPD, and RER in prediction. The RPD is the ratio of the standard deviation of reference
data for the validation or prediction set to RMSECV or RMSEP and the RER is the ratio
between the difference of the maximum and minimum reference values for the data in the
prediction set to RMSEP [34].

2.4. Software

Chemometrics and spectral analysis were calculated using the Unscrambler X ver.
10.4 (CAMO Software AS, Oslo, Norway).

3. Results and Discussion
3.1. Spectral Data of Wet and Dry Peaberry Coffees with Different Levels of Corn Adulteration

Figure 2a shows the typical raw spectral data of adulterated peaberry wet and dry
coffees in the range between 250 and 400 nm. Our spectra were similar to the work reported
by Souto et al. [35]. The raw spectra were broad and overlapped; hence, it was hard to
differentiate between the wet and dry adulterated peaberry. A better visualization was
obtained using the preprocessed spectra as seen in Figure 2b. In general, the intensity of
absorbance in dry adulterated peaberry coffees was higher than that of the wet ones, and it
was in line with the previously reported work [19].

Several positive and negative peaks were observed clearly in the pre-processed spec-
tral data (MAS + SNV + SG1d). The highest positive peak at 270 nm of pre-processed
spectra was closely related to the C=O chromophore in caffeine molecules as reported by
some previous works [35,36], indicating the significant difference of the caffeine content
in adulterated wet and dry peaberry coffees. The negative peaks at 290 and 345 nm of
pre-processed spectra corresponded with the absorbance of chlorogenic acids (CGA) of raw
UV–Vis spectra in previous work [36]. Navarra et al. [37] reported a wavelength at 330 nm
for the CGA absorbance when ethanol was used as the solvent. Dankowska et al. [36]
reported a wavelength at 320 nm as one of the negative peaks found in the raw UV–Vis
spectral data of arabica and robusta coffee and its adulteration using water as a solvent.



Molecules 2021, 26, 6091 6 of 12

In this study, with water used as the solvent, the peak of CGA of pre-processed spectral
data was shifted to the longer wavelength at 345 nm. This shifting phenomenon was also
found by the previous work by Souto et al. [35], with water used as the solvent, they found
a wavelength shifting of CGA from 320 nm to 325 nm in raw UV–Vis spectral data.
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3.2. PCA Scores and Loadings

Figure 3a shows the scores of the first two principal components (PC1 and PC2) of
all coffee samples, including wet and dry with 10–50% of corn adulteration using raw
spectral data in the range between 250 and 400 nm. The explained variance obtained for
PC1 was high (PC1 = 99%). However, in terms of PC1, a good separation between the
adulterated peaberry wet and dry coffees could not be achieved. A better PCA score plot
was achieved using pre-processed spectral data in the range between 250 and 400 nm as
presented in Figure 3b. Along PC1, with a 94% explained variance, all of the adulterated
peaberry wet samples were plotted to the right of PC1 (PC1-positive), while most of the
adulterated peaberry dry samples were on the left of PC1 (PC1-negative). Figure 4 shows
the loadings plot of PC1 and PC2 using pre-processed spectral data. This plot shows
the contribution of PC1 and PC2 to the separation of the adulterated peaberry wet and
dry samples. In PC1 and PC2, the positive peaks with positive loading were observed at
wavelengths of 267 and 345 nm. These wavelengths could be related to the absorbance of
chlorogenic acids and trigonelline content in arabica coffee (CGA) [35], indicating that the
adulterated peaberry wet sample coffees contained high contents of these compounds. This
result was supported by previously reported work. Compared to the semi-dry method,
Duarte et al. [38] reported that the wet coffees processed method showed higher contents
of CGA and trigonelline due to a loss of other components with higher water solubility by
lixiviation and thermal degradation during the wet processing. Three peaks with negative
loadings were observed at wavelengths of 278, 290, and 328 nm. These wavelengths mainly
contributed to discriminate against the adulterated peaberry dry coffees. Souto et al. [35]
reported the maxima electronic absorption of trigonelline at 275 nm, caffeine at 280 nm,
and caffeic acid at 325 nm using raw UV–Vis spectra. However, the adulterated peaberry
dry coffees were mainly discriminated by the negative peak for PC1 at the wavelength
of 278 nm, indicating that the adulterated peaberry dry sample coffees contained high
contents of caffeine. It was supported by previous work [39]. It was reported that the
caffeine content in dry processing coffees was higher, since about 40% of caffeine was
removed with pulp during the wet processing [39]. These positive and negative peaks
obtained from PCA x-loadings of pre-processed spectral data at 267, 278, 290, 305, 328, and
345 nm were used as input variables for constructing the MLR model.
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3.3. Model Development for Quantification of Corn Adulteration

The correlation between pre-processed UV–Vis spectral data and the level of corn
adulteration was quantified by developing three types of multivariate regression, including
PLSR, MLR, and PCR using a calibration sample set and validated with a full-cross valida-
tion method. Three types of models were developed according to the range of samples: the
individual wet model, individual dry model, and global model. For the individual wet and
dry models, multivariate regression was developed using individual wet (n = 83) and dry
(n = 84) calibration samples, respectively. For the global model, the multivariate regression
was developed using a combined sample of wet and dry calibration samples (n = 167). The
results are presented in Table 3. In general, all developed regression models had a sufficient
and acceptable number of latent variables (LVs) ranging from four to nine. This met with
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the number of LVs not exceeding 15 as indicated by Bureau et al. [40]. A small difference
between the RMSEC and RMSECV was also observed for the PLSR and PCR model, indicat-
ing the optimal number of LVs could be obtained [40]. The best individual wet model was
obtained for the PLSR model using five LVs (explained 98% of the accumulated variance of
the spectrum data and 92% of the score data) with R2

c = 0.93, R2
cv = 0.89, RMSEC = 3.85%

(w/w), and RMSECV = 4.80% (w/w). For dry samples, the best individual dry model was
also obtained for the PLSR model using six LVs (explained 97% of the accumulated variance
of the spectrum data and 94% of the score data) with less accuracy than the individual
wet model. However, both individual wet and dry models was acceptable with an RPD
higher than two, indicating that PLS-DA models can be classified as excellent [41]. In a
previous study, Sezer et al. [16] reported a similar result for the quantification of Coffee
arabica adulteration with corn samples, employing laser-induced breakdown spectroscopy
(LIBS) and PLS regression with R2

cal = 0.995, R2
val = 0.990, RMSEC = 4.32% (w/w), and

RMSECV = 4.84% (w/w) being obtained. A better result was shown by Winkler-Moser
et al. [17] for predicting corn adulteration using NIR spectroscopy with a lower error both
in calibration and validation. They obtained a PLS model with R2

cal = 0.979, R2
val = 0.974,

RMSEC = 1.05% (w/w), and RMSECV = 1.17% (w/w).

Table 3. Model development results for adulteration quantification using partial least square regression (PLSR), multiple
linear regression (MLR), and principal component regression (PCR) with the individual and combined sample set using
pre-processed spectra (MAS + SNV + SG1d). The best model for each regression method is highlighted in bold. The RMSEC
and RMSECV were expressed in % (w/w).

Model Regression Method LVs R2
c R2

cv RMSEC RMSECV RPDcv

Individual wet model
PLSR 5 0.93 0.89 3.85 4.80 2.99
MLR 0.87 0.87 5.44 5.20 2.76
PCR 8 0.90 0.87 4.57 5.17 2.78

Individual dry model
PLSR 6 0.92 0.89 3.93 4.87 2.94
MLR 0.84 0.84 6.00 5.75 2.49
PCR 9 0.90 0.88 4.46 5.05 2.83

Global model
PLSR 8 0.88 0.83 4.93 5.86 2.44
MLR 0.63 0.63 8.87 8.68 1.65
PCR 9 0.72 0.69 7.52 8.02 1.78

It was noted that, compared to the global model, all developed individual regression
models using individual wet and dry samples had a better accuracy with a higher R2 and
lower error count (both in terms of RMSEC and RMSECV). The PLS model was created
to quantify both individual adulterant and global (combined) adulterants. The result
showed that the PLS model for the quantification of individual adulterants was better
than that of combined adulterants. According to Table 3, the PLSR model was superior
compared to other regression models for the individual wet, dry, and global regression
models. The RPD in cross-validation was more than two in all PLSR regression models
(RPD critical = 2.0 [31,32]). According to Kapper et al. [42], all developed PLSR models
showed a good accuracy with a high coefficient of determination between actual and
predicted corn adulteration (R2 ≥ 0.70) both in calibration and validation.

Figure 5 shows plots of the best PLSR calibration model for individual wet, dry, and
combined calibration samples. Visually, it can be noticed that the residuals of calibration
were randomly scattered closely to the regression line (bias was close to 0) for individual
and combined calibration samples. The SEC and slope for individual calibration wet
samples were 3.87% (w/w) and 0.93, resulting in an LOD and LOQ of 12.48% (w/w) and
41.61% (w/w), respectively. Similarly, the LOD and LOQ for individual calibration dry
samples were 12.88% (w/w) and 42.93% (w/w). For combined calibration samples, the LOD
and LOQ were 16.84% (w/w) and 56.14% (w/w). Compared to previous works, our result
was inferior. For example, Milani et al. [15] reported satisfactory LOD values of 0.31–0.86%
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using the NMR spectroscopy with a different roasting profile. Sezer et al. [16] reported a
quantitative approach using LIBS for coffee adulteration with different adulterants (corn,
wheat, and chickpea) and resulting in a promising result with an LOD below 0.6% being
obtained. The obtained LOD and LOQ using UV–Vis spectroscopy in this study were
in the range of 12.48–16.84% and 41.61–56.14%. In this present study, a calibration and
validation regression model was developed using corn adulterated samples in the range of
10–50% (w/w). However, the obtained LOD and LOQ in this study suggested we should
have extended the range of corn adulteration up to more than 50%. For this reason, it
needs an improvement for practical application. However, in Indonesia, the adulteration
of more than 50% of specialty coffee is commonly found for economically motivated
adulteration [12].
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3.4. Prediction Using Individual and Global PLSR Models

To evaluate the influence of bean processing on the performance of the developed
calibration model in prediction corn adulteration, the prediction was calculated on the
individual (n = 16 for both individual wet and dry samples) and combined prediction
sample sets (n = 32). The best individual and global PLSR models were used as the
input. The results are presented in Table 4. The individual wet PLSR model resulted in
a high RPD (RPDp = 3.96) when it was used to predict corn adulteration in individual
wet samples. However, this model failed to predict corn adulteration in individual dry
samples resulting in low RPDp (the RPD was less than one). The error prediction in
terms of RMSEP and bias was highly increased. A similar result was found for prediction
using the individual dry PLSR model. The individual dry PLSR model showed a good
prediction with RPDp = 3.33 for the prediction of dry samples and a failed prediction with
RPDp = 0.28 for the prediction of wet samples. The use of the global PLSR model was
promising. The error prediction for this global model was acceptable with low RMSEP and
bias for both individual and combined prediction samples. The RPDp was higher than two
for both individual predictions of wet and dry samples and combined samples. According
to Chang et al. [43] and Valinger et al. [44] models with RPD > 2.0 are excellent descriptions
and predictions of experimental data. In terms of RER, a global PLSR with RER in the
range of 3 to 10, for both individual and combined prediction samples, is classified as a
good practical utility model according to Jia et al. [45].
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Table 4. Prediction results for individual and combined prediction samples using the best individual and global PLSR
models. The SEP, RMSEP, and bias were expressed in % (w/w).

Individual Wet PLSR Model SEP RMSEP Bias RPDp RERp

Wet prediction samples 3.64 3.57 0.56 3.96 11.20
Dry prediction samples 11.43 45.59 −44.22 0.31 0.88

Combined prediction samples 24.23 32.33 −21.83 0.43 1.24

Individual Dry PLSR Model SEP RMSEP Bias RPDp RERp

Wet prediction samples 9.61 50.96 50.10 0.28 0.78
Dry prediction samples 4.36 4.24 0.36 3.33 9.43

Combined prediction samples 26.31 36.16 25.23 0.38 1.11

Global PLSR Model SEP RMSEP Bias RPDp RERp

Wet prediction samples 6.35 6.16 0.32 2.30 6.49
Dry prediction samples 5.48 5.38 0.94 2.63 7.43

Combined prediction samples 5.84 5.78 0.63 2.41 6.92

4. Conclusions

This research described the use of UV–Vis spectroscopy along with chemometrics
to quantify the level of corn adulteration in peaberry specialty coffee with different bean
processing methods. The proposed UV–Vis spectroscopy and global PLSR model detected
an admixture of corn in the peaberry ground roasted coffee in the range of 10% to 50%
with LOD values of 12.48–16.84% being reported for individual and combined samples.
The reliability of the global PLSR model was confirmed by external validation using both
individual (wet and dry) and combined prediction samples, indicating the great potential
of UV–Vis spectroscopy and chemometrics as a green and low-cost analytical method for
the authentication of peaberry specialty ground roasted coffee incorporated with different
in bean processing methods.
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