Tema: Kelapa Sawit

# LAPORAN AKHIR PENELITIAN STRATEGIS NASIONAL MASTERPLAN PERCEPATAN DAN PERLUASAN PEMBANGUNAN EKONOMI INDONESIA 2011 – 2025 (PENTRANAS MP3EI 2011 - 2025)

Program: 2012

#### TEMA KORIDOR:

## SENTRA PRODUKSI DAN PENGOLAHAN HASIL BUMI DAN LUMBUNG ENERGI NASIONAL

#### **JUDUL**

INOVASI PENGEMBANGAN AGROINDUSTRI KELAPA SAWIT DALAM RANGKA OPTIMASI NILAI TAMBAH

> Dr. Ir. Agus Haryanto, M.P Dr. Ir. Udin Hasanudin, M.T Ir. Ribut Sugiharto, M.Sc

UNIVERSITAS LAMPUNG

**TAHUN 2012** 

#### B. Halaman Pengesahan

1. Judul : INOVASI PENGEMBANGAN AGROINDUSTRI

KELAPA SAWIT DALAM RANGKA OPTIMASI

**NILAI TAMBAH** 

2. Tema : SENTRA PRODUKSI DAN PENGOLAHAN HASIL BUMI

DAN LUMBUNG ENERGI NASIONAL

3. Ketua Tim

a. Nama Lengkap

: Dr. Ir. Agus Haryanto, M.P.

b. Jenis Kelamin

: L/P

c. NIP/NIDN

: 196505271993031002/0027056503

d. Jabatan Struktural

e. Jabatan fungsional : Lektor

f. Perguruan Tinggi : Universitas Lampung

g. Fakultas/Jurusan

: Pertanian

h. Pusat Penelitian

: LP Universitas Lampung

i. Alamat

: Jl. Sumantri Brojonegoro No. 1, Bandar Lampung

j. Telpon/Faks

: 0721-781823/0721-700682

k. Alamat Rumah

: Jl. Cendana, No. 199, Bataranila, Bandar Lampung-34144

1. Telpon/Faks/E-mail: 0721-773461

4. Waktu

: 2012-2014 (3 tahun)

5. Pembiayaan

Tahun I

: Rp 147.500.000,00

Tahun II

: Rp 200.000.000,00

Tahun II

: Rp 200.000.000,00

Jumlah yang diajukan : Rp 547.500.000,00 (lima ratus empat puluh tujuh juta lima

ratus ribu rupiah)

Mengetahu

Ketua Lembaga Penelitian/LPPM

Bandar Lampung, 20 November 2012

Ketua Tim,

Dr. Eng. Admi Syarif

NIP.196703011992031003

Dr. Ir. Agus Haryanto, M.P.

NIP. 196505271993031002

Menyetujui,

Rektor Universitas Lampung

Prof. Dr. Ir. Sugeng P. Harianto, M.S.

NIP.195809231982111001

#### C. Sistematika Laporan

#### **Identitas**

- 1. Judul Usulan: INOVASI PENGEMBANGAN AGROINDUSTRI KELAPA SAWIT DALAM RANGKA OPTIMASI NILAI TAMBAH
- 2. Ketua Tim
  - (a) Nama lengkap : Dr. Agus Haryanto, M.P.
  - (b) Bidang keahlian : Teknologi Pengolahan Hasil Pertanian
- 3. Anggota

| No. | Nama dan Gelar              | Keahlian         | Institusi   | Curahan<br>Waktu<br>(jam/minggu) |
|-----|-----------------------------|------------------|-------------|----------------------------------|
| 1   | Dr. Ir. Udin Hasanudin, M.T | Teknologi        | Universitas | 12                               |
|     |                             | Pengolahan Hasil | Lampung     |                                  |
|     |                             | Pertanian        |             |                                  |
| 2   | Ir. Ribut Sugiharto, M.Sc.  | Teknologi        | Universitas | 12                               |
|     |                             | Pengolahan Hasil | Lampung     |                                  |
|     |                             | Pertanian        |             |                                  |

- 4. Strategis Utama (terkait dengan MP3EI): Penguatan Kemampuan SDM dan IPTEK
  Nasional
- 5. Topik (terkait kegiatan ekonomi utama dalam MP3EI) : Kelapa Sawit
- 6. Objek : Agroindustri berbasis kelapa sawit
- 7. Lokasi: Sumatera
- 8. Hasil yang ditargetkan (beri penjelasan):
  - Diperoleh pola pemanfaatan kelapa sawit yang didasarkan pada inovasi teknologi dalam rangka peningkatan produktivitas dan efisiensi pemanfaatan sumber daya alam (biomass), serta dapat menjamin keberlanjutan agroindustri kelapa sawit di Sumatera.
  - Terbentuknya jaringan kerjasama antara peneliti dengan industri kelapa sawit di Pulau Sumatera khususnya.
  - Pilot plant zero waste produksi kelapa sawit
  - Roadmap pengembangan kelapa sawit di pulau Sumatera dalam mendukung program Percepatan dan Perluasan Pembangunan Ekonomi Indonesia tahun 2011- 2025.

#### **ABSTRAK**

Pemetaaan tentang potensi agroindustri kelapa sawit dilihat dari sisi efisiensi pemanfaatan sumber daya alam (biomas), penguasaan teknologi dari hulu sampai hilir, dan sebaran sumber daya manusia ahli di bidang tersebut sangat diperlukan dalam rangka merumuskan kebijakan secara komprehensif untuk mencari terobosan baru/inovasi dalam pengembangan agroindustri kelapa sawit di Sumatera. Diharapkan langkah strategis ini dapat meningkatkan nilai tambah yang dapat dihasilkan oleh petani dan agroindustri kelapa sawit.

Tujuan program ini adalah untuk: (1) Mengkaji efisiensi agro industri kelapa sawit dalam pemanfaatan sumber daya alam (biomass), (2) Mengidentifikasi peluang serta strategi untuk memanfaatkan hasil samping dan limbah pengolahan kelapa sawit dalam rangka peningkatan nilai tambah dan meminimalkan dampak lingkungan termasuk mengurangi emisi GRK, (3) Mengidentifikasi peluang serta strategi pengembangan produk hilir berbasis kelapa sawit, (4) Membuat model zero waste pada produksi kelapa sawit, (5) Melakukan simulasi untuk memperoleh pola produksi kelapa sawit yang optimum, (6) Melakukan verifikasi lapangan pola produksi kelapa sawit yang optimum dengan skala pilot.

Metode penelitian yang akan dilakukan dalam penelitian ini meliputi studi literatur, dan survey lapangan. Pengumpulan data dilakukan dari sumber-sumber publikasi legal yang bisa dipertanggungjawabkan serta kunjungan lapang dan diskusi dengan praktisi dan ahli di bidang kelapa sawit. Penyusunan strategi pengembangan dilakukan melalui focus groups discussion dengan para pemangku kepentingan. Pada tahun kedua difokuskan untuk menghitung manfaat aplikasi teknologi zero emission pada industri kelapa sawit, baik manfaat ekonomi, manfaat sosial, dan manfaat lingkungan. Pada tahun ketiga direncanakan ada kerjasama dengan industri kelapa sawit untuk menerapkan metode zero emission skala pilot.

Hasil penelitian menunjukkan bahwa dari model zero emission pada produksi kelapa sawit, dapat diidentifikasi peluang serta strategi memanfaatkan hasil samping dan limbah kelapa sawit. Observasi lapangan membuktikan bahwa limbah padat kelapa sawit, selain digunakan sebagai sumber bahan bakar untuk pembangkit listrik guna keperluan pengolahan sawit, juga dapat diolah menjadi kompos yang dikembalikan ke lahan sebagai sumber hara. Air limbah kelapa sawit (POME) yang selama ini digunakan untuk land application, ternyata dapat diproses untuk menghasilkan biogas terlebih dahulu. Biogas yang dihasilkan dapat digunakan sebagai sumber bahan bakar. Sedangkan effluent dapat digunakan untuk land application. Jika dilakukan, praktek ini akan dapat mengurangi emisi GRK secara signifikan sebagai akibat dari penangkapan gas metan dan pengurangan konsumsi pupuk kimia. Selain itu, limbah cair kelapa sawit ternyata dapat digunakan untuk budidaya algae dengan nilai tambah ekonomi yang sangat prospektif.

#### **BAB I. PENDAHULUAN**

#### 1.1. Latar Belakang

Kelapa sawit sebagai tanaman penghasil minyak sawit dan inti sawit merupakan salah satu primadona tanaman perkebunan yang menjadi sumber penghasil devisa non migas bagi Indonesia. Perkembangan industri kelapa sawit di Indonesia yang begitu cepat sangat dipengaruhi oleh permintaan dunia yang sangat besar akan produk-produk kelapa sawit khususnya untuk keperluan pangan (minyak dan lemak).

Perkembangan kelapa sawit dimulai dari pulau Sumatera, kemudian tersebar ke Kalimantan, Sulawesi, dan Papua. Di Sumatera, kegiatan ekonomi utama kelapa sawit memberikan kontribusi ekonomi yang besar. Dimana 70 persen lahan penghasil kelapa sawit di Indonesia berada di Sumatera dan membuka lapangan pekerjaan yang luas. Sekitar 42 persen lahan kelapa sawit dimiliki oleh petani kecil. Perkembangan industri kelapa sawit sangat berperan besar dalam pertumbuhan daerah-daerah terpencil dan telah meningkatkan standar hidup penduduk pedesaan.

Kelapa sawit adalah sumber minyak nabati terbesar yang dibutuhkan oleh banyak industri di dunia. Permintaan kelapa sawit dunia terus mengalami pertumbuhan sebesar 5 persen per tahun. Indonesia memproduksi sekitar 43 persen dari total produksi minyak mentah sawit (Crude Palm Oil/CPO) di dunia, dengan pertumbuhan produksi kelapa sawit di Indonesia yang sebesar 7,8 persen per tahun.

Disamping pertumbuhan produksi kelapa sawit Indonesia yang cukup tinggi, industri kelapa sawit Indonesia masih menghadapi banyak kedala yang menyebabkan produktivitas masih relatif rendah dan kapasitas industri pengolahan lanjut dalam mata rantai industri kelapa sawit, yang meliputi penyulingan, fraksinasi, oleo kimia, dan biodiesel,masih kurang memadai. Produktivitas kebun kelapa sawit di Indonesia saat ini hanya sekitar 3,8 ton minyak/ha per tahun, padahal potensinya bias mencapai 7 ton/ha per tahun. Saat ini beberapa upaya telah dilakukan untuk meningkatkan produktivitas tersebut, antara lain melalui peningkatan penggunaan pupuk organik/kompos tandan kosong kelapa sawit. Upaya ini mempunyai prospek yang baik tetapi belum ada data hasil penelitian yang akurat. Evaluasi terhadap peningkatan produktivitas dan aspek keberlanjutannya juga perlu dilakukan.

Selain itu, saat ini industri kelapa sawit di Indonesia masih bertumpu pada menghasilkan produk utama berupa CPO. Pengembangan produk turunan CPO masih terkendala pada berbagai aspek; teknologi, ekonomi, dan pasar.

Pemanfaatkan limbah atau hasil samping agroindustri kelapa sawit sampai saat ini juga belum optimal. Potensi energi dari air limbah sampai saat ini belum dimanfaatkan, padahal selain dapat menghasilkan energi terbarukan juga dapat mengurangi emisi gas rumah kaca (GRK) yang menjadi salah satu titik lemah agroindustri kelapa sawit di dunia international, khususnya Eropa, Amerika, Jepang, dan Australia.

Pemetaaan tentang potensi agroindustri kelapa sawit dilihat dari sisi efisiensi pemanfaatan sumber daya alam (biomas), penguasaan teknologi dari hulu sampai hilir, dan sebaran sumber daya manusia ahli di bidang tersebut sangat diperlukan dalam rangka merumuskan kebijakan secara komprehensif untuk mencari terobosan baru/inovasi dalam pengembangan agroindustri kelapa sawit di Sumatera. Diharapkan langkah strategis ini dapat meningkatkan nilai tambah yang dapat dihasilkan oleh petani dan agroindustri kelapa sawit.

#### 1.2. Tujuan Khusus

- a. Mengkaji efisiensi agro industri kelapa sawit dalam pemanfaatan sumber daya alam (biomass).
- b. Mengidentifikasi peluang serta strategi untuk memanfaatkan hasil samping dan limbah pengolahan kelapa sawit dalam rangka peningkatan nilai tambah dan meminimalkan dampak lingkungan termasuk mengurangi emisi GRK.
- c. Mengidentifikasi peluang serta strategi pengembangan produk hilir berbasis kelapa sawit.

#### 1.3. Urgensi/Keutamaan Penelitian

Peningkatan produktivitas kebun merupakan salah satu faktor kunci dalam peningkatan nilai tambah agroindustri kelapa sawit. Pengembalian biomass ke lahan perkebunan sangat diperlukan dalam rangka menjamin keberlanjutan produksi kelapa sawit di perkebunan. Peningkatan effisiensi pemanfaatan sumber daya alam (biomass), dalam hal ini tandan buah segar kelapa sawit, sangat penting dalam rangka meningkatkan nilai tambah yang dapat dihasilkan dari pengolahan kelapa sawit. Pemanfaatan hasil samping dan limbah pengolahan

kelapa sawit sangat penting dalam rangka peningkatan nilai tambah dan meminimalkan dampak lingkungan termasuk mengurangi emisi GRK. Pengembangan produk hilir juga sangat diperlukan dalam rangka menjamin kemandirian bangsa dalam pemenuhan produk-produk konsumsi berbasis kelapa sawit serta mendapatkan nilai tambah dan menciptakan lapangan kerja baru.

#### BAB II. STUDI PUSTAKA

#### 2.1. Perkembangan Kelapa Sawit

Kelapa sawit merupakan salah satu tanaman perkebunan yang berperan penting bagi sub sektor perkebunan di Indonesia. Industri sawit berkembang pesat dengan dukungan pertumbuhan perkebunan yang sangat pesat pula hingga mencapai lebih dari 6,3 juta hektar yang terdiri dari sekitar 60% yang diusahakan oleh perkebunan besar dan 40% oleh perkebunan rakyat. Pertumbuhan pesat juga terjadi pada ke dua jenis pengusahaan yaitu perkebunan besar dan perkebunan rakyat. Sampai dengan tahun 2007 tercatat 965 perusahaan dengan luas perkebunan 3,753 juta hektar yang dimiliki oleh perkebunan negara swasta nasional dan asing, sementara perkebunan rakyat telah mencapai 2,565 juta hektar, seperti yang terlihat pada tabel 1 di bawah. Pengembangan komoditas kelapa sawit telah membuka kesempatan bagi petani untuk lebih meningkatkan pendapatannya serta menciptakan lapangan kerja baru.

Tabel 1. Luas areal perkebunan (Ha) berdasarkan kepemilikan

| Tahun | Rakyat    | Negara  | Swasta    | Total     |
|-------|-----------|---------|-----------|-----------|
| 2005  | 2.356.895 | 529.854 | 2.567.068 | 5.453.817 |
| 2006  | 2.549.572 | 687.428 | 3.357.914 | 6.594.914 |
| 2007  | 2.565.135 | 687.847 | 3.358.632 | 6.611.614 |
| 2008* | 2.565.172 | 687.847 | 3.358.792 | 6.811.811 |
| 2009* | 3.300.481 | 760.010 | 3.064.840 | 7.125.331 |

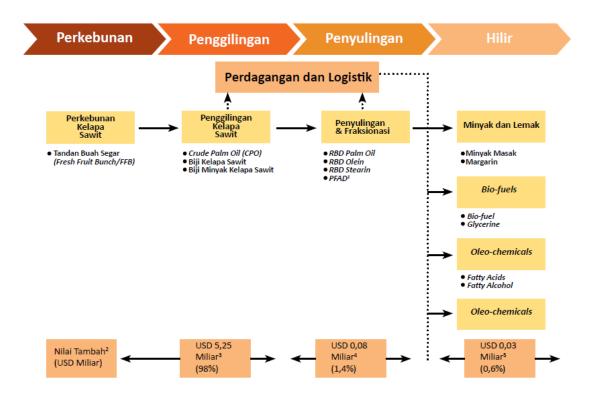
Ket.: \* estimasi . Sumber : Ditjenbun, 2008

Peningkatan pengusahaan komoditas kelapa sawit oleh petani merupakan suatu perkembangan yang luar biasa mengingat pada awal pengenalannya hanya seluas 3.125 hektar pada tahun 1979 atau hanya sekitar 1,20% dari total perkebunan sawit yang ada ketika itu. Kelapa sawit di Indonesia diolah menjadi minyak sawit kasar atau *crude palm oil* (CPO) dan minyak inti sawit atau palm kernel oil (PKO). Menurut Ditjen Perkebunan (2005), industri yang mengolah tandan buah segar (TBS) kelapa sawit menjadi CPO dan PKO terus mengalami peningkatan yang sejalan dengan peningkatan luas areal tanam dan produksi kelapa sawit seperti ditunjukkan pada Tabel 2. Sampai dengan saat ini, unit pengolahan CPO di Indonesia mencapai sekitar 320 unit dengan kapasitas olah sekitar sebanyak lebih dari 17.000 ton TBS/jam. Sumatera sebagai sentra produksi kelapa sawit di Indonesia menyumbang 70% dari total produksi nasional.

Tabel 2. Produksi CPO (ribu ton) Indonesia tahun 2004 s/d 2008

| Tahun | Produksi CPO |
|-------|--------------|
| 2004  | 10.831       |
| 2005  | 11.861       |
| 2006  | 17.350       |
| 2007  | 17.373       |
| 2008  | 17.109       |
| 2009* | 20.550       |
| 2010* | 21.534       |

Sumber: Balitbang – Ditjen Perkebunan Tanaman Tahunan (2008)


\*) Perkiraan FAO (faostat.fao.org, 2012)

Kelapa sawit adalah sumber minyak nabati terbesar yang dibutuhkan oleh banyak industri di dunia. Di samping itu, permintaan kelapa sawit dunia terus mengalami pertumbuhan sebesar 5 persen per tahun. Pemenuhan permintaan kelapa sawit dunia didominasi oleh produksi Indonesia. Indonesia memproduksi sekitar 43 persen dari total produksi minyak mentah sawit (Crude Palm Oil/CPO) di dunia. Pertumbuhan produksi kelapa sawit di Indonesia yang sebesar 7,8 persen per tahun juga lebih baik dibanding Malaysia yang sebesar 4,2 persen per tahun (Time MP3EI. 2011). Produktivitas industri kelapa sawit sangat bervariasi karena dipengaruhi oleh keberhasilan di tingkat perkebunan (kondisi tanah dan iklim) dan pengolahan. Perusahaan yang mempunyai management yang baik akan menghasilkan produktivitas yang tinggi, yaitu sekitar 23 ton tandan buah segar (TBS)/ha/tahun dengan rendemen minyak (CPO) sekitar 24%. Sedangkan produktivitas rendah berkisar pada 13 ton TBS/ha/tahun dengan rendemen CPO sekitar 18% (Daryono. 2009).

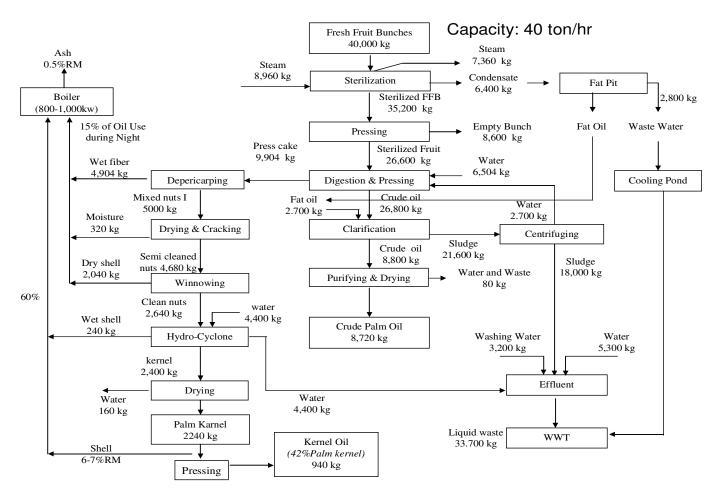
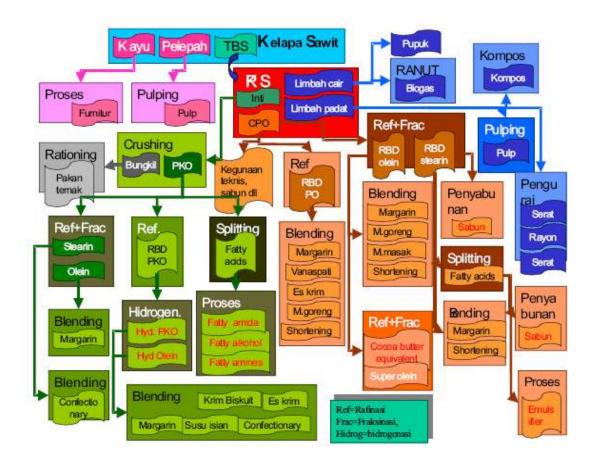

Potensi nilai tambah yang signifikan terdapat di industri hulu kelapa sawit, sehingga peningkatan produktivitas kebun menjadi sangat penting. Peningkatan nilai tambah dari industri hilir tidak terlalu signifikan. Gambar 1 memperlihatkan rantai nilai tambah industi kelapa sawit dari mulai perkebunan, penggilingan, penyulingan, dan pengolahan kelapa sawit di industri hilir. Walaupun demikian pengembangan industri hilir juga perlu dilakukan dalam rangka menjamin kemandirian bangsa dalam memenuhi kebutuhan konsumsi masyarakatnya serta penguasaan teknologi dan penciptaan lapangan kerja baru.

Diagram skematik pengolahan minyak kelapa sawit dan jumlah dan jenis produk serta limbah yang dihasilkan dapat dilihat pada Gambar 2. Berdasarkan perhitungan dalam diagram tersebut, proses pengolahan kelapa sawit menghasilkan limbah padat dalam bentuk tandan


kosong kelapa sawit (TKS), sabut, dan cangkang sekitar 40% dari berat TBS. Potensi pengembangan industri hilir berbasis kelapa sawit diperlihatkan pada Gambar 3.



Gambar 1. Rantai nilai tambah industi kelapa sawit dari mulai perkebunan, penggilingan, penyulingan, dan pengolahan kelapa sawit di industri hilir (Sember: Analisis Tim MP3EI, 2011)



Gambar 2. Diagram dan keseimbangan masa proses pengolahan kelapa sawit

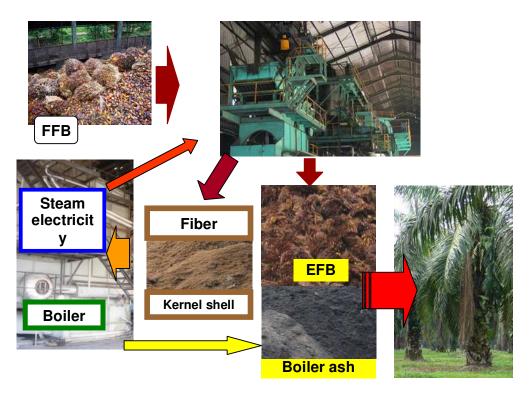


Gambar 3. Produk-produk turunan dari pengolahan kelapa sawit (Hasanudin. 2011).

Agro-industri kelapa sawit menghasilkan empat jenis limbah padat, yaitu tandan kosong kelapa sawit (TKS), sabut, cangkang, dan abu boiler (Gambar 4). Jumlah masing-masing limbah tersebut diperlihatkan di Tabel 3.



Gambar 4. Jenis limbah biomasa di agroindustri kelapa sawit


Tabel 3. Jumlah limbah biomass dari agroindustri kelapa sawit

| Jenis             | Satuan       | Jumlah |
|-------------------|--------------|--------|
| TKS (basah)       | ton/ton TBS  | 0,20   |
| Sabut (kering)    | ton /ton TBS | 0,13   |
| Cangkang (kering) | ton /ton TBS | 0,05   |
| Abu Boiler        | ton /ton TBS | 0,005  |

Pemanfaatan limbah biomassa agro-industri kelapa sawit saat ini adalah terutama untuk memenuhi kebutuhan energi dan kebutuhan steam yang diperlukan dalam proses pengolahan kelapa sawit (Gambar 5). Pemanfaatan limbah biomassa kelapa sawit dilakukan dengan cara pembakaran sabut dan cangkang secara langsung di dalam unit boiler. Sebanyak 85% sabut dan 55% cangkang digunakan sebagai bahan bakar system boiler untuk menghasilkan listrik dan uap yang dibutuhkan untuk proses pengolahan kelapa sawit. Dari sistem boiler ini akan dihasilkan abu boiler. Sisa sabut dan cangkang saat ini tidak digunakan atau dijual ke industri lain yang membutuhkan.

Sementara itu, tandan kosong, air limbah, dan abu boiler dari pengolahan kelapa sawit dikembalikan ke kebun dan digunakan sebagai pupuk untuk mengurangi penggunaan pupuk kimia serta mempertahankan kesuburan tanah. Gambar 6 dan 7 memperlihatkan pemanfaatan limbah biomassa tersebut di perkebunan kelapa sawit.

Tandan kosong kelapa sawit juga dapat dimanfaatkan melalui proses pembuatan kompos. Dibandingkan penggunaan TKS untuk mulsa secara langsung di kebun, pemanfaatan unsur hara dari kompos oleh tanaman kelapa sawit relatif lebih mudah. Walaupun demikian mulsa TKS juga berfungsi untuk menjaga kelembaban tanah dan menjerap air dan mineral yang dibutuhkan oleh tanaman kelapa sawit. Gambar 8 memperlihakan proses pembuatan kompos dari TKS.



Gambar 5. Pemanfaatan limbah biomassa di agro-industri kelapa sawit

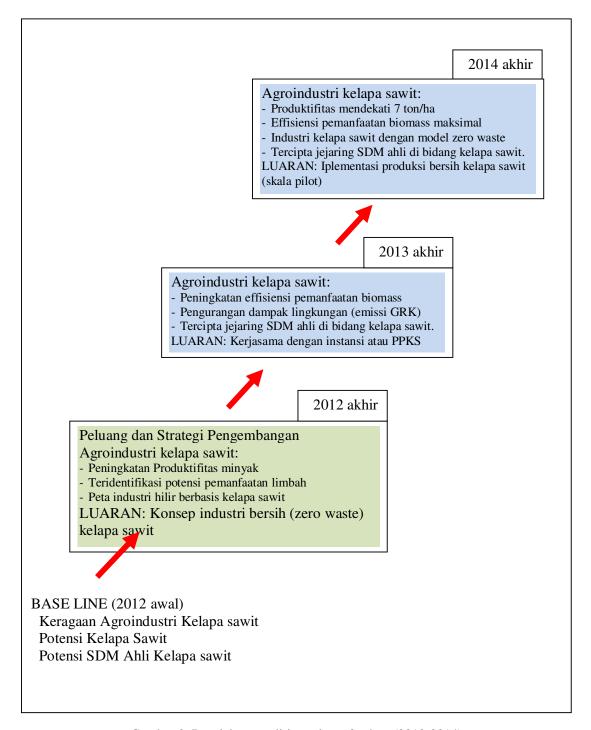


Gambar 6. Pemanfaatan TKS untuk mulsa di perkebunan kelapa sawit



Gambar 7. Pemanfaatan air limbah kelapa sawit untuk mengairi kebun kelapa sawit (*land application*)




Gambar 8. Pembuatan kompos dari tandan kosong kelapa sawit

Disamping limbah biomassa padat, pabrik pengolahan kelapa sawit juga menghasilkan air limbah yang dengan pengolahan secara biologis anaerobik dapat menghasilkan gas methane (CH<sub>4</sub>). Gas methane merupakan gas yang dapat dibakar sekaligus juga merupakan gas rumah kaca yang mempunyai efek pemanasan global 21 kali lebih tinggi

dari gas karbon dioksida (CO<sub>2</sub>). Pemanfaatan air limbah pabrik pengolahan kelapa sawit untuk sumber energi dapat memberikan tiga kemanfaatan sekaligus, yaitu: (1) memberi kontribusi terhadap pengurangan pencemaran lingkungan, (2) mengurangi penggunaan bahan bakar fosil, dan (3) mengurangi pemanasan global.

#### **BAB III. PETA JALAN**

Peta jalan penelitian yang telah dan akan dilakukan pada penelitian ini ditunjukkan pada Gambar 9.



Gambar 9. Peta jalan penelitian selama 3 tahun (2012-2014)

#### **BAB IV. MANFAAT**

Manfaat yang dihasilkan dari penelitian adalah :

- 1. Tersedianya peta potensi dan keragaan agroindustri kelapa sawit di Sumatera dalam pemanfaatan sumber daya alam (biomass).
- 2. Tersedianya strategi pemanfaatan hasil samping dan limbah pengolahan kelapa sawit dalam rangka peningkatan nilai tambah dan meminimalkan dampak lingkungan termasuk mengurangi emisi GRK.
- 3. Teridentifikasi peluang serta strategi pengembangan produk hilir berbasis kelapa sawit.
- 4. Terciptanya kerjasama antara peneliti dengan industri kelapa sawit di daerah Sumatera sehingga pengembangan dapat mempercepat tercapainya agroindustri kelapa sawit yang mempunyai produktivitas tinggi, effisien, ramah lingkungan, dan berkelanjutan.

#### **BAB V. METODE**

Metode penelitian yang akan dilakukan dalam penelitian ini meliputi studi literatur, dan survey lapangan. Pengumpulan data dilakukan dari sumber-sumber publikasi legal yang bisa dipertanggungjawabkan serta kunjungan lapang atau diskusi dengan ahli dibidang kelapa sawit. Adapun tahapan-tahapan metode penelitian yang akan dilakukan pada tahun I adalah sebagai berikut:

- Pengumpulan data dan pembuatan peta potensi sumber daya alam kelapa sawit di Sumatera
- 2. Pemetaan keragaan agroindustri kelapa sawit di Sumatera dalam pemanfaatan sumber daya alam (biomass).
- 3. Fokus Groups Discussion (FGD) untuk penyusunan strategi pemanfaatan hasil samping dan limbah pengolahan kelapa sawit dalam rangka peningkatan nilai tambah dan meminimalkan dampak lingkungan termasuk mengurangi emisi GRK.
- 4. Fokus Groups Discussion (FGD) untuk mengidentifikasi peluang dan strategi pengembangan produk hilir berbasis kelapa sawit.
- 5. Fokus Groups Discussion (FGD) untuk membuat model zero waste pada industri kelapa sawit.

Tahapan metode penelitian yang akan dilakukan pada tahun II adalah sebagai berikut:

- 1. Simulasi model produksi zero waste untuk mendapatkan pola yang optimum
- 2. Penyebarluasan (diseminasi) model produksi kelapa sawit model zero waste yang optimum.
- 3. Membangun kerja sama dengan instansi pemerintah atau PPKS untuk membangun model zero waste pada industri kelapa sawit.

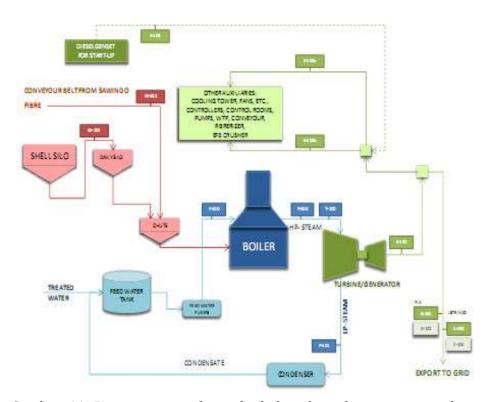
Tahapan metode penelitian yang akan dilakukan pada tahun III adalah sebagai berikut:

- 1. Verifikasi lapangan pola produksi zero waste yang optimal dengan demonstrasi pada skala pilot (*pilot plant*).
- 2. Berdasarkan hasil yang diperoleh dapat dilakukan remodeling jika diperlukan.
- 3. Penyebarluasan (diseminasi) model produksi kelapa sawit model zero waste yang optimum.

#### BAB VI. HASIL DAN PEMBAHASAN

## 6.1. Pemanfaatan limbah padat kelapa sawit untuk produksi listrik (Studi Kasus di PT. Listrindo Kencana)

PT. Listrindo Kencana adalah perusahaan yang bergerak dalam pembangkitan listrik tenaga uap dengan bahan bakar biomassa. Listrindo Kencana dibangun dengan kapasitas 6 MW (Gambar 10). Bahan kakar yang digunakan untuk PLTU ini sepenuhnya berasal dari biomassa limbah kelapa sawit. Bahan bakar tersebut terdiri dari campuran cangkang (*shell*) dan tandan kosong (*TKS*) yang telah dicacah terlebih dahulu.




Gambar 10. PT. Listrindo Kencana, Bangka Barat (saat pembangunan)

Sistem pembangkit lidtrik tenaga biomassa ini menggunakan sistem turbin yang dilengkapi dengan kondenser dan pembangkit tenaga listrik (turbo generator dan *transformator step-up*) seperti diperlihatkan pada Gambar 11.

Steam digunakan untuk memutar turbin untuk membangkitkan listrik. Steam disalurkan ke turbin melalui pipa daya, sewaktu melewati turbin, steam mengalami penurunan tenaga dalam bentuk penurunan tekanan dan temperatur secara bertingkat, lalu didinginkan di kondensor oleh air pendingin melalui mekanisme alat pertukaran panas (heat exchanger), sedemikian sehingga steam tersebut berubah menjadi air yang

disebut air kondensat. Selanjutnya air kondensat dikembalikan ke boiler untuk kemudian dijadikan steam kembali. Demikian seterusnya terjadi sistem tertutup air-steam-air.



Gambar 11. Diagram pemanfaatan limbah padat industri sawit untuk menghasilkan energi listrik untuk masyarakat luas

Dengan sistem tertutup tersebut, maka kebutuhan air menjadi relatif kecil, dimana penambahan sekitar 10% dari berat steam yang dihasilkan. Air pendingin setelah melewati kondensor temperaturnya naik (biasanya 8-10°C) didorong ke *cooling tower*. Di *cooling tower* ini air dikucurkan dari atas hingga jatuh ke dalam reservoir atau bak penampung. Air pendinginan yang sedang mengucur dari atas didinginkan oleh aliran udara yang ditarik ke atas dibuang ke atmosfer oleh blower yang berada tepat di bagian atas *cooling tower*. Sistem kerja pendingin seperti ini disebut type *counter flow* (arah air jatuh dan arah angin berlawanan). Selanjutnya air pendingin yang tertampung di dalam reservoir dipompakan kembali ke kondensor untuk melakukan proses pendinginan kembali. Demikian seterusnya terjadi siklus tertutup air dingin-air hangat-air dingin.

Putaran poros turbin digandeng langsung (*direct coupling*) dengan poros generator AC (*alternator*), sehingga menghasilkan tenaga listrik. Tegangan listrik yang dihasilkan adalah 6300 Volt/3Ø. Agar dapat dikoneksikan ke jaringan tingkat tinggi PLN, tegangan tersebut dinaikkan (*step up*) menggunakan transformator 3 fase menjadi sebesar 20 KV. Dari gardu PLN tersebut listrik dialirkan untuk memenuhi kekurangan kebutuhan listrik yang ada di Cabang Bangka melalui Panel Listrik PLTD Merawang dan Mentok. Jaringan PLN tersebut merupakan jaringan listrik di Kabupaten Bangka yang meliputi 5 Kecamatannya, yaitu: Kecamatan Tempilang, Kelapa, Simpangteritip, Muntok, dan Jebus. Apabila PLTU biomassa ini beroperasi maka jaringan yang ada di 5 kecamatan tersebut akan dapat dialiri listrik dari PLTU biomassa PT. Listrindo Kencana.

Komposisi limbah padat yang digunakan di PLTU Biomassa PT. Listrindo Kencana adalah Serabut PKS, Serabut olahan TKS dan Cangkang sawit dengan komposisi 20%:20%:60%. Kebutuhan biomassa campuran tersebut untuk bahan bakar PLTU biomassa (PT. LK) adalah sekitar 2500 - 3000 Ton per hari untuk dapat menghasilkan listrik seperti yang direncanakan. Limbah padat PT. Sawindo Kencana (serabut, cangkang, dan seluruh TKS yang sudah dicacah menjadi serabut TKS) tidak cukup untuk memenuhi kebutuhan tersebut. Suplay biomassa campuran dari PT. Sawindo Kencana hanya berkontribusi sekitar 20% saja dan 80% sisanya diambil dari PKS lain.

Setelah berjalan selama 2 tahun sejak 2007 dengan berbagai hambatan yang ada sehingga listrik yang dihasilkan tidak sesuai dengan rencana, PT Listrindo sebenarnya mendapatkan perhatian dari Pemerintah Daerah melalui rapat dengar pendapat di DPRD Bangka Barat pada hari Selasa tanggal 19 Januari 2010 mengenai penyediaan bahan bakar berupa cangkang. Berdasarkan rapat tersebut akhirnya disepakati diantara masing-masing Perusahaan bahwa mulai tahun 2010 pasokan bahan bakar PLTU biomassa adalah:

- a. PT. Gunung Maras Lestari sebanyak 8.000 12.000 ton per bulan
- b. PT. Gunung Sawit Bina Lestari sebanyak 6.000 8.000 ton per bulan
- c. PT. MP Leidong West Indonesia (Sinar mas Group) sebanyak 6.000 6.500 ton per bulan
- d. PT. Swara Mitra Sentosa (Mayora Group) sebanyak 2.000 ton per bulan
- e. PT. Sawindo Kencana sebanyak 500 ton per bulan

Dengan pasokan bahan baku seperti yang disepakati tersebut diharapkan bahwa pada tahun 2010 ini PLTU biomassa dapat menghasilkan listrik seperti yang diharapkan yaitu 6 MW, sehingga PLTU kedua yang direncanakan juga dapat di selesaikan pada tahun 2012.

PLTU biomassa yang telah dibangun ini diharapkan dapat menyediakan listrik dengan menggunakan bahan bakar terbarukan (biomassa industri kelapa sawit) dari sumber setempat. Pemanfaatan ini disatu sisi selain merupakan pengelolaan dampak dari pabrik kelapa sawit yang berbasis lingkungan juga merupakan upaya optimalisasi penggunaan sumber daya alam sekaligus membantu membantu mengatasi krisis listrik yang terjadi di Bangka.

Menurut Kurniawati (2010), ketersediaan bahan baku, regulasi/kebijakan dan teknologi untuk pemanfaatan biomassa kelapa sawit sebagai bahan bakar pembangkit listrik bukan lagi merupakan hambatan. Faktor-faktor yang menyebabkan belum dimanfaatkannya limbah padat agroindustri kelapa sawit sebagai bahan bakar PLTU biomassa untuk menghasilkan listrik bagi masyarakat umum adalah:

- a. Belum adanya dukungan dari Pemerintah dalam hal implementasi pelaksanaan atas regulasi/peraturan atau kebijakan yang telah dibuatnya (baik dari dukungan finansial termasuk subsidi, pajak ataupun insentif bagi pelaksana kegiatan energi terbarukan). Selama ini yang ada adalah bahwa suatu industri membangun PLTU biomassa sendiri dan menjual listrik yang dihasilkan kepada pihak PLN yang sudah mempunyai jaringan listrik. Yang ideal adalah diperlukan kerjasama dan koordinasi antara instansi (PLN, Departemen terkait) serta masyarakat dan Pemerintah setempat untuk membangun suatu jaringan listrik dari pemanfaatan limbah padat agroindustri kelapa sawit yang ada di daerahnya. Hal ini sangat penting untuk dilakukan agar memudahkan dalam hal beban kerja, masalah pendanaan, tanggung jawab serta manfaat-manfaat dari adanya jaringan tersebut sehingga program energi terbarukan untuk listrik dapat terlaksana tidak hanya di daerah yang telah ada jaringan listrik dari PLN saja.
- b. Faktor biaya atau pendanaan.

Telah diketahui bahwa penerapan energi terbarukan atau konservasi energi memerlukan modal awal (investasi) dan biaya pemeliharaan yang besar

sehingga konservasi energi dalam hal ini adalah memanfaatkan limbah biomassa agroindustri kelapa sawit untuk mensubstitusi penggunaan bahan bakar fosil yang ada tidak menarik perhatian para penggunanya (dalam hal ini adalah pihak industri) meskipun sesungguhnya memberikan keuntungan dalam jangka panjang.

## 6.2. Pemanfaatan tandan kosong kelapa sawit untuk produksi kompos (Studi Kasus PTPN VII, Unit Usaha Bekri)

Pemanfaatan tandan kosong kelapa sawit untuk produksi kompos yang selanjutnya dimanfaatkan sebagai pupuk diperkebunan kelapa sawit telah dilakukan dibeberapa agroindustri kelapa sawit. PTPN VII Unit Usaha Bekri, Lampung telah memulai memanfaatkan tandan kosong kelapa sawit, memproduksi kompos, dan memanfaatkannya sebagai pupuk organik. Walaupun demikian, dampak dari penggunaan kompos terhadap peningkatan produksi buah kelapa sawit belum dikaji karena kegiatan ini masih relatif baru. Kegiatan pemanfaatan tandan kosong kelapa sawit untuk produksi dan pemanfaatan kompos di PTPN VII Unit Usaha Bekri diperlihatkan pada Gambar 12.



Gambar 12. Kegiatan pemanfaatan tandan kosong kelapa sawit untuk produksi dan pemanfaatan kompos di PTPN VII Unit Usaha Bekri

Pemanfaatan tandan kosong kelapa sawit (TKS) untuk produksi kompos secara umum akan memberikan manfaat lingkungan, ekonomi, maupun sosial. Penggunaan kompos di perkebunan kelapa sawit diprediksi akan dapat mengurangi penggunaan pupuk kimia sekaligus akan memperbaiki struktur kimia, fisika, dan biologi tanah. Walaupun belum dilakukan penelitian tentang dampak penggunaan kompos TKS terhadap kedua hal tersebut di PTPN VII Unit Usaha Bekri, namun beberapa literatur mendukung hal tersebut. Darnoko dkk. (1994), menyatakan bahwa TKS yang diolah terlebih dahulu menjadi kompos sebelum diaplikasikan sebagai substitusi pupuk bertujuan untuk menurunkan nisbah C/N. TKS mempunyai nisbah C/N yang tinggi yaitu 45 - 55 sehingga dapat menurunkan ketersediaan N di tanah karena N termobilisasi dalam proses penguraian bahan organik oleh mikroorganisme tanah. TKS yang telah dikomposkan dengan waktu sekitar 6 - 8 minggu mempunyai nisbah C/N 10 - 15 Lamanya proses pengomposan disebabkan oleh tingginya kandungan lignoselulosa pada TKS. TKS mengandung 45,95 persen selulosa, 16,49 persen hemiselulosa, dan 22,84 persen lignin. Sutarta dkk. (2007), menyatakan bahwa kompos TKS yang ditambahkan pada pembibitan utama kelapa sawit dapat meningkatkan pertumbuhan bibit dibandingkan dengan tanpa aplikasi kompos. Aplikasi kompos TKS meningkatkan diameter batang bibit 18 – 33 persen; tinggi bibit 16 – 26 persen; aplikasi kompos TKS sebesar 5 persen dan pupuk standar pembibitan 50 persen menunjukkan peningkatan 65 persen bobot kering biji dibandingkan dengan perlakuan 100 persen pupuk standar. Dari pengamatan di kebun kelapa sawit PTPN VII Unit Usaha Bekri yang diaplikasi kompos terdapat indikasi dampak positif terhadap pertumbuhan perakaran. Penambahan kompos dapat meningkatkan pertumbuhan perakaran baru. Diharapkan indikasi ini dapat berdampak positif terhadap keberlanjutan produksi kelapa sawit.

Manfaat lingkungan yang bisa diharapkan dari penggunaan pupuk kompos ini adalah pengurangan emissi gas rumah kaca akibat pengurangan penggunaan pupuk kimia. Penggunaan pupuk kimia di perkebunan kelapa sawit akan mengemisikan gas rumah kaca N<sub>2</sub>O ke udara dan berkontribusi menimbulkan pemanasan global sebesar 69% (3,027 ton CO<sub>2</sub>e/FU<sup>1</sup>) dari total emisi yang timbul pada tahap budidaya kelapa sawit

\_

<sup>&</sup>lt;sup>1</sup> FU=Functional Unit; 100,000 km

(Gheewala *et al.*, 2008). Pengurangan penggunaan pupuk kimia akan memberikan andil dalam penurunan emisi gas rumah kaca.

Pengurangan penggunaan pupuk kimia juga akan memberikan keuntungan tambahan bagi perusahaan berupa pengurangan biaya produksi budi daya kelapa sawit. Bila penggunaan pupuk kompos dapat memperbaiki kesuburan tanah dan meningkatkan produksi buah kelapa sawit, maka keuntungan tambahan dapat diperoleh melalui peningkatan produktivitas lahan. Kedua hal ini secara kualitatif akan memberikan manfaat ekonomi kepada perusahaan.

Penambahan aktivitas produksi pupuk kompos dari tandan kosong kelapa sawit jelas membuka peluang kerja baru, karena perusaan membutuhkan pekerja tambahan baik untuk mengoperasikan unit produksi kompos tersebut maupun untuk tenaga peneliti yang mengamati dampak dari penggunaan pupuk kompos tersebut. Kegiatan ini juga membuka peluang baru bagi perusahaan yang memproduksi dan memasarkan mikroorganisme pengkompos (*decomposer*). Penciptaan peluang kerja dan peluang usaha ini tentunya dapat memberikan manfaat sosial bagi masyarakat.

### 6.3. Pemanfaatan POME untuk Budidaya Algae (Studi kasus Maris MV-PTPN VII UU Bekri)

Algae merupakan pabrik berupa sel yang memanfaatkan energi matahari untuk mengubah karbon dioksida (CO<sub>2</sub>) menjadi bahan bioaktif bernilai tinggi. Alga merupakan substansi kaya protein yang dapat digunakan sebagai feedstock pada industri farmasi, makanan kesehatan, kosmetik, dan industri pakan ternak. Kini, algae juga ramai diperbincangkan sebagai salah satu sumber bahan bakar yang sangat potensial untuk biodiesel, etanol dan hidrogen (FAO, 2009; Demirbas dan Demirbas, 2010; Williams dan Laurens, 2010; Gouveia, 2011). Terdapat beberapa spesies algae yang dapat dijadikan sebagai bahan baku untuk produksi biodiesel. Tiap-tiap spesies memiliki kandungan minyak yang berbeda-beda seperti ditunjukkan pada Tabel 4.

Bekerjasama dengan PTPN VII Unit Usaha Bekri, saat ini Maris Konsorsium sedang mengembangkan algae jenis spirulina dan chlorella dengan memanfaatkan air limbah kelapa sawit. Spiruluna memiliki ukuran  $10~\mu m$  sedangkan chlorella lebih kecil lagi, yaitu antara  $2-5~\mu m$ . Bibit algae spirulina diperoleh dari Jepara (air payau) telah

berhasil diadaptasi untuk air darat dengan memanfaatkan nutrient dari limbah kelapa sawit. Pada saat ini di UU Bekri terdapat 5 kolam, terdiri dari 3 kolam berukuran 4,5 m x 15 m dan sebuah kolam ukuran 5,5 m x 25 m untuk budidaya spirulina skala pilot, 1 kolam ukuran 4,5 m x 10 m untuk algae chlorella, dan sebuah kolam ukuran 4,5 m x 10 m untuk pembibitan algae spirulina. Kolam budidaya algae spirulina sepenuhnya menggunakan air POME (Palm Oil Mill Effluent) tanpa nutrisi tambahan, sedangkan kolam pembibitan algae spirulina dan kolam algae chlorella dan menggunakan air boiler dengan nutrisi tambahan yang terdiri dari TSP, soda kue, dan Vit B12.

Tabel 4. Kandungan minyak berbagai spesies algae (Chisti, 2007)

| Microalgae                | Kandungan minyak |
|---------------------------|------------------|
| J                         | (% berat kering) |
| Botryococcus braunii      | 25-75            |
| Chlorella sp.             | 28-32            |
| Crypthecodinium cohnii    | 20               |
| Cylindrotheca sp.         | 16-37            |
| Dunaliella primolecta     | 23               |
| Isochrysis sp.            | 25–33            |
| Monallanthus salina       | >20              |
| Nannochloris sp.          | 20-35            |
| Nannochloropsis sp.       | 31-68            |
| Neochloris oleoabundans   | 35-54            |
| Nitzschia sp.             | 45-47            |
| Phaeodactylum tricornutum | 20-30            |
| Schizochytrium sp.        | 50-77            |
| Tetraselmis sueica        | 15-23            |

Budidaya algae sangat prospektif karena pertumbuhan yang cepat dan produktivitas yang tinggi. Panen perdana budidaya algae dapat dilakukan antara 7 – 10 setelah tanam. Selanjutnya panen dapat dilakukan dua hari sekali selama 30 hari. Pemanenan algae spirulina cukup mudah, yaitu dengan memompakan air ke suatu tangki yang diberi saringan kain. Algae akan tersaring dan airnya dikembalikan lagi ke kolam. Pemanenan algae chlorella relatif lebih sulit karena ukuran algae yang lebih kecil sehingga tidak bisa disaring menggunakan saringan kain. Saat ini pemanenan dilakukan dengan metode flokulasi dengan cara menambahkan tawas. Algae akan mengendap sehingga dapat dipisahkan dari airnya. Selanjutnya algae dikeringkan hingga mencapai kadar air sekitar 10%.

Saat ini produksi algae di UU Bekri baru mencapai 5 kg berat kering untuk kolam ukuran 5,5 m x 25 m. Di Belanda, Maris MV telah mengmbangkan algae ini secara komersial dengan produksi mencapai 10 ton/ha per bulan (Ikhsan, 2012).



Gambar 13. Budidaya algae di PTPN VII UU Bekri

## 6.4. Pemanfaatan POME untuk Biogas (Studi kasus PTPN V Riau, PPKS Tandun)

PKS Tandun yang berkapasitas 45 ton/jam merupakan salah satu dari 12 PKS yang dimiliki oleh PTPN V. Kemampuan produksi PKS Tandun adalah 197.000 ton TBS pada tahun 2010 dan 232.000 ton TBS pada tahun 2011 dengan rendemen minyak rata-rata 22,45 %. Setiap ton TBS akan menghasilkan limbah cair pabrik kelapa sawit berupa POME (palm oil mill effluent) sekitar 0,7 – 0,8 m³, dan untuk tahun 2011 diperkirakan POME yang dihasilkan mencapai 162.400 – 185.600 m³. Selama ini POME digunakan untuk pupuk organik dan diaplikasikan langsung ke kebun di sekitar pabrik.

PKS Tandun merupakan pioner dalam pengurangan gas rumah kaca dan pemanfaatan sebagai sumber energi. Sejak tahun 2011 bekerjasama dengan PT KME (Karya Mas Energi) POME diolah untuk menghasilkan biogas yang digunakan sebagai bahan bakar pada pembangkit listrik tenaga biogas (PLTB). Saat ini, jumlah limbah yang telah diolah

menjadi biogas baru sekitar 50 % dari total limbah cair yang dihasilkan. Listrik yang dihasilkan dari PLTB ini digunakan untuk mengganti sebagian (50%) kebutuhan energi pabrik pengolahan kernel oil. Sebelumnya, kebutuhan energi di pabrik tersebut dipenuhi dari pembangkit listrik tenaga diesel.

Kolam anaerobik tipe *covered lagoon* (Gambar 14) untuk menghasilkan biogas berukuran 50 m x 110 m dengan kedalaman 6,5 m. Kolam ditutup plastik HDPE warna hitam dengan umur pakai plastik sekitar 10 tahun. Waktu tinggal (HRT) POME dalam kolam adalah 50 hari dengan pengadukan (mixing) setiap 20 menit/jam. Tujuan pengadukan ini adalah untuk menghilangkan lapisan minyak yang mungkin timbul di permukaan kolam. Jika lapisan minyak timbul, maka akan menyulitkan keluarnya gas metan dari POME. Volume POME yang diproses dalam kolam tersebut adalah 24.000 m³ dengan nilai COD sekitar 55.000 – 70.000 mg/l dan setelah keluar dari kolam anaerobik menjadi 700 mg/l. Diperkirakan setiap ton POME dapat menghasilkan 28-30 m³ biogas, dengan kandungan gas metan 57 – 58 %. Suhu di dalam kolam sekitar 28 – 34°C (mesofilik).



Gambar 14. Digester biogas tipe covered lagoon berukuran  $50~{\rm m}~{\rm x}~110~{\rm m}$  dengan kedalaman 6,5 m di PKS Tandun, PTPN V Riau, untuk mendukung PLTB.

Sebelum digunakan untuk mengoperasikan genset, biogas perlu dimurnikan dan dikeringkan. Adanya gas H<sub>2</sub>S, selain menyebabkan korosi juga akan mempercepat penurunan kekentalan oli genset. Kadar H<sub>2</sub>S dalam biogas PKS Tandun yang dihasilkan adalah sekitar 2.500 ppm. Untuk menjalankan genset kandungan H<sub>2</sub>S maksimum adalah 800 ppm, sehingga perlu dibersihkan terlebih dahulu. Pembersihan H<sub>2</sub>S dilakukan secara biologis menggunakan sistem BIO Gasclean dan menghasilkan biogas dengan kadar H<sub>2</sub>S kurang daripada 100 pm. Biogas ini kemudian dikeringkan dengan cara kondensasi. Kadar air biogas yang tinggi akan mengganggu proses konversi biogas menjadi energi listrik.

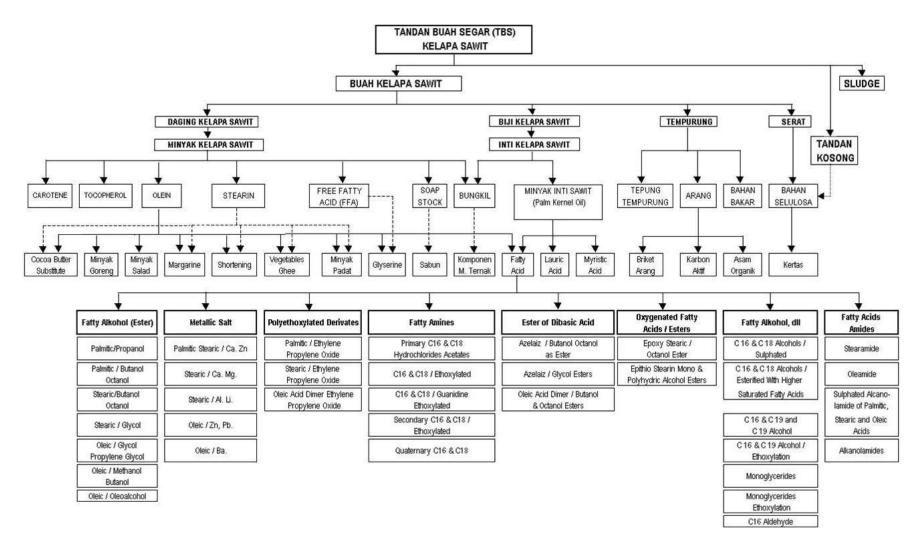
Konversi biogas menjadi energi listrik dilkukan secara langsung dengan menggunakan Genset merek Guascor buatan Spanyol. Syarat utama biogas harus memiliki kadar metana 58%. Listrik yang dihasilkan adalah 650 kWh. Dalam pemanfaatan POME ini, PTPN V bekerjasama dengan PT KME sebagai pihak *project developer* yang membangun PLTB berkapasitas 1 MW dengan mekanisme BOT (*Build Operation and Transfer*). Parameter desain digester biogas adalah seperti ditunjukkan pada Tabel 5.

Tabel 5. Parameter desain digester biogas di PKS Tandun, PTPN V Riau

| Parameter                           | Kapasitas Produksi Kelapa Sawit (Ton<br>TBS/jam) |             |              |
|-------------------------------------|--------------------------------------------------|-------------|--------------|
|                                     | 30                                               | 45          | 60           |
| Desain Keluaran Biogas (m³/jam)     | 20                                               | 30          | 40           |
| Penurunan COD/BOD (%)               | 90                                               | 90          | 90           |
| Perkiraan produksi biogas (NM3/jam) | 500-815                                          | 815-1.000   | 1.000        |
| Kandungan gas metana (%)            | 55-65                                            | 55-65       | 55-65        |
| Nilai energi (MJ/jam)               | 4.204-6.852                                      | 6.852-8.400 | 8.400-11.088 |
| Ekivalensi bahan bakar dari shell   | 0,8-1,3                                          | 1,3-1,6     | 1,6-2,1      |
| Potensi energi listrik (kWe)        | 1.000                                            | 1.500       | 2.000        |

#### 6.5. Pohon Industri Kelapa Sawit

Kelapa sawit sebagai tanaman penghasil minyak sawit dan inti sawit merupakan salah satu primadona tanaman perkebunan yang menjadi sumber penghasil devisa bagi Indonesia. Cerahnya prospek komoditi minyak kelapa sawit dalam perdagangan minyak nabati dunia telah mendorong pemerintah Indonesia untuk memacu pengembangan areal perkebunan kelapa sawit. Industri kelapa sawit tumbuh pesat dan pada tahun 2012 ini produksi minyak


kelapa sawit diproyeksikan tumbuh 6,4% sehingga produksi minyak sawit Indonesia akan mencapai 25 juta ton. Industri minyak kelapa sawit merupakan salah satu industri strategis, karena berhubungan dengan sektor pertanian (*agro-based industry*) yang banyak berkembang di negara-negara tropis seperti Indonesia, Malaysia dan Thailand. Hasil industri minyak kelapa sawit bukan hanya minyak goreng saja, tetapi juga bisa digunakan sebagai bahan dasar industri lainnya seperti industri makanan, kosmetika dan industri sabun (Gambar 15).

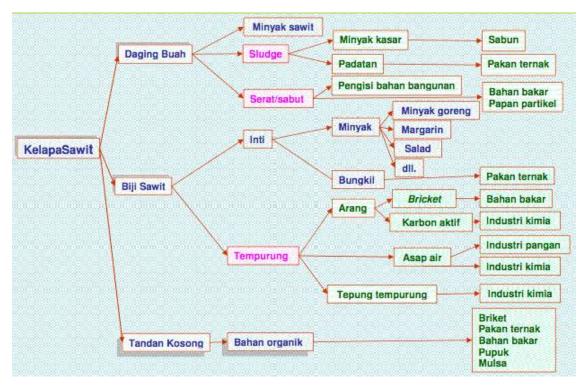
Perkebunan kelapa sawit menghasilkan tandan buah segar (hulu) kemudian diolah menjadi minyak sawit mentah (hilir perkebunan sawit dan hulu bagi industri yang berbasiskan minyak sawit mentah). Disamping menghasilkan produk CPO, pengolahan tandan buah segar (TBS) juga menghasilkan produk Palm Kernel Oil (PKO). Produksi PKO meningkat seiring dengan meningkatnya produk CPO, yakni sekitar 10% dari CPO yang dihasilkan.

Dari minyak kelapa sawit (CPO) dan minyak inti sawit (PKO) dapat diproduksi berbagai jenis produk antara sawit yang digunakan sebagai bahan baku bagi industri hilirnya baik untuk kategori pangan ataupun non pangan. Diantara kelompok industri antara sawit termasuk didalamnya industri olein, stearin, oleokimia dasar (fatty acid, fatty alcohol, fatty amines, methyl esther, glycerol).

Pengembangan industri hilir kelapa sawit perlu dilakukan mengingat nilai tambah produk hilir sawit yang tinggi. Jenis industri hilir kelapa sawit spektrumnya sangat luas, hingga lebih dari 100 produk hilir yang telah dapat dihasilkan pada skala industri. Namun baru sekitar 23 jenis produk hilir (pangan dan non pangan) yang sudah diproduksi secara komersial di Indonesia. Beberapa produk hilir turunan CPO dan PKO yang telah diproduksi diantaranya untuk kategori pangan: minyak goreng, minyak salad, shortening, margarine, Cocoa Butter Substitute (CBS), vanaspati, vegetable ghee, food emulsifier, fat powder, dan es krim. Untuk kategori non pangan diantaranya adalah: surfaktan, biodiesel, dan oleokimia turunan lainnya.

Pengembangan industri hilir kelapa sawit untuk peningkatan nilai tambah. Adanya klaster industri berbasis minyak sawit mentah diharapkan memperkuat keterkaitan pada semua tingkatan rantai nilai (value chain) dari industri hulunya, mampu meningkatkan nilai tambah sepanjang rantai nilai dengan membangun visi dan misi yang selaras sehingga mampu meningkatkan produktivitas, efisiensi dan jenis sumber daya yang digunakan dalam industri, dan memfokuskan pada penggunaan sumber- sumber daya terbarukan (renewable resources).




Gambar 15. Pohon industri kelapa sawit (Sumber: Departemen Perindustrian Republik Indonesia, 2010).

Berkenaan dengan produksi minyak sawit yang sangat tinggi, akan dihasilkan beberapa limbah baik padat maupun cair yang harus dikelola dengan benar sehingga tidak menimbulkan permasalahan lingkungan. Pengelolaan limbah pabrik kelapa sawit menjadi sesuatu yang mendesak karena walaupun bukan merupakan limbah B3 tetapi mempunyai potensi sangat besar menimbukan pencemaran lingkungan bila tidak dikelola dengan baik.

Pemanfaatan limbah pabrik kelapa sawit umumnya dilakukan secara parsial, limbah padatnya yang berupa cangkang dan serabut/fiber dimanfaatkan untuk menghasilkan steam dan listrik yang dipakai dalam proses produksi minyak kelapa sawit. Tandan kosong kelapa sawit umumnya dikembalikan ke kebun kelapa sawit untuk mulsa dan untuk memperbaiki kualitas tanah. Khusus untuk air limbahnya, setelah mengalami proses penguraian di Instalasi Pengolahan Air Limbah (IPAL) sebagian besar telah dimanfaatkan untuk menyiram tanaman kelapa sawit (land application). Beberapa upaya kini terus dilakukan untuk meningkatkan nilai guna dari pemanfaatan limbah pabrik kelapa sawit. Selain dimanfaatkan secara parsial/tunggal, beberapa limbah pabrik kelapa sawit seperti: tandan kosong, serabut (fibre), Solid decanter, abu ketel (furnace ash), air limbah dan sludge IPAL dimanfaatkan secara bersama untuk menghasilkan produk tertentu. Gambar 16 menunjukan berbagai produk yang dihasilkan dari memproses limbah yang dihasilkan oleh pabrik kelapa sawit (PKS).

Konsep zero emission seharusnya dapat dilaksakan pada agroindustri, terutama pada indiustri kelapa sawit, karena kossep ini mempunyai prinsip dasar bahwa proses industri, terutama agroindustri, tidak menghasilkan limbah apapun, karena setiap hasil produksi dari industri akan menjadi bahan baku untuk industri lainnya. Melalui konsep ini, proses industri akan menghemat sumber daya alam, memperbanyak jenis produk, menciptakan lebih banyak lapangan kerja, serta mencegah pencemaran dan kerusakan alam.

Applikasi zero emssion pada industri kelapa sawit dapat meningkatkan efisiensi dan daya saing karena semua sumber daya digunakan secara maksimal, yaitu memproduksi lebih banyak dengan sumber daya yang sama. Kegiatan kebun dan pabrik kelapa sawit memungkinkan pelaksanaan zero emission, karena limbah yang dihasilkan dari kegiatan kebun dan pabrik kelapa sawit dapat dimanfaatkan kembali. Oleh sebab itu zero emission dapat dipandang sebagai suatu konsep standar produksi baru.



Gambar 16. Pohon industri pemanfaatan limbah kelapa sawit (Sumber: Departemen Pertanian Republik Indonesia, 2006)

#### **DAFTAR PUSTAKA**

- Chisti, Y. 2007. Biodiesel from microalgae. Biotechnology Advances 25: 294–306.
- Daryono, M. 2009. Keberpihakan BUMN terhadap Riset dan Pengembangan Kelapa Sawit Indonesia. Seminar Tahunan Masyarakat Perkelapasawitan Indonesia. Bogor.
- Demirbas, A. dan M. F. Demirbas. 2010. Algae Energy: Algae as a New Source of Biodiesel. Springer, London.
- Departemen Perindustrian. 2007. *Gambaran Sekilas Industri Kelapa Sawit*. Pusat data dan Informasi Departemen Peindustrian. Jakarta.
- FAO. 2009. Algae-Based Biofuels: A Review of Challenges and Opportunities for Developing Countries. ECOFYS-GBEP-FAO.
- FAO. 2012. FAOSTAT (http://faostat.fao.org visited 15 April 2012)
- Gheewala, S.H., Wanida, W., and Masayuki, S., 2008, LC GHG Emissions from Palm Oil Biodiesel Production & Use in Thailand, AIST, Japan.
- Gouveia, L. 2011. Microalgae as a Feedstock for Biofuels. Springer, Heidelberg.
- Hasanudin, U. 2008. "The Biomass Utilization from Agroindustries in Indonesia". *Biomass Sustainable Utilization Working Groups Discussion*. November, 28-29<sup>th</sup> 2008, Jakarta.
- Hasanudin, U. dan E. Suroso. 2009. Pemanfaatan Air Limbah Pabrik Kelapa Sawit Sebagai Sumber Energi dan Upaya Pengurangan Emisi Gas Rumah Kaca. Seminar Tahunan Masyarakat Perkelapa Sawitan Indonesia (MAKSI), 24-25 November 2009. Bogor.
- Hasanudin, U. 2010. Penerapan Pedoman Pengelolaan Limbah Agroindustri Kelapa Sawit. Kementrian Lingkungan Hidup. Jakarta.
- Ikhsan, M. 2012. Komunikasi pada tanggal 12 September 2012.
- Kementrian Koordinator Bidang Ekonomi. 2011. *Masterplan Percepatan dan Perluasan Pembangunan Ekonomi Indonesia*. Deputi Bidang Infrastruktur dan Pengembangan Wilayah. Kementerian Koordinator Bidang Perekonomian. Jakarta.
- Kurniawati, D. S., 2010, Pemanfaatan Limbah Padat Pabrik Kelapa Sawit Sebagai Bahan Bakar Alternatif Sumber Energi Listrik, Tesis, Program Pasca Sarjana Universitas Indonesia, Jakarta.
- Williams, P.J.B. dan L.M.L. Laurens. 2010. Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics. *Energy Environ. Sci.*, **3**: 554–590.

## LAMPIRAN BIODATA

## LAMPIRAN 2: Biodata Pengusul Penelitian Strategis Nasional

## I IDENTITAS DIRI

| 1.1  | Nama Lengkap (dengan gelar)   | Dr. Ir. Agus Haryanto, M.P.                      | L/ <del>P</del> |
|------|-------------------------------|--------------------------------------------------|-----------------|
| 1.2  | Jabatan Fungsional            | Lektor                                           |                 |
| 1.3  | NIP/NIK/No. Identitas lainnya | 196505271993031002                               |                 |
| 1.4  | Tempat dan Tanggal Lahir      | Pemalang, 27 Mei 1965                            |                 |
| 1.5  | Alamat Rumah                  | Jl. Cendana No. 199, Perumahan Bataranila, Banda | r               |
|      |                               | Lampung 35144                                    |                 |
| 1.6  | Nomor Telepon/Faks            | 0721-773461                                      |                 |
| 1.7  | Nomor HP                      | 0813-79078674, 0815-41559632                     |                 |
| 1.8  | Alamat Kantor                 | Jl. Sumantri Brojonegoro No. 1, Gedong Meneng,   |                 |
|      |                               | Bandar Lampung 35145                             |                 |
| 1.9  | Nomor Telepon/Faks            | 0721-701609 ext. 846                             |                 |
| 1.10 | Alamat e-mail                 | agusharyanto@unila.ac.id                         |                 |
| 1.11 | Mata Kuliah yg diampu         | 1. Energi Terbarukan                             |                 |
|      |                               | 2. Audit Energi                                  |                 |
|      |                               | 3. Termodinamika dan Pindah Panas                | _               |
|      |                               | 4. Daya dalam Bidang Pertanian                   |                 |

### II RIWAYAT PENDIDIKAN

| 2.1 Program:       | S-1                          | S-2                    | S-3                    |
|--------------------|------------------------------|------------------------|------------------------|
| 2.2 Nama PT        | UGM                          | UGM                    | Mississippi State      |
|                    |                              |                        | University             |
| 2.3 Bidang Ilmu    | Mekanisasi Pertanian         | Mekanisasi Pertanian   | Agricultural and       |
|                    |                              |                        | Biological Engineering |
| 2.4 Tahun Masuk    | 1984                         | 1996                   | 2004                   |
| 2.5. Tahun Lulus   | 1991                         | 1998                   | 2008                   |
| 2.6 Judul Skripsi/ | Karakteristik Fisik Jaringan | Kajian Unjuk Kerja     | Hydrogen Production    |
| Tesis/Disertasi    | Irigasi dan Persoalan        | Kolektor Tenaga Surya  | through Water Gas      |
|                    | Pengelolaan Air Berdasarkan  | Tipe Talang Parabolik  | Shift Reaction over    |
|                    | Topografinya di DI           | dengan Pengaturan      | Nickel Catalyss        |
|                    | Kaliwadas                    | Arah Timur-Barat       |                        |
| 2.7. Nama          | Dr. Ir. Suprodjo             | Dr. Ir. Bandul Suratmo | Prof. Sandun Fernando  |
| Pembimbing/        | Pusposutardjo, M.Eng         |                        |                        |
| Promotor           |                              |                        |                        |

## III PENGALAMAN PENELITIAN (Bukan Skripsi, Tesis, maupun Disertasi)

Urutkan judul penelitian yang pernah dilakukan selama 5 tahun terakhir dimulai dari penelitian yang paling relevan menurut Saudara.

| No. | Tahun  | Judul Penelitian                             | Pendanaan |               |
|-----|--------|----------------------------------------------|-----------|---------------|
| NO. | 1 anun | Judui Feliciidii                             | Sumber*   | Jml (Juta Rp) |
| 1   | 2011   | Pengembangan Tungku Biomassa Berbasis        | Hibah     | TBA           |
|     |        | Gasifikasi                                   | Strategis |               |
| 2   | 2010   | Pengembangan Tungku Biomassa Berbasis        | Hibah     | 60            |
|     |        | Gasifikasi                                   | Strategis |               |
| 3   | 2009   | Pembuatan Bio-Oil dari Limbah Kulit Singkong | Hibah     | 92            |
|     |        | Melalui Proses Pirolisis                     | Strategis |               |
| 4   | 2008   | Crude Glycerol Cogasification with Wood Chip | MSU       | NA            |
|     |        | Using a Pilot Scale Downdraft Gasifier       |           |               |

Tuliskan sumber pendanaan: PDM, SKW, Fundamental Riset, Hibah Bersaing, Hibah Pekerti, Hibah Pascasarjana, RAPID, atau sumber lainnya.

#### IV. PENGALAMAN PENGABDIAN KEPADA MASYARAKAT

Urutkan judul pengabdian kepada masyarakat yang pernah dilakukan selama 5 tahun terakhir dimulai dari yang paling relevan menurut Saudara.

| No. | Tahun  | Judul Pengabdian Kepada Masyarakat              | Pei     | ndanaan       |
|-----|--------|-------------------------------------------------|---------|---------------|
| NO. | 1 anun | Judui i engabutan Kepada Wasyarakat             |         | Jml (Juta Rp) |
| 1   | 2011   | Optimalisasi Penggunaan Biogas Sebagai Bio-     | Mandiri | 5             |
|     |        | Energi Alternatif di Desa Bogorejo, Kec. Gedong |         |               |
|     |        | Tataan, Kab. Tanggamus                          |         |               |
| 2   | 2010   | Percontohan Pembuatan Biogas dari Limbah        | PNBP-   | 3,5           |
|     |        | Ternak untuk Keperluan Rumah Tangga di Dusun    | Unila   |               |
|     |        | 12, Way Tebu, Kec. Gisting Atas, Kab.           |         |               |
|     |        | Tanggamus                                       |         |               |
| 3   | 2010   | IbM: Pendampingan Pembuatan Pupuk Kompos        | IbM     | 32            |
|     |        | untuk Tanaman Sayuran di Kelompok Tani Dusun    |         |               |
|     |        | 12 Way Tebu, Kec. Gisting Atas, Kab.            |         |               |
|     |        | Tanggamus                                       |         |               |
| 4   | 2010   | Sosialisasi Tungku Biomassa Berbasis Gasifikasi | PNBP-   | 3,5           |
|     |        |                                                 | Unila   |               |
| 5   | 2009   | Penanganan Pasca Panen Sayur di Dusun 12, Way   | Mandiri | 3             |
|     |        | Tebu, Kec. Gisting Atas, Kab. Tanggamus.        |         |               |

Tuliskan sumber pendanaan: Penerapan Ipteks, Vucer, Vucer Multitahun, UJI, Sibermas, atau sumber lainnya.

# V PENGALAMAN PENULISAN ARTIKEL ILMIAH DALAM JURNAL (Tidak termasuk Makalah Seminar/*Proceedings*, Artikel di Surat Kabar)

Urutkan judul artikel ilmiah yang pernah diterbitkan selama 5 tahun terakhir dimulai dari artikel yang paling relevan menurut Saudara.

| No. | Tahun | Judul Artikel Ilmiah                                                                                                                          | Volume/ Nomor                            | Nama Jurnal                              |
|-----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|
| 1.  | 2007  | Ultrahigh Temperature Shift WGS Catalysts to Increase Hydrogen Yield from Biomass Gasification                                                | Vol <b>129</b> : 264-<br>275             | Catalysis Today                          |
| 2.  | 2007  | Production of Hydrogen by Steam<br>Reforming of Glycerin over Alumina<br>Supported Metal Catalysts                                            | Vol <b>129</b> : 355-<br>364.            | Catalysis Today                          |
| 3.  | 2007  | Glycerin Steam Reforming for Hydrogen Production                                                                                              | Vol. <b>50(2)</b> : 591–595              | Transaction of ASABE                     |
| 4.  | 2007  | A thermodynamic analysis of hydrogen production by steam reforming of glycerol                                                                | Vol <b>32</b> : 2875 – 2880.             | International Journal of Hydrogen Energy |
| 5.  | 2007  | A Comparative Thermodynamic and<br>Experimental Analysis on Hydrogen<br>Production by Steam Reforming of<br>Glycerin                          | Vol. <b>21(4)</b> : 2306–2310            | Energy and Fuels                         |
| 6.  | 2008  | Hydrogen production from glycerin by steam reforming over nickel catalysts                                                                    | Vol. <b>33</b> : 1097–1100.              | Renewable Energy                         |
| 7.  | 2008  | Conversion of glycerol to hydrogen via steam reforming process over nickel catalysts                                                          | Vol. <b>22</b> ( <b>3-4</b> ): 1220–1226 | Energy and Fuels                         |
| 8.  | 2009  | Upgrading of Syngas Derived from<br>Biomass Gasification: A<br>Thermodynamic Analysis.                                                        | Vol. <b>33(5)</b> : 882-<br>889          | Biomass and<br>Bioenergy                 |
| 9.  | 2009  | Hydrogen Production through Water Gas<br>Shift Reaction: Thermodynamic<br>Equilibrium vs. Experimental Results<br>over Supported Ni Catalysts | Vol 23 (6), pp<br>3097–3102              | Energy and Fuels                         |
| 10. | 2009  | Kinetics and Reactor Modeling of<br>Hydrogen Production from Glycerol via<br>Steam Reforming Process over Ni/CeO <sub>2</sub><br>Catalysts.   | Vol. 32(4): 541-<br>547.                 | Chemical<br>Engineering<br>Technology    |
| 11. | 2009  | Hydrogen Production from Glycerol: An Update                                                                                                  | Vol <b>50(10)</b> : 2600-2604            | Energy<br>Conversions and<br>Management  |
| 12. | 2010  | Analisis Energi Masukan-Keluaran pada<br>Proses Produksi Kelapa Sawit Kasar                                                                   | (accepted)                               | Agritech                                 |
| 13. | 2011  | Co-gasification of hardwood chips and crude glycerol in a pilot scale downdraft gasifier Bioresource Technology                               |                                          | Bioresources<br>Technology               |
| 14. | 2009  | Analisis ekonomi beberapa cara<br>pemanenan tebu: Studi kasus di PG<br>Bunga Mayang                                                           | Vol. 1(1): 1-8                           | Tek Tan                                  |

### VI. PENGALAMAN PENULISAN BUKU

Urutkan judul buku yang pernah diterbitkan selama 5 tahun terakhir dimulai dari buku yang paling relevan menurut Saudara.

| No. | Tahun | Judul Buku | Jumlah<br>Halaman | Penerbit |
|-----|-------|------------|-------------------|----------|
|     |       |            |                   |          |

#### VII. PENGALAMAN PEROLEHAN HKI

*Urutkan judul HKI yang pernah diterbitkan 5-10 tahun terakhir.* 

| No. | Tahun | Judul/Tema HKI | Jenis | Nomor P/ID |
|-----|-------|----------------|-------|------------|
|     |       |                |       |            |

### VIII PENGALAMAN MERUMUSKAN KEBIJAKAN PUBLIK/REKAYASA SOSIAL LAINNYA

Urutkan judul rumusan kebijakan/rekayasa sosial lainnya yang pernah dbuat/ditemukan selama 5 tahun terakhir.

| No. | Tahun | Judul/Tema/Jenis Rekayasa Sosial Lainnya yang Telah Diterapkan | Tempat<br>Penerapan | Respons<br>Masyarakat |
|-----|-------|----------------------------------------------------------------|---------------------|-----------------------|
|     |       |                                                                |                     |                       |

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak-sesuaian dengan kenyataan, saya sanggup menerima risikonya.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah Penelitian Strategis Nasional.

Bandar Lampung, 25 April 2011 Pengusul,

(<u>Dr. Ir. Agus Haryanto, M.P</u>) NIP. 196505271993031002

## LAMPIRAN 2: Biodata Pengusul Penelitian Strategis Nasional

## I IDENTITAS DIRI

| 1.1  | Nama Lengkap (dengan gelar)   | Dr. Ir. Udin Hasanudin, M.T. L/P                    |
|------|-------------------------------|-----------------------------------------------------|
| 1.2  | Jabatan Fungsional            | Lektor Kepala                                       |
| 1.3  | NIP/NIK/No. Identitas lainnya | 196401061988031002                                  |
| 1.4  | Tempat dan Tanggal Lahir      | Cirebon, 6 Januari 1964                             |
| 1.5  | Alamat Rumah                  | Jl. Flamboyan Blok C No. 332, Perumahan Bataranila, |
|      |                               | Bandar Lampung 35144                                |
| 1.6  | Nomor Telepon/Faks            | 0721-781081                                         |
| 1.7  | Nomor HP                      | 0813-6932-2347                                      |
| 1.8  | Alamat Kantor                 | Jl. Sumantri Brojonegoro No. 1, Gedong Meneng,      |
|      |                               | Bandar Lampung 35145                                |
| 1.9  | Nomor Telepon/Faks            | 0721-781823; 0721-700682                            |
| 1.10 | Alamat e-mail                 | udinha@unila.ac.id; udinhasan@yahoo.com             |
| 1.11 | Mata Kuliah yg diampu         | 1. Pengelolaan Limbah Agroindustri                  |
|      |                               | 2. Satuan Operasi Agroindustri                      |
|      |                               | 3. Manajemen Lingkungan Agroindustri                |

## II RIWAYAT PENDIDIKAN

| 2.1 Program:    | S-1                        | S-2                   | S-3                 |
|-----------------|----------------------------|-----------------------|---------------------|
| 2.2 Nama PT     | IPB                        | ITB                   | Totyohashi          |
|                 |                            |                       | University of       |
|                 |                            |                       | Technology, Japan   |
| 2.3 Bidang Ilmu | Teknologi Industri         | Teknik Kimia          | Environmental and   |
|                 | Pertanian                  |                       | Life Engineering    |
| 2.4 Tahun       | 1982                       | 1990                  | 2002                |
| Masuk           |                            |                       |                     |
| 2.5. Tahun      | 1986                       | 1993                  | 2005                |
| Lulus           |                            |                       |                     |
| 2.6 Judul       | Produksi asam sitrat dari  | Pengolahan limbah     | Study on Microbial  |
| Skripsi/        | tetes tebu menggunakan     | cair pabrik minyak    | Community Structure |
| Tesis/Disertasi | system fermentasi          | kelapa sawit dengan   | and Pollutant       |
|                 | terendam                   | bioreaktor unggun     | Purification in     |
|                 |                            | fluidisasi anaerobik  | Coastal Sediment    |
|                 |                            | dua tahap             |                     |
| 2.7. Nama       | Prof. Dr. Ir. Azis Darwis, | Prof. Dr. Ir. Tjandra | Prof. Koichi Fujie  |
| Pembimbing/     | M.Sc.                      | Setiadi, M.Eng.       |                     |
| Promotor        |                            |                       |                     |

## III PENGALAMAN PENELITIAN (Bukan Skripsi, Tesis, maupun Disertasi)

Urutkan judul penelitian yang pernah dilakukan selama 5 tahun terakhir dimulai dari penelitian yang paling relevan menurut Saudara.

| No.  | Tahun  | Judul Penelitian                               | Pend         | anaan         |
|------|--------|------------------------------------------------|--------------|---------------|
| INO. | 1 anun | Judui Feliciitiaii                             | Sumber*      | Jml (Juta Rp) |
| 1    | 2011   | Analisis tekno-ekonomi pemanfaatan air limbah  | Balitbang    | 97,0          |
|      |        | ITTARA untuk produksi biogas                   | ESDM         |               |
| 2    | 2010   | Demo plan produksi biogas dari air limbah      | Balitbang    | 395,0         |
|      |        | ITTARA (skala 3600 m3)                         | ESDM         |               |
| 3    | 2009   | Pemanfaatan Air Limbah Agroindustri Kelapa     | Hibah        | 94,0          |
|      |        | Sawit Sebagai Sumber Energi Terbarukan         | Strategis    |               |
|      |        |                                                | Nasional     |               |
| 4    | 2008   | Pemanfaatan Air Limbah Tapioka Sebagai         | KKP3T,       | 135,9         |
|      |        | Sumber Bioenergi di Industri Tapioka Rakyat    | Departemen   |               |
|      |        |                                                | Pertanian RI |               |
| 5    | 2007   | Optimasi Fermentasi Air Limbah Tapioka Sebagai | KKP3T,       | 99,2          |
|      |        | Sumber Biogas                                  | Departemen   |               |
|      |        |                                                | Pertanian RI |               |
| 6    | 2005-  | Joint Research on Agro-Industry Liquid Waste   | NEDO,        | 3.650,0       |
|      | 2006   | Treatment Technology in Indonesia, For         | Japan        |               |
|      |        | Development of Closed System for Plantations   |              |               |

Tuliskan sumber pendanaan: PDM, SKW, Fundamental Riset, Hibah Bersaing, Hibah Pekerti, Hibah Pascasarjana, RAPID, atau sumber lainnya.

#### IV. PENGALAMAN PENGABDIAN KEPADA MASYARAKAT

Urutkan judul pengabdian kepada masyarakat yang pernah dilakukan selama 5 tahun terakhir dimulai dari yang paling relevan menurut Saudara.

| No. | Tahun | Judul Pengabdian Kepada Masyarakat              | Pen      | danaan        |
|-----|-------|-------------------------------------------------|----------|---------------|
| NO. | Tanun | Judui Feligabulan Kepada Wasyarakat             | Sumber*  | Jml (Juta Rp) |
| 1   | 2011  | Optimalisasi Penggunaan Biogas Sebagai Bio-     | Mandiri  | 5             |
|     |       | Energi Alternatif di Desa Bogorejo, Kec. Gedong |          |               |
|     |       | Tataan, Kab. Tanggamus                          |          |               |
| 2   | 2011  | In house training dalam bidang "Waste Water     | PT. GGPC | 7,6           |
|     |       | Treatment" PT. Great Giant Pineapple Co. (PT.   |          |               |
|     |       | GGPC)                                           |          |               |
| 3   | 2010  | Percontohan Pembuatan Biogas dari Limbah        | PNBP-    | 3,5           |
|     |       | Ternak untuk Keperluan Rumah Tangga di Dusun    | Unila    |               |
|     |       | 12, Way Tebu, Kec. Gisting Atas, Kab.           |          |               |
|     |       | Tanggamus                                       |          |               |

| 4 | 2010 | Peningkatan kinerja Biogas Reactor PT. Medco   | PT. MEL  | 74 |
|---|------|------------------------------------------------|----------|----|
|   |      | Ethanol Lampung (PT. MEL).                     |          |    |
| 5 | 2010 | Peningkatan kinerja Anaerobic Lagoon PT. Great | PT. GGPC | 45 |
|   |      | Giant Pineapple Co. (PT. GGPC)                 |          |    |

Tuliskan sumber pendanaan: Penerapan Ipteks, Vucer, Vucer Multitahun, UJI, Sibermas, atau sumber lainnya.

# V PENGALAMAN PENULISAN ARTIKEL ILMIAH DALAM JURNAL (Tidak termasuk Makalah Seminar/*Proceedings*, Artikel di Surat Kabar)

Urutkan judul artikel ilmiah yang pernah diterbitkan selama 5 tahun terakhir dimulai dari artikel yang paling relevan menurut Saudara.

| No. | Tahun | Judul Artikel Ilmiah                       | Volume/ Nomor | Nama Jurnal       |
|-----|-------|--------------------------------------------|---------------|-------------------|
| 1.  | 2009  | Pengaruh watu tinggal hidrolik             | 8:2, 82-90    | Ketenagalistrikan |
|     |       | terhadap produktivitas biogas              |               | dan Energi        |
|     |       |                                            |               | Terbarukan        |
| 2.  | 2010  | Rekayasa dan Uji Kinerja Reaktor           | 9:1, 143-155  | Ketenagalistrikan |
|     |       | Biogas Sistem <i>Colar</i> pada Pengolahan |               | dan Energi        |
|     |       | Limbah cair Industri Tapioka               |               | Terbarukan        |
| 3.  | 2010  | Methane Emission from Anaerobic            | 15:2, 79-83.  | Journal of        |
|     |       | Pond of Tapioca Starch Extraction          |               | Ecotechnology     |
|     |       | Wastewater in Indonesia                    |               | Research          |
| 4.  | 2010  | Improvement potential for net energy       | 34:12, 1818-  | Biomass and       |
|     |       | balance of biodiesel derived from palm     | 1824.         | Bioenergy         |
|     |       | oil: A case study from Indonesia practice  |               |                   |

#### VI. PENGALAMAN PENULISAN BUKU

Urutkan judul buku yang pernah diterbitkan selama 5 tahun terakhir dimulai dari buku yang paling relevan menurut Saudara.

| No. | Tahun | Judul Buku                               | Jumlah  | Penerbit             |
|-----|-------|------------------------------------------|---------|----------------------|
|     |       |                                          | Halaman |                      |
| 1   | 2009  | Pedoman Pemanfaatan Limbah Industri      | 46      | Kementrian Negara    |
|     |       | Pengolahan Tapioka (Program              |         | Lingkungan Hidup, RI |
|     |       | Agroindustry towards Zero Waste)         |         |                      |
| 2   | 2009  | Pedoman Pengelolaan Limbah Kegiatan      | 44      | Kementrian Negara    |
|     |       | Peternakan dan Rumah Pemotongan          |         | Lingkungan Hidup, RI |
|     |       | Hewan (Program Agroindustry towards Zero |         |                      |
|     |       | Waste)                                   |         |                      |
| 3   | 2009  | Pedoman Pemanfaatan dan Pengelolaan      | 49      | Kementrian Negara    |
|     |       | Limbah Kelapa Sawit (Program             |         | Lingkungan Hidup, RI |
|     |       | Agroindustry towards Zero Waste)         |         |                      |

| 4 | 2010 | Pedoman Pemanfaatan dan Pengelolaan  | 36 | Kementrian Negara    |
|---|------|--------------------------------------|----|----------------------|
|   |      | Limbah Industri Gula (Program        |    | Lingkungan Hidup, RI |
|   |      | Agroindustry towards Zero Waste)     |    |                      |
| 5 | 2010 | Penerapan Pedoman Pengelolaan Limbah | 47 | Kementrian Negara    |
|   |      | Agroindustri Tapioka (Program        |    | Lingkungan Hidup, RI |
|   |      | Agroindustry towards Zero Waste)     |    |                      |
| 6 | 2010 | Penerapan Pedoman Pengelolaan Limbah | 48 | Kementrian Negara    |
|   |      | Agroindustri Kelapa Sawit (Program   |    | Lingkungan Hidup, RI |
|   |      | Agroindustry towards Zero Waste)     |    |                      |

#### VII. PENGALAMAN PEROLEHAN HKI

Urutkan judul HKI yang pernah diterbitkan 5-10 tahun terakhir.

| No. | Tahun | Judul/Tema HKI | Jenis | Nomor P/ID |
|-----|-------|----------------|-------|------------|
|     |       |                |       |            |

### VIII PENGALAMAN MERUMUSKAN KEBIJAKAN PUBLIK/REKAYASA SOSIAL LAINNYA

*Urutkan judul rumusan kebijakan/rekayasa sosial lainnya yang pernah dbuat/ditemukan selama 5 tahun terakhir.* 

| No. | Tahun | Judul/Tema/Jenis Rekayasa Sosial Lainnya yang Telah Diterapkan | Tempat<br>Penerapan | Respons<br>Masyarakat |
|-----|-------|----------------------------------------------------------------|---------------------|-----------------------|
|     |       |                                                                |                     |                       |

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak-sesuaian dengan kenyataan, saya sanggup menerima risikonya.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah Penelitian Strategis Nasional.

Bandar Lampung, 25 April 2011 Pengusul,

(<u>Dr. Ir. Udin Hasanudin, M.T</u>) NIP. 196401061988031002

## Biodata Peneliti

## A. Identitas Diri

| 1.  | Nama Lengkap                     | Ir. RibutSugiharto, M.Sc.                                                                                                                                               |
|-----|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.  | Jenis Kelamin                    | Laki-laki                                                                                                                                                               |
| 3.  | Jabatan Fungsional               | Lektor                                                                                                                                                                  |
| 4.  | Jabatan Struktural               |                                                                                                                                                                         |
| 5.  | NIP                              | 131898575                                                                                                                                                               |
| 6.  | NIDN                             | 19660314199003100                                                                                                                                                       |
| 7.  | Tempat/Tanggal Lahir             | Seputih Banyak/14 Maret 1966                                                                                                                                            |
| 8.  | Alamat Rumah                     | Jl. Pramuka RBP Blok R/No. 4 Raja Basa Bandar<br>Lampung 35144                                                                                                          |
| 9.  | NomorTelpon/Faks/HP              | 0721708658/082185001727                                                                                                                                                 |
| 10. | Alamat Kantor                    | Jurusan Teknologi Hasil Pertanian, Fakultas Pertanian<br>Universitas Lampung, Jl. Sumantri Brojonegoro No. 1<br>Bandar Lampung 35145                                    |
| 11. | Nomor Telpon/Faks                | 0721700682                                                                                                                                                              |
| 12. | Alamat Email                     | sugiharto_thp@unila.ac.id                                                                                                                                               |
| 13. | Lulusan yang Telah<br>Dihasilkan | S1 = 25 orang, $S2 = 0$ orang                                                                                                                                           |
| 14. | Mata kuliah yang<br>Diampu       | <ol> <li>Teknologi Minyak dan Lemak Pangan (S1 dan S2)</li> <li>Satuan Operasi I</li> <li>Kimia Hasil Pertanian</li> <li>Pengembangan Produk Hasil Pertanian</li> </ol> |

## B. RiwayatPendidikan

|                      | S1                              | S2                                     |
|----------------------|---------------------------------|----------------------------------------|
| Nama Perguruan       | Universitas Lampung             | University of Illinois (Urbana-        |
| Tinggi               |                                 | Champaign)                             |
| Bidang Ilmu          | Ilmu Pangan                     | Ilmu Pangan                            |
| Tahun Masuk/Lulus    | 1984/1988                       | 1993/1996                              |
| Judul Skripsi/Thesis | Pengaruh Kualitas Lada Hitam    | Production of Mono- and Diglicerides   |
|                      | Terhadap Karakteristik          | as Emulsifier from Butterfat Fractions |
|                      | Oleoresin yang Dihasilkan       | by Thermal Glyserolisis                |
| NamaPembimbing       | Prof. Dr. Ir. Tirza Hanum, M.S. | Prof. Dr. Edward G. Perkins            |

## C. Pengalaman Penelitian

|     |       |                                                     |        | anaan     |
|-----|-------|-----------------------------------------------------|--------|-----------|
| No. | Tahun | JudulPenelitian                                     | Sumber | Jumlah    |
|     |       |                                                     |        | (juta Rp) |
| 1.  | 1999  | Pengaruh Jenis dan Konsentrasi Katalisator Terhadap | Dikti  | 5         |
|     |       | Prodduksi dan Mutu Bahan Pengemulsi dari Beberpa    |        |           |
|     |       | Minyak Nabati                                       |        |           |
| 2.  | 1998  | Produksi Mono- dan Digliserida Secara Gliserolisis  | Dikti  | 5         |
|     |       | Panas dari Minyak Sawit dan Minyak Inti Sawit       |        |           |
| 3.  | 1997  | Produksi Mono- dan Digliserida Sebagai Bahan        | Dikti  | 5         |
|     |       | Pengemulsi dari Minyak Kelapa                       |        |           |
| 4.  | 1995  | The Effect of Soy Protein Concentrate to the Cheese | UIUC   |           |
|     |       | Quality                                             |        |           |
| 5.  | 1994  | Analysis of Heat Resistant of Lactic Acid Bacteria  | UIUC   |           |
| "   |       | Encapsulated by Trehalose                           |        |           |

## D. Pengalaman Pengabdian Kepada Masyarakat

|     | Tahu |                                            | Pendanaan |           |
|-----|------|--------------------------------------------|-----------|-----------|
| No. |      | JudulPenelitian                            | Sumber    | Jumlah    |
|     | n    |                                            |           | (juta Rp) |
| 1.  | 2011 | Pelatihan Pengolahan Keripik Buah-Buahan   | Dikti     | 5         |
|     |      | Menggunakan Penggoreng Vakum Sebagai Upaya |           |           |
|     |      | Untuk Mengembangkan Budaya Wirausaha Di    |           |           |
|     |      | Kabupaten Tanggamus                        |           |           |
| 2.  | 2000 | Pembuatan Minyak Kelapa Secara Fermentasi  | Dikti     | 5         |

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak-sesuaian dengan kenyataan, saya sanggup menerima risikonya.

Bandar Lampung, 26 Maret 2012.

Pengusul,

(Ir. RibutSugiharto, M.Sc) NIP 196603141990031000

# **LAMPIRAN**

# KONSEP ZERO EMISSION PADA INDUSTRI KELAPA SAWIT

# KONSEP ZERO EMISSION PADA INDUSTRI KELAPA SAWIT (DRAFT)

Agus Haryanto Udin Hasanudin Ribut Sugiharto



UNIVERSITAS LAMPUNG OKTOBER 2012

#### Pendahuluan

Kelapa sawit merupakan sumber pangan dan gizi utama penduduk dan telah memberi manfaat dalam peningkatan pendapatan petani dan masyarakat, menciptakan nilai tambah di dalam negeri, penyerapan tenaga kerja, pengembangan wilayah industri, proses alih teknologi, dan untuk ekspor sebagai penghasil devisa non migas yang penting bagi Indonesia. Dari sisi upaya pelestarian lingkungan hidup, tanaman kelapa sawit yang merupakan tanaman tahunan dapat berperan dalam penyerapan gas rumah kaca, seperti CO<sub>2</sub>, dan mampu menghasilkan O<sub>2</sub> atau jasa lingkungan lainnya, seperti eko-wisata (Tim INDEF, 2007).

Perkembangan industri kelapa sawit di Indonesia yang begitu cepat sangat dipengaruhi oleh permintaan dunia yang sangat besar akan produk-produk kelapa sawit khususnya untuk keperluan pangan (minyak dan lemak). Pertumbuhan produksi kelapa sawit di Indonesia diperkirakan mencapai 7,8 persen per tahun. Perkembangan kelapa sawit dimulai dari pulau Sumatera, kemudian tersebar ke Kalimantan, Sulawesi, dan Papua. Di Sumatera, kegiatan ekonomi utama kelapa sawit memberikan kontribusi ekonomi yang besar karena 70 persen lahan penghasil kelapa sawit di Indonesia berada di Sumatera sehingga membuka lapangan pekerjaan yang luas. Sekitar 42 persen lahan kelapa sawit dimiliki oleh petani kecil. Perkembangan industri kelapa sawit sangat berperan besar dalam pertumbuhan daerah-daerah terpencil dan telah meningkatkan standar hidup penduduk pedesaan.

Kelapa sawit adalah sumber minyak nabati terbesar yang dibutuhkan oleh banyak industri di dunia. Permintaan kelapa sawit dunia terus mengalami pertumbuhan sebesar 5 persen per tahun. Indonesia memproduksi sekitar 43 persen dari total produksi minyak mentah sawit atau CPO (*Crude Palm Oil*) di dunia.

Di samping pertumbuhan produksi kelapa sawit Indonesia yang cukup tinggi, industri kelapa sawit Indonesia masih menghadapi banyak kedala yang menyebabkan produktivitas masih relatif rendah dan kapasitas industri pengolahan lanjut dalam mata rantai industri kelapa sawit, yang meliputi penyulingan, fraksinasi, oleo kimia, dan biodiesel,masih kurang memadai. Saat ini industri kelapa sawit di Indonesia masih bertumpu pada menghasilkan produk utama berupa CPO. Pengembangan produk turunan CPO masih terkendala pada berbagai aspek; teknologi, ekonomi, dan pasar.

Produktivitas kebun kelapa sawit di Indonesia saat ini hanya sekitar 3,8 ton CPO/ha per tahun, padahal potensinya bisa mencapai 7 ton/ha per tahun. Saat ini beberapa upaya telah

dilakukan untuk meningkatkan produktivitas tersebut, antara lain melalui peningkatan penggunaan pupuk organik/kompos tandan kosong kelapa sawit. Upaya ini mempunyai prospek yang baik tetapi belum ada data hasil penelitian yang akurat. Evaluasi terhadap peningkatan produktivitas dan aspek keberlanjutannya juga perlu dilakukan.

Pemanfaatkan limbah atau hasil samping agroindustri kelapa sawit sampai saat ini juga belum optimal. Potensi energi dari air limbah sampai saat ini belum dimanfaatkan, padahal selain dapat menghasilkan energi terbarukan juga dapat mengurangi emisi gas rumah kaca (GRK) yang menjadi salah satu titik lemah agroindustri kelapa sawit di dunia international, khususnya Eropa, Amerika, Jepang, dan Australia.

Pemetaaan tentang potensi agroindustri kelapa sawit dilihat dari sisi efisiensi pemanfaatan sumber daya alam (biomasa), penguasaan teknologi dari hulu sampai hilir, dan sebaran sumber daya manusia ahli di bidang tersebut sangat diperlukan dalam rangka merumuskan kebijakan secara komprehensif untuk mencari terobosan baru atau inovasi dalam pengembangan agroindustri kelapa sawit di Sumatera. Diharapkan langkah strategis ini dapat konsep produksi tanpa emisi (*zero emission*) yang dapat meningkatkan nilai tambah (baik ekonomi, social, dan lingkungan) bagi petani dan agroindustri kelapa sawit.

#### Industri Kelapa Sawit Indonesia

Indonesia merupakan penghasil utama minyak kelapa sawit di dunia, mencapai 25,40 juta ton atau sekitar 48,6 % dari total produksi minyak sawit dunia (Tabel 1). Indonesia bersama Malaysia menghasilkan sekitar 80% minyak sawit dunia.

Tabel 1. Produksi minyak sawit dunia (juta ton)

| Negara                     | 2009  | 2010  | 2011  | 2012F |
|----------------------------|-------|-------|-------|-------|
| Indonesia                  | 21,00 | 22,10 | 23,90 | 25,40 |
| Malaysia                   | 17,57 | 16,99 | 18,91 | 19,20 |
| Amerika Tengah dan Selatan | 2,40  | 2,33  | 2,73  | 2,87  |
| Negara lain                | 4,30  | 4,44  | 4,64  | 4,81  |
| Dunia                      | 45,27 | 45,86 | 50,18 | 52,28 |

Industri kelapa sawit di Indonesia menunjukkan perkembangan yang sangat cepat dengan pertumbuhan rata-rata 4,96% (Tabel 2). Meskipun produktivitas kelapa sawit Indonesia

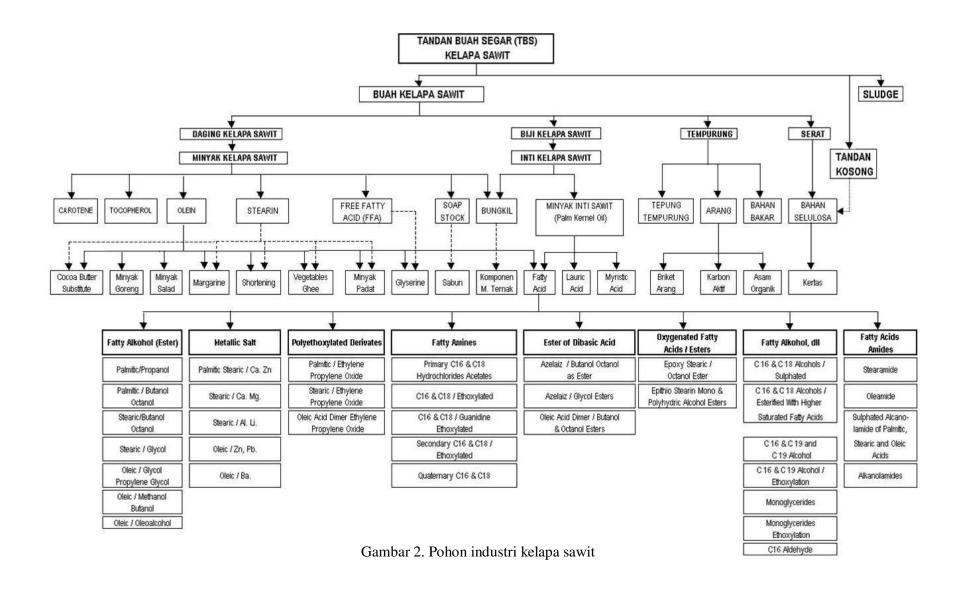
mengalami pertumbuhan 2,08%, total produksi kelapa sawit (CPO) mengalami pertumbuhan signifikan mencapai 9,07%. Cerahnya prospek komoditi minyak kelapa sawit dalam perdagangan minyak nabati dunia telah mendorong pemerintah Indonesia untuk memacu pengembangan areal perkebunan kelapa sawit. Industri kelapa sawit tumbuh pesat dan pada tahun 2012 ini produksi minyak kelapa sawit diproyeksikan tumbuh 6,4% sehingga produksi minyak sawit Indonesia akan mencapai 25 juta ton.

Tabel 2. Perkembangan luas, produksi, dan produktivitas kelapa sawit Indonesia (ISPO Commission, 2012)

| Tahun         | Luas (ha) | Produksi   | Produktivitas |
|---------------|-----------|------------|---------------|
| Tanun         | Rakyat    | (ton CPO)  | (kg CPO/ha)   |
| 2003          | 5.283.557 | 10.440.834 | 3.045,24      |
| 2004          | 5.717.026 | 12.326.419 | 3.131,73      |
| 2005          | 5.950.321 | 14.619.830 | 3.335,52      |
| 2006          | 6.284.960 | 16.569.927 | 3.390,90      |
| 2007          | 6.853.916 | 17.796.374 | 3.399,03      |
| 2008          | 7.333.707 | 19.400.794 | 3.478,15      |
| 2009          | 7.534.581 | 21.390.326 | 3.516,97      |
| 2010          | 8.110.447 | 21.958.120 | 3.590,92      |
| 2011*)        | 8.908.399 | 23.899.998 | 3.797,32      |
| % peningkatan | 4,96      | 9,07       | 2,08          |

Luas areal kelapa sawit di Indonesia kini mencapai 8,9 juta ha dengan 70% di antaranya berada di Pulau Sumatera (Tabel 3). Riau merupakan provinsi dengan luas areal terbesar dan jumlah industri kelapa sawit terbanyak (Gambar 1) di Indonesia.

Kelapa sawit sebagai tanaman penghasil minyak sawit dan inti sawit merupakan salah satu primadona tanaman perkebunan yang yang strategis (Gumbira-Said 2010) dan menjadi sumber penghasil devisa bagi Indonesia. Tahun 2006 jumlah ekspor minyak sawit dan produk turunannya meningkat menjadi 12,1 juta ton dengan nilai sekitar USD 5,4 miliar (Gumbira-Said, 2010). Pada tahun 2010, volume ekspor kelapa sawit mencapai 16,29 juta ton dengan nilai total 13,47 milyar USD. Ekspor kelapa sawit masih didominasi produk minyak sawit kasar atau CPO (*crude palm oil*) sebesar 9,45 juta ton dengan nilai 7,65 milyar USD


dan produk lain (RBD-Olein, RBD-Stearin, dan produk turunan lainnya) sebesar 6,85 juta ton dengan nilai 5,82 milyar USD (Direktorat Jenderal Perkebunan, 2012).

Tabel 3. Sebaran luas perkebunan kelapa sawit di Indonesia (BPS, 2011)

| Provinsi/Province             | 2008       | 2009       | 2010       |
|-------------------------------|------------|------------|------------|
| Aceh                          | 564 748    | 693 003    | 709 004    |
| Sumatera Utara                | 3 882 401  | 3 862 399  | 3 981 649  |
| Sumatera Barat                | 961 537    | 896 301    | 905 113    |
| Riau                          | 4 815 885  | 5 311 368  | 5 462 482  |
| Kepulauan Riau                | 10 638     | 11 321     | 11 321     |
| Jambi                         | 1 626 461  | 1 499 891  | 1 530 821  |
| Sumatera Selatan              | 1 891 425  | 2 313 508  | 2 380 544  |
| Kepulauan Bangka Belitung     | 412 938    | 446 555    | 466 472    |
| Bengkulu                      | 560 271    | 735 977    | 751 933    |
| Lampung                       | 416 294    | 389 277    | 396 981    |
| Jawa Barat dan Banten         | 37 572     | 45 868     | 46 906     |
| Kalimantan Barat              | 1 124 388  | 1 331 659  | 1 373 165  |
| Kalimantan Tengah             | 1 295 729  | 1 798 102  | 1 828 662  |
| Kalimantan Selatan            | 891 057    | 1 041 367  | 1 051 534  |
| Kalimantan Timur              | 338 451    | 456 398    | 491 813    |
| Sulawesi Tengah               | 126 559    | 144 264    | 147 564    |
| Sulawesi Barat                | 325 814    | 260 527    | 266 382    |
| Sulawesi Selatan dan Tenggara | 32 111     | 28 162     | 28 776     |
| Papua                         | 89 515     | 124 389    | 126 998    |
| Indonesia                     | 19 400 794 | 21 390 326 | 21 958 120 |



Gambar 1. Sebaran industri kelapa sawit (unit) di Indonesia



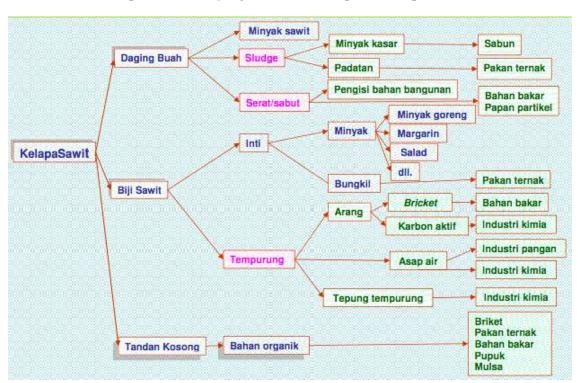
Industri minyak kelapa sawit merupakan salah satu industri strategis, karena berhubungan dengan sektor pertanian (*agro-based industry*) yang banyak berkembang di negara-negara tropis seperti Indonesia, Malaysia dan Thailand. Hasil industri minyak kelapa sawit bukan hanya minyak goreng saja, tetapi juga bisa digunakan sebagai bahan dasar industri lainnya seperti industri makanan, kosmetika dan industri sabun (Gambar 2).

Perkebunan kelapa sawit menghasilkan tandan buah segar (hulu) kemudian diolah menjadi minyak sawit mentah (hilir perkebunan sawit dan hulu bagi industri yang berbasiskan minyak sawit mentah). Disamping menghasilkan produk CPO, pengolahan tandan buah segar (TBS) juga menghasilkan produk Palm Kernel Oil (PKO). Produksi PKO meningkat seiring dengan meningkatnya produk CPO, yakni sekitar 10% dari CPO yang dihasilkan.

Dari minyak kelapa sawit (CPO) dan minyak inti sawit (PKO) dapat diproduksi berbagai jenis produk antara sawit yang digunakan sebagai bahan baku bagi industri hilirnya baik untuk kategori pangan ataupun non pangan. Diantara kelompok industri antara sawit termasuk didalamnya industri olein, stearin, oleokimia dasar (fatty acid, fatty alcohol, fatty amines, methyl esther, glycerol).

Pengembangan industri hilir kelapa sawit perlu dilakukan mengingat nilai tambah produk hilir sawit yang tinggi. Jenis industri hilir kelapa sawit spektrumnya sangat luas, hingga lebih dari 100 produk hilir yang telah dapat dihasilkan pada skala industri. Namun baru sekitar 23 jenis produk hilir (pangan dan non pangan) yang sudah diproduksi secara komersial di Indonesia. Beberapa produk hilir turunan CPO dan PKO yang telah diproduksi diantaranya untuk kategori pangan: minyak goreng, minyak salad, shortening, margarine, Cocoa Butter Substitute (CBS), vanaspati, vegetable ghee, food emulsifier, fat powder, dan es krim. Untuk kategori non pangan diantaranya adalah: surfaktan, biodiesel, dan oleokimia turunan lainnya.

Pengembangan industri hilir kelapa sawit untuk peningkatan nilai tambah. Adanya klaster industri berbasis minyak sawit mentah diharapkan memperkuat keterkaitan pada semua tingkatan rantai nilai (value chain) dari industri hulunya, mampu meningkatkan nilai tambah sepanjang rantai nilai dengan membangun visi dan misi yang selaras sehingga mampu meningkatkan produktivitas, efisiensi dan jenis sumber daya yang digunakan dalam industri, dan memfokuskan pada penggunaan sumber- sumber daya terbarukan (renewable resources).


## Konsep Zero Emission dan Aplikasinya pada Industri Kelapa Sawit

"Zero emission" merupakan konsep yang diluncurkan oleh Universitas PBB pada tahun 1994. Tujuan utama dari konsep ini terletak pada konstruksi sistem sosio-eonomik yang tidak menghasilkan limbah melalui kolaborasi di antara berbagai pelaku industri (Zero Emission Manual Drafting Committee, 2004). Kongkretnya, hal ini berarti bahwa limbah dari industri A akan digunakan sebagai bahan baku bagi industri B dan limbah yang dihasilkan industri B digunakan sebagai bahan baku bagi industri C dan seterusnya. Dengan membangun kluster industri terpadu yang memungkinkan optimalisasi pemanfaatan limbah, maka semua limbah akan tereliminasi. Untuk mewujudkan konsep ini ada dua pendekatan yang bisa dilakukan. Pertama, kita perlu mendesain dan menghasilkan barang-barang tanpa limbah. Kedua, jika pendekatan pertama tidak bisa dilakukan dan produk limbah dihasilkan, maka kita harus memanfaatkan limbah sebagai input yang bernilai tambah bagi barang atau industri lain. Hal ini dapat dilakukan dengan dalam suatu industri sehingga akan terbentuk siklus tertutup atau menciptakan kluster industri yang terkait yang memanfaatkan limbah sebagai sumberdaya.

Tujuan penting lainnya dari konsep "Zero emission" adalah peningkatan produktivitas sumberdaya melalui penggunaan energi dan sumberdaya secara lebih efektif di hulu di mana bahan baku dihasilkan dan barang-barang diproduksi, yang dibarengi dengan penurunan limbah hingga nol di hilir. Perlu ditekankan bahwa "Zero emission" pada dasarnya merupakan prinsip komprehensif untuk membangun suatu masyarakat berbasis daur ulang sumberdaya melalui kerjasama antar pelaku ekonomi.

Konsep zero emission merupakan perbaikan dari pendekatan pengelolaan limbah industri tanpa limbah yang dikenal dengan konsep "industri bersih" yang mulai dikembangkan pada tahun 1980. Menurut UNEP, industri bersih merupakan strategi pengelolaan lingkungan yang bersifat preventif dan terpadu yang diterapkan secara terus menerus pada proses produksi, produk dan jasa sehingga meningkatkan eko-efisiensi dan mengurangi terjadinya resiko terhadap manusia dan lingkungan. Konsep ini memiliki hierarchy di mana recycle harus dilakukan langsung (*in-pipe recycle*). Jadi penyelesaian masalah lingkungan ditekankan pada sumber pencemaran bukan pada akhir proses seperti pada *end-of pipe* treatment technology. Konsep ini meliputi pemanfaatan sumber alam secara efisien yang bermakna pula bagi penyusutan limbah yang dihasilkan, pencemaran, dan penyusutan risiko bagi kesehatan dan keselamatan manusiadan manusia.

Berkenaan dengan produksi minyak sawit yang sangat tinggi, akan dihasilkan beberapa limbah baik padat maupun cair yang harus dikelola dengan benar sehingga tidak menimbulkan permasalahan lingkungan. Pengelolaan limbah pabrik kelapa sawit menjadi sesuatu yang mendesak karena walaupun bukan merupakan limbah B3 tetapi mempunyai potensi sangat besar menimbukan pencemaran lingkungan bila tidak dikelola dengan baik. Pemanfaatan limbah pabrik kelapa sawit umumnya dilakukan secara parsial, limbah padatnya yang berupa cangkang dan serabut/fiber dimanfaatkan untuk menghasilkan steam dan listrik yang dipakai dalam proses produksi minyak kelapa sawit. Tandan kosong kelapa sawit umumnya dikembalikan ke kebun kelapa sawit untuk mulsa dan untuk memperbaiki kualitas Khusus untuk air limbahnya, setelah mengalami proses penguraian di Instalasi Pengolahan Air Limbah (IPAL) sebagian besar telah dimanfaatkan untuk menyiram tanaman kelapa sawit (land application). Beberapa upaya kini terus dilakukan untuk meningkatkan nilai guna dari pemanfaatan limbah pabrik kelapa sawit. Selain dimanfaatkan secara parsial/tunggal, beberapa limbah pabrik kelapa sawit seperti: tandan kosong, serabut (fibre), Solid decanter, abu ketel (furnace ash), air limbah dan sludge IPAL dimanfaatkan secara bersama untuk menghasilkan produk tertentu. Gambar 3 menunjukan berbagai produk yang dihasilkan dari memproses limbah yang dihasilkan oleh pabrik kelapa sawit (PKS).

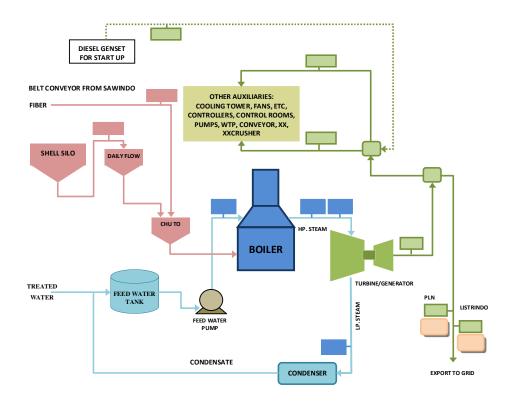


Gambar 3. Pohon pemanfaatan limbah kelapa sawit (Departemen Pertanian Republik Indonesia, 2006)

Konsep zero emission seharusnya dapat dilaksakan pada agroindustri, terutama pada indiustri kelapa sawit, karena kossep ini mempunyai prinsip dasar bahwa proses industri, terutama agroindustri, tidak menghasilkan limbah apapun, karena setiap hasil produksi dari industri akan menjadi bahan baku untuk industri lainnya. Melalui konsep ini, proses industri akan menghemat sumber daya alam, memperbanyak jenis produk, menciptakan lebih banyak lapangan kerja, serta mencegah pencemaran dan kerusakan alam.

Applikasi zero emssion pada industri kelapa sawit dapat meningkatkan efisiensi dan daya saing karena semua sumber daya digunakan secara maksimal, yaitu memproduksi lebih banyak dengan sumber daya yang sama. Kegiatan kebun dan pabrik kelapa sawit memungkinkan pelaksanaan zero emission, karena limbah yang dihasilkan dari kegiatan kebun dan pabrik kelapa sawit dapat dimanfaatkan kembali. Oleh sebab itu zero emission dapat dipandang sebagai suatu konsep standar produksi baru.

## Pemanfaatan limbah padat kelapa sawit untuk produksi listrik (Studi Kasus di PT. Listrindo Kencana, Bangka)


PT. Listrindo Kencana adalah perusahaan yang bergerak dalam pembangkitan listrik tenaga uap dengan bahan bakar biomassa. Listrindo Kencana dibangun dengan kapasitas 6 MW (Gambar 4). Bahan kakar yang digunakan untuk PLTU ini sepenuhnya berasal dari biomassa limbah kelapa sawit. Bahan bakar tersebut terdiri dari campuran cangkang (*shell*) dan tandan kosong (*TKS*) yang telah dicacah terlebih dahulu.

Sistem pembangkit lidtrik tenaga biomassa ini menggunakan sistem turbin yang dilengkapi dengan kondenser dan pembangkit tenaga listrik (turbo generator dan *transformator step-up*) seperti diperlihatkan pada Gambar 5.

Steam digunakan untuk memutar turbin untuk membangkitkan listrik. Steam disalurkan ke turbin melalui pipa daya, sewaktu melewati turbin, steam mengalami penurunan tenaga dalam bentuk penurunan tekanan dan temperatur secara bertingkat, lalu didinginkan di kondensor oleh air pendingin melalui mekanisme alat pertukaran panas (*heat exchanger*), sedemikian sehingga steam tersebut berubah menjadi air yang disebut air kondensat. Selanjutnya air kondensat dikembalikan ke boiler untuk kemudian dijadikan steam kembali. Demikian seterusnya terjadi sistem tertutup air-steam-air.



Gambar 4. Pembangkit Listrik Tenaga Uap Listrindo Kencana (Bangka) menggunakan bahan bakar limbah padat kelapa sawit (cangkang, fiber, dan janjang kosong).



Gambar 5. Diagram pemanfaatan limbah padat industri sawit (PT. Sawindo Kencana) untuk menghasilkan energi listrik (PT. Listrindo Kencana) dan dijual ke PLN untuk masyarakat luas.

Dengan sistem tertutup tersebut, maka kebutuhan air menjadi relatif kecil, dimana penambahan sekitar 10% dari berat steam yang dihasilkan. Air pendingin setelah melewati kondensor temperaturnya naik (biasanya 8-10°C) didorong ke *cooling tower*. Di *cooling tower* ini air dikucurkan dari atas hingga jatuh ke dalam reservoir atau bak penampung. Air pendinginan yang sedang mengucur dari atas didinginkan oleh aliran udara yang ditarik ke atas dibuang ke atmosfer oleh blower yang berada tepat di bagian atas *cooling tower*. Sistem kerja pendingin seperti ini disebut type *counter flow* (arah air jatuh dan arah angin berlawanan). Selanjutnya air pendingin yang tertampung di dalam reservoir dipompakan kembali ke kondensor untuk melakukan proses pendinginan kembali. Demikian seterusnya terjadi siklus tertutup air dingin-air hangat-air dingin.

Putaran poros turbin digandeng langsung (direct coupling) dengan poros generator AC (alternator), sehingga menghasilkan tenaga listrik. Tegangan listrik yang dihasilkan adalah 6300 Volt/3Ø. Agar dapat dikoneksikan ke jaringan tingkat tinggi PLN, tegangan tersebut dinaikkan (step up) menggunakan transformator 3 fase menjadi sebesar 20 KV. Dari gardu PLN tersebut listrik dialirkan untuk memenuhi kekurangan kebutuhan listrik yang ada di Cabang Bangka melalui Panel Listrik PLTD Merawang dan Mentok. Jaringan PLN tersebut merupakan jaringan listrik di Kabupaten Bangka yang meliputi 5 Kecamatannya, yaitu: Kecamatan Tempilang, Kelapa, Simpangteritip, Muntok, dan Jebus. Apabila PLTU biomassa ini beroperasi maka jaringan yang ada di 5 kecamatan tersebut akan dapat dialiri listrik dari PLTU biomassa PT. Listrindo Kencana.

Komposisi limbah padat yang digunakan di PLTU Biomassa PT. Listrindo Kencana adalah Serabut PKS, Serabut olahan TKS dan Cangkang sawit dengan komposisi 20%:20%:60%. Kebutuhan biomassa campuran tersebut untuk bahan bakar PLTU biomassa (PT. LK) adalah sekitar 2500 - 3000 Ton per hari untuk dapat menghasilkan listrik seperti yang direncanakan. Limbah padat PT. Sawindo Kencana (serabut, cangkang, dan seluruh TKS yang sudah dicacah menjadi serabut TKS) tidak cukup untuk memenuhi kebutuhan tersebut. Suplay biomassa campuran dari PT. Sawindo Kencana hanya berkontribusi sekitar 20% saja dan 80% sisanya diambil dari PKS lain.

Setelah berjalan selama 2 tahun sejak 2007 dengan berbagai hambatan yang ada sehingga listrik yang dihasilkan tidak sesuai dengan rencana, PT Listrindo sebenarnya mendapatkan perhatian dari Pemerintah Daerah melalui rapat dengar pendapat di DPRD Bangka Barat pada hari Selasa tanggal 19 Januari 2010 mengenai penyediaan bahan bakar berupa cangkang.

Berdasarkan rapat tersebut akhirnya disepakati diantara masing-masing Perusahaan bahwa mulai tahun 2010 pasokan bahan bakar PLTU biomassa adalah:

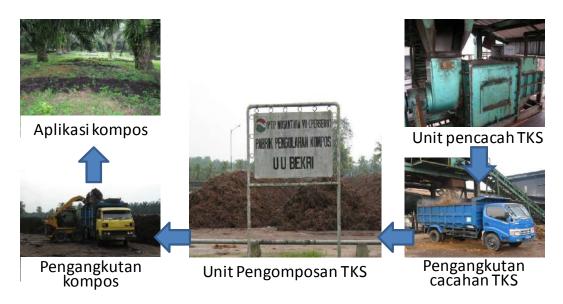
- a. PT. Gunung Maras Lestari sebanyak 8.000 12.000 ton per bulan
- b. PT. Gunung Sawit Bina Lestari sebanyak 6.000 8.000 ton per bulan
- c. PT. MP Leidong West Indonesia (Sinar mas Group) sebanyak 6.000 6.500 ton per bulan
- d. PT. Swara Mitra Sentosa (Mayora Group) sebanyak 2.000 ton per bulan
- e. PT. Sawindo Kencana sebanyak 500 ton per bulan

Dengan pasokan bahan baku seperti yang disepakati tersebut diharapkan bahwa pada tahun 2010 ini PLTU biomassa dapat menghasilkan listrik seperti yang diharapkan yaitu 6 MW, sehingga PLTU kedua yang direncanakan juga dapat di selesaikan pada tahun 2012.

PLTU biomassa yang telah dibangun ini diharapkan dapat menyediakan listrik dengan menggunakan bahan bakar terbarukan (biomassa industri kelapa sawit) dari sumber setempat. Pemanfaatan ini disatu sisi selain merupakan pengelolaan dampak dari pabrik kelapa sawit yang berbasis lingkungan juga merupakan upaya optimalisasi penggunaan sumber daya alam sekaligus membantu membantu mengatasi krisis listrik yang terjadi di Bangka.

Menurut Kurniawati (2010), ketersediaan bahan baku, regulasi/kebijakan dan teknologi untuk pemanfaatan biomassa kelapa sawit sebagai bahan bakar pembangkit listrik bukan lagi merupakan hambatan. Faktor-faktor yang menyebabkan belum dimanfaatkannya limbah padat agroindustri kelapa sawit sebagai bahan bakar PLTU biomassa untuk menghasilkan listrik bagi masyarakat umum adalah:

a. Belum adanya dukungan dari Pemerintah dalam hal implementasi pelaksanaan atas regulasi/peraturan atau kebijakan yang telah dibuatnya (baik dari dukungan finansial termasuk subsidi, pajak ataupun insentif bagi pelaksana kegiatan energi terbarukan). Selama ini yang ada adalah bahwa suatu industri membangun PLTU biomassa sendiri dan menjual listrik yang dihasilkan kepada pihak PLN yang sudah mempunyai jaringan listrik. Yang ideal adalah diperlukan kerjasama dan koordinasi antara instansi (PLN, Departemen terkait) serta masyarakat dan Pemerintah setempat untuk membangun suatu jaringan listrik dari pemanfaatan limbah padat agroindustri kelapa sawit yang ada di daerahnya. Hal ini sangat penting untuk dilakukan agar memudahkan dalam hal beban kerja, masalah pendanaan, tanggung jawab serta manfaat-manfaat dari adanya jaringan tersebut sehingga program energi terbarukan


untuk listrik dapat terlaksana tidak hanya di daerah yang telah ada jaringan listrik dari PLN saja.

#### b. Faktor biaya atau pendanaan.

Telah diketahui bahwa penerapan energi terbarukan atau konservasi energi memerlukan modal awal (investasi) dan biaya pemeliharaan yang besar sehingga konservasi energi dalam hal ini adalah memanfaatkan limbah biomassa agroindustri kelapa sawit untuk mensubstitusi penggunaan bahan bakar fosil yang ada tidak menarik perhatian para penggunanya (dalam hal ini adalah pihak industri) meskipun sesungguhnya memberikan keuntungan dalam jangka panjang.

## 2. Pemanfaatan tandan kosong kelapa sawit untuk produksi kompos (Studi Kasus PTPN VII, Unit Usaha Bekri)

Pemanfaatan tandan kosong kelapa sawit untuk produksi kompos yang selanjutnya dimanfaatkan sebagai pupuk diperkebunan kelapa sawit telah dilakukan dibeberapa agroindustri kelapa sawit. PTPN VII Unit Usaha Bekri, Lampung telah memulai memanfaatkan tandan kosong kelapa sawit, memproduksi kompos, dan memanfaatkannya sebagai pupuk organik. Walaupun demikian, dampak dari penggunaan kompos terhadap peningkatan produksi buah kelapa sawit belum dikaji karena kegiatan ini masih relatif baru. Kegiatan pemanfaatan tandan kosong kelapa sawit untuk produksi dan pemanfaatan kompos di PTPN VII Unit Usaha Bekri diperlihatkan pada Gambar 6.



Gambar 6. Kegiatan pemanfaatan tandan kosong kelapa sawit untuk produksi dan pemanfaatan kompos di PTPN VII Unit Usaha Bekri

Pemanfaatan tandan kosong kelapa sawit (TKS) untuk produksi kompos secara umum akan memberikan manfaat lingkungan, ekonomi, maupun sosial. Penggunaan kompos di perkebunan kelapa sawit diprediksi akan dapat mengurangi penggunaan pupuk kimia sekaligus akan memperbaiki struktur kimia, fisika, dan biologi tanah. Walaupun belum dilakukan penelitian tentang dampak penggunaan kompos TKS terhadap kedua hal tersebut di PTPN VII Unit Usaha Bekri, namun beberapa literatur mendukung hal tersebut. Darnoko dkk. (1994), menyatakan bahwa TKS yang diolah terlebih dahulu menjadi kompos sebelum diaplikasikan sebagai substitusi pupuk bertujuan untuk menurunkan nisbah C/N. mempunyai nisbah C/N yang tinggi yaitu 45 – 55 sehingga dapat menurunkan ketersediaan N di tanah karena N termobilisasi dalam proses penguraian bahan organik oleh mikroorganisme tanah. TKS yang telah dikomposkan dengan waktu sekitar 6 – 8 minggu mempunyai nisbah C/N 10 – 15 persen. Lamanya proses pengomposan disebabkan oleh tingginya kandungan TKS mengandung 45,95 persen selulosa, 16,49 persen lignoselulosa pada TKS. hemiselulosa, dan 22,84 persen lignin. Sutarta dkk. (2007), menyatakan bahwa kompos TKS yang ditambahkan pada pembibitan utama kelapa sawit dapat meningkatkan pertumbuhan bibit dibandingkan dengan tanpa aplikasi kompos. Aplikasi kompos TKS meningkatkan diameter batang bibit 18 – 33 persen; tinggi bibit 16 – 26 persen; aplikasi kompos TKS sebesar 5 persen dan pupuk standar pembibitan 50 persen menunjukkan peningkatan 65 persen bobot kering biji dibandingkan dengan perlakuan 100 persen pupuk standar. Dari pengamatan di kebun kelapa sawit PTPN VII Unit Usaha Bekri yang diaplikasi kompos terdapat indikasi dampak positif terhadap pertumbuhan perakaran. Penambahan kompos dapat meningkatkan pertumbuhan perakaran baru. Diharapkan indikasi ini dapat berdampak positif terhadap keberlanjutan produksi kelapa sawit.

Manfaat lingkungan yang bisa diharapkan dari penggunaan pupuk kompos ini adalah pengurangan emissi gas rumah kaca akibat pengurangan penggunaan pupuk kimia. Penggunaan pupuk kimia di perkebunan kelapa sawit akan mengemisikan gas rumah kaca N<sub>2</sub>O ke udara dan berkontribusi menimbulkan pemanasan global sebesar 69% (3,027 ton CO<sub>2</sub>e/FU<sup>1</sup>) dari total emisi yang timbul pada tahap budidaya kelapa sawit (Gheewala *et al.*, 2008). Pengurangan penggunaan pupuk kimia akan memberikan andil dalam penurunan emisi gas rumah kaca.

Pengurangan penggunaan pupuk kimia juga akan memberikan keuntungan tambahan bagi perusahaan berupa pengurangan biaya produksi budi daya kelapa sawit. Bila penggunaan

-

<sup>&</sup>lt;sup>1</sup> FU=Functional Unit; 100,000 km

pupuk kompos dapat memperbaiki kesuburan tanah dan meningkatkan produksi buah kelapa sawit, maka keuntungan tambahan dapat diperoleh melalui peningkatan produktivitas lahan. Kedua hal ini secara kualitatif akan memberikan manfaat ekonomi kepada perusahaan.

Penambahan aktivitas produksi pupuk kompos dari tandan kosong kelapa sawit jelas membuka peluang kerja baru, karena perusaan membutuhkan pekerja tambahan baik untuk mengoperasikan unit produksi kompos tersebut maupun untuk tenaga peneliti yang mengamati dampak dari penggunaan pupuk kompos tersebut. Kegiatan ini juga membuka peluang baru bagi perusahaan yang memproduksi dan memasarkan mikroorganisme pengkompos (*decomposer*). Penciptaan peluang kerja dan peluang usaha ini tentunya dapat memberikan manfaat sosial bagi masyarakat.

## 3. Pemanfaatan POME untuk Budidaya Algae (Studi kasus Maris MV-PTPN VII UU Bekri)

Algae merupakan pabrik berupa sel yang memanfaatkan energi matahari untuk mengubah karbon dioksida (CO<sub>2</sub>) menjadi bahan bioaktif bernilai tinggi. Alga merupakan substansi kaya protein yang dapat digunakan sebagai feedstock pada industri farmasi, makanan kesehatan, kosmetik, dan industri pakan ternak. Kini, algae juga ramai diperbincangkan sebagai salah satu sumber bahan bakar yang sangat potensial untuk biodiesel, etanol dan hidrogen (FAO, 2009; Demirbas dan Demirbas, 2010; Williams dan Laurens, 2010; Gouveia, 2011). Terdapat beberapa spesies algae yang dapat dijadikan sebagai bahan baku untuk produksi biodiesel. Tiap-tiap spesies memiliki kandungan minyak yang berbeda-beda (Tabel 4).

Bekerjasama dengan PTPN VII Unit Usaha Bekri, saat ini Maris Konsorsium sedang mengembangkan algae jenis spirulina dan chlorella dengan memanfaatkan air limbah kelapa sawit. Spiruluna memiliki ukuran 10 µm sedangkan chlorella lebih kecil lagi, yaitu antara 2-5 µm. Bibit algae spirulina diperoleh dari Jepara (air payau) telah berhasil diadaptasi untuk air darat dengan memanfaatkan nutrient dari limbah kelapa sawit. Pada saat ini di UU Bekri terdapat 5 kolam, terdiri dari 3 kolam berukuran 4,5 m x 15 m dan sebuah kolam ukuran 5,5 m x 25 m untuk budidaya spirulina skala pilot, 1 kolam ukuran 4,5 m x 10 m untuk algae chlorella, dan sebuah kolam ukuran 4,5 m x 10 m untuk pembibitan algae spirulina. Kolam budidaya algae spirulina sepenuhnya menggunakan air POME (Palm Oil Mill Effluent) tanpa nutrisi tambahan, sedangkan kolam pembibitan algae spirulina dan kolam algae chlorella dan menggunakan air boiler dengan nutrisi tambahan yang terdiri dari TSP, soda kue, dan Vit B12.

Tabel 4. Kandungan minyak berbagai spesies algae (Chisti, 2007)

| Microalgae                | Kandungan minyak (% |  |
|---------------------------|---------------------|--|
|                           | berat kering)       |  |
| Botryococcus braunii      | 25–75               |  |
| Chlorella sp.             | 28–32               |  |
| Crypthecodinium cohnii    | 20                  |  |
| Cylindrotheca sp.         | 16–37               |  |
| Dunaliella primolecta     | 23                  |  |
| Isochrysis sp.            | 25–33               |  |
| Monallanthus salina       | >20                 |  |
| Nannochloris sp.          | 20–35               |  |
| Nannochloropsis sp.       | 31–68               |  |
| Neochloris oleoabundans   | 35–54               |  |
| Nitzschia sp.             | 45–47               |  |
| Phaeodactylum tricornutum | 20–30               |  |
| Schizochytrium sp.        | 50–77               |  |
| Tetraselmis sueica        | 15–23               |  |



Gambar 7. Budidaya algae skala pilot di PTPN VII UU Bekri

Budidaya algae sangat prospektif karena pertumbuhan yang cepat dan produktivitas yang tinggi. Panen perdana budidaya algae dapat dilakukan antara 7 – 10 setelah tanam. Selanjutnya panen dapat dilakukan dua hari sekali selama 30 hari. Pemanenan algae spirulina cukup mudah, yaitu dengan memompakan air ke suatu tangki yang diberi saringan kain.

Algae akan tersaring dan airnya dikembalikan lagi ke kolam. Pemanenan algae chlorella relatif lebih sulit karena ukuran algae yang lebih kecil sehingga tidak bisa disaring menggunakan saringan kain. Saat ini pemanenan dilakukan dengan metode flokulasi dengan cara menambahkan tawas. Algae akan mengendap sehingga dapat dipisahkan dari airnya. Selanjutnya algae dikeringkan hingga mencapai kadar air sekitar 10%.

Saat ini produksi algae di UU Bekri baru mencapai 5 kg berat kering untuk kolam ukuran 5,5 m x 25 m. Di Belanda, Maris MV telah mengmbangkan algae ini secara komersial dengan produksi mencapai 10 ton/ha per bulan (Ikhsan, 2012).

## 4. Pemanfaatan POME untuk Biogas (Studi kasus PTPN V Riau, PPKS Tandun)

PKS Tandun yang berkapasitas 45 ton/jam merupakan salah satu dari 12 PKS yang dimiliki oleh PTPN V. Kemampuan produksi PKS Tandun adalah 197.000 ton TBS pada tahun 2010 dan 232.000 ton TBS pada tahun 2011 dengan rendemen minyak rata-rata 22,45 %. Setiap ton TBS akan menghasilkan limbah cair pabrik kelapa sawit berupa POME (palm oil mill effluent) sekitar 0,7 – 0,8 m³, dan untuk tahun 2011 diperkirakan POME yang dihasilkan mencapai 162.400 – 185.600 m³. Selama ini POME digunakan untuk pupuk organik dan diaplikasikan langsung ke kebun di sekitar pabrik.

PKS Tandun merupakan pioner dalam pengurangan gas rumah kaca dan pemanfaatan sebagai sumber energi. Sejak tahun 2011 bekerjasama dengan PT KME (Karya Mas Energi) POME diolah untuk menghasilkan biogas yang digunakan sebagai bahan bakar pada pembangkit listrik tenaga biogas (PLTB). Saat ini, jumlah limbah yang telah diolah menjadi biogas baru sekitar 50 % dari total limbah cair yang dihasilkan. Listrik yang dihasilkan dari PLTB ini digunakan untuk mengganti sebagian (50%) kebutuhan energi pabrik pengolahan kernel oil. Sebelumnya, kebutuhan energi di pabrik tersebut dipenuhi dari pembangkit listrik tenaga diesel.

Kolam anaerobik tipe *covered lagoon* (Gambar 8) untuk menghasilkan biogas berukuran 50 m x 110 m dengan kedalaman 6,5 m. Kolam ditutup plastik HDPE warna hitam dengan umur pakai plastik sekitar 10 tahun. Waktu tinggal (HRT) POME dalam kolam adalah 50 hari dengan pengadukan (mixing) setiap 20 menit/jam. Tujuan pengadukan ini adalah untuk menghilangkan lapisan minyak yang mungkin timbul di permukaan kolam. Jika lapisan minyak timbul, maka akan menyulitkan keluarnya gas metan dari POME. Volume POME

yang diproses dalam kolam tersebut adalah  $24.000 \text{ m}^3$  dengan nilai COD sekitar 55.000 - 70.000 mg/l dan setelah keluar dari kolam anaerobik menjadi 700 mg/l. Diperkirakan setiap ton POME dapat menghasilkan  $28-30 \text{ m}^3$  biogas, dengan kandungan gas metan 57 - 58 %. Suhu di dalam kolam sekitar  $28 - 34^{\circ}\text{C}$  (mesofilik).



Gambar 8. Digester biogas tipe covered lagoon berukuran 50 m x 110 m dengan kedalaman 6,5 m di PKS Tandun, PTPN V Riau, untuk mendukung PLTB.

Sebelum digunakan untuk mengoperasikan genset, biogas perlu dimurnikan dan dikeringkan. Adanya gas H<sub>2</sub>S, selain menyebabkan korosi juga akan mempercepat penurunan kekentalan oli genset. Kadar H<sub>2</sub>S dalam biogas PKS Tandun yang dihasilkan adalah sekitar 2.500 ppm. Untuk menjalankan genset kandungan H<sub>2</sub>S maksimum adalah 800 ppm, sehingga perlu dibersihkan terlebih dahulu. Pembersihan H<sub>2</sub>S dilakukan secara biologis menggunakan sistem BIO Gasclean dan menghasilkan biogas dengan kadar H<sub>2</sub>S kurang daripada 100 pm. Biogas ini kemudian dikeringkan dengan cara kondensasi. Kadar air biogas yang tinggi akan mengganggu proses konversi biogas menjadi energi listrik.

Konversi biogas menjadi energi listrik dilkukan secara langsung dengan menggunakan Genset merek Guascor buatan Spanyol. Syarat utama biogas harus memiliki kadar metana 58%. Listrik yang dihasilkan adalah 650 kWh. Dalam pemanfaatan POME ini, PTPN V

bekerjasama dengan PT KME sebagai pihak *project developer* yang membangun PLTB berkapasitas 1 MW dengan mekanisme BOT (*Build Operation and Transfer*). Parameter desain digester biogas adalah seperti ditunjukkan pada Tabel 5.

Tabel 5. Parameter desain digester biogas di PKS Tandun, PTPN V Riau.

| Parameter                           | Kapasitas Produksi Kelapa Sawit (Ton TBS/jam) |             |              |
|-------------------------------------|-----------------------------------------------|-------------|--------------|
|                                     | 30                                            | 45          | 60           |
| Desain Keluaran Biogas (m³/jam)     | 20                                            | 30          | 40           |
| Penurunan COD/BOD (%)               | 90                                            | 90          | 90           |
| Perkiraan produksi biogas (NM³/jam) | 500-815                                       | 815-1.000   | 1.000        |
| Kandungan gas metana (%)            | 55-65                                         | 55-65       | 55-65        |
| Nilai energi (MJ/jam)               | 4.204-6.852                                   | 6.852-8.400 | 8.400-11.088 |
| Ekivalensi bahan bakar dari shell   | 0,8-1,3                                       | 1,3-1,6     | 1,6-2,1      |
| Potensi energi listrik (kWe)        | 1.000                                         | 1.500       | 2.000        |

#### **DAFTAR PUSTAKA**

- Badan Pusat Statistik. 2011. Perkembangan Beberapa Indikator Utama Sosial-Ekonomi Indonesia.
- Bangun, D. 2012. Peranan Dewan Minyak Sawit Indonesia (DMSI) dalam Aplikasi Inovasi dan Manajemen Kelapa Sawit yang Berorientasi Kelestarian Lingkungan. Dalam *Akselerasi Inovasi Industri Kelapa Sawit (Prosiding Seminar Nasional dan Kongres MAKSI 2012*), editor Ani Suryani, Khaswar Syamsu, Dede Saputra, Kartika Sari Suparman, Iman Sulaeman, Yuli Sukmawati. Masyarakat Kelapa Sawit Indonesia, Bogor.
- Caroko, W., Komarudin, H., Obidzinski, K., Gunarso, P. 2011. Policy and institutional frameworks for the development of palm oil-based biodiesel in Indonesia. CIFOR (Center for International Forestry Research), Bogor, Indonesia.
- Chisti, Y. 2007. Biodiesel from microalgae. *Biotechnology Advances* **25**: 294–306.
- Daryono, M. 2009. Keberpihakan BUMN terhadap Riset dan Pengembangan Kelapa Sawit Indonesia. Seminar Tahunan Masyarakat Perkelapasawitan Indonesia. Bogor.
- Demirbas, A. dan M. F. Demirbas. 2010. Algae Energy: Algae as a New Source of Biodiesel. Springer, London.
- Departemen Perindustrian. 2007. *Gambaran Sekilas Industri Kelepa Sawit*. Pusat data dan Informasi Departemen Peindustrian. Jakarta.

- Direktorat Jenderal Perkebunan. 2012. Kebijakan Pengembangan Komoditas Perkebunan Strategis. Paparan disampaikan pada Rapat Kerja Akselerasi Industrialisasi dalam Rangka Mendukung Percepatan dan Pembangunan Ekonomi, Hotel Grand Sahid, 1 Pebruari 2012.
- FAO. 2009. Algae-Based Biofuels: A Review of Challenges and Opportunities for Developing Countries. ECOFYS-GBEP-FAO.
- Frieden, D., Pena, N., Bird, D.N., Schwaiger, H., Canella, L. 2011. Emission balances of first- and second-generation biofuels Case studies from Africa, Mexico, and Indonesia. CIFOR (Center for International Forestry Research), Bogor, Indonesia.
- Gheewala, S.H., Wanida, W., and Masayuki, S., 2008, LC GHG Emissions from Palm Oil Biodiesel Production & Use in Thailand, AIST, Japan.
- Gouveia, L. 2011. Microalgae as a Feedstock for Biofuels. Springer, Heidelberg.
- Gumbira-Sa'id, E. 2009. Review Kajian, Penelitian dan Pengembangan Agroindustri Strategis Nasional: Kelapa Sawit, Kakao dan Gambir. *J. Tek. Ind. Pert.* Vol. 19(1): 45-55.
- Hasanudin, U. 2010. *Penerapan Pedoman Pengelolaan Limbah Agroindustri Kelapa Sawit*. Kementrian Lingkungan Hidup. Jakarta.
- Hasanudin, U. 2008. "The Biomass Utilization from Agroindustries in Indonesia". *Biomass Sustainable Utilization Working Groups Discussion*. November, 28-29<sup>th</sup> 2008, Jakarta.
- Hasanudin, U. dan E. Suroso. 2009. Pemanfaatan Air Limbah Pabrik Kelapa Sawit Sebagai Sumber Energi dan Upaya Pengurangan Emisi Gas Rumah Kaca. Seminar Tahunan Masyarakat Perkelapa Sawitan Indonesia (MAKSI), 24-25 November 2009. Bogor.
- Herman, Agus, F., Las, I. 2009. Analisis Finansial dan Keuntungan yang Hilang dari Emisi Karbon Dioksida pada Perkebunan Kelapa Sawit. *Jurnal Litbang Pertanian* 28(4): 127-133
- Ikhsan, M. 2012. Komunikasi pada tanggal 12 September 2012.
- Indonesian Sustainable Palm Oil Commission. 2012. *Indonesian Palm Oil in Numbers 2012*. Indonesian Sustainable Palm Oil Commission.
- Kementrian Koordinator Bidang Ekonomi. 2011. *Masterplan Percepatan dan Perluasan Pembangunan Ekonomi Indonesia*. Deputi Bidang Infrastruktur dan Pengembangan Wilayah. Kementerian Koordinator Bidang Perekonomian. Jakarta.
- Kurniawati, D. S., 2010, Pemanfaatan Limbah Padat Pabrik Kelapa Sawit Sebagai Bahan Bakar Alternatif Sumber Energi Listrik, Tesis, Program Pasca Sarjana Universitas Indonesia, Jakarta.
- Lakitan, B. 2012. Kebijakan Riset dan Teknologi untuk Mendukung Industrialisasi Kelapa Sawit dalam Rangka Implementasi MP3EI. Dalam *Akselerasi Inovasi Industri Kelapa Sawit (Prosiding Seminar Nasional dan Kongres MAKSI 2012*), editor Ani Suryani,

- Khaswar Syamsu, Dede Saputra, Kartika Sari Suparman, Iman Sulaeman, Yuli Sukmawati. Masyarakat Kelapa Sawit Indonesia, Bogor.
- Lubis, R.E. dan Widanarko, A. 2011. Buku Pintar Kelapa Sawit. Agromedia Pustaka, Jakarta.
- Pahan, I. 2011. Panduan Lengkap Kelapa Sawit (cetakan XI). Penebar Swadaya, Jakarta.
- Sargeant, H.J. 2012. Sustainable Palm Oil Implementation and Benefit: BSP Experience. The 3<sup>rd</sup> International Conference Exhibition of Palm Oil (ICE-PO), Jakarta 9-11 May 2012.
- Sipayung, T. 2012. Ekonomi Agribisnis Minyak Sawit. IPB Press, Bogor.
- Suryani, A. 2012. Teknologi Industri Berbasis Kelapa Sawit. Dalam *Merevolusi Revolusi Hijau Pemikiran Guru Besar IPB* (Buku III). Penyunting Roedhy Poerwanto, Iskandar Zulkarnaen Siregar, Ani Suryani. IPB Press, Bogor.
- Tim INDEF. 2011. *Outlook Industri 2012: Strategi Percepatan dan Perluasan Agroindustri*. Kementrian Perindustrian Republik Indonesia.
- Williams, P.J.B. dan L.M.L. Laurens. 2010. Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics. *Energy Environ. Sci.*, **3**: 554–590.
- Zero Emission Manual Drafting Committee. 2004. Zero Emissions Manual: Realizing a Zero Emissions-based Regional Community. United Nations University Zero Emissions Forum Booklet. Tokyo, Japan.