ORIGINAL PAPER



# Marine spongean polybrominated diphenyl ethers, selective growth inhibitors against the cancer cells adapted to glucose starvation, inhibits mitochondrial complex II

Masayoshi Arai<sup>1</sup> · Dayoung Shin<sup>1</sup> · Kentaro Kamiya<sup>1</sup> · Ryosuke Ishida<sup>1</sup> · Andi Setiawan<sup>2</sup> · Naoyuki Kotoku<sup>1</sup> · Motomasa Kobayashi<sup>1</sup>

Received: 8 June 2016 / Accepted: 1 July 2016 © The Japanese Society of Pharmacognosy and Springer Japan 2016

Abstract In the course of search for selective growth inhibitors against the cancer cells adapted to nutrient starvation, two polybrominated diphenyl ethers, 3,4,5-tribromo-2-(2',4'-dibromophenoxy)-phenol (1) and 3,5-dibromo-2-(2',4'-dibromophenoxy)-phenol (2) were isolated from an Indonesian marine sponge of *Dysidea* sp. Compounds 1 and 2 showed the anti-proliferative activity against PANC-1 cells under glucose-starved conditions with IC<sub>50</sub> values of 2.1 and 3.8  $\mu$ M, respectively, whereas no growth inhibition was observed up to 30  $\mu$ M in the general culture conditions. The further mechanistic analysis indicated that compound 1 might act mainly by inhibiting complex II in the mitochondrial electron transport chain.

**Keywords** Polybrominated diphenyl ether · Marine sponge · Cancer · Glucose starvation · Mitochondrial electron transport chain

**Electronic supplementary material** The online version of this article (doi:10.1007/s11418-016-1025-x) contains supplementary material, which is available to authorized users.

- <sup>1</sup> Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
- <sup>2</sup> Department of Chemistry, Faculty of Science, Lampung University, Jl. Prof. Dr. Sumantri Brodjonegoro No. 1, Bandar Lampung 35145, Indonesia

#### Introduction

Tumor contains hypoxic and nutrient-starved regions due to the abnormal cell proliferation coupled with the defective structural and functional formation of vasculature [1]. In addition, the cancer cells that have adapted to this tumor environment are assumed to stimulate the pathological progression of cancer by promoting tumor growth, angiogenesis, metastasis, and drug resistance [2, 3]. Therefore, the compounds that selectively inhibit the growth of cancer cells under these conditions should have potential as anticancer drugs. Currently, some natural products have been reported to exhibit the growth inhibitory activities against the cancer cells that have adapted to the hypoxic or nutrient-starved conditions. For example, furospinosulin-1 (furanosesterterpene) and dictyoceratins-A and -C (sesquiterpene phenols) isolated from the marine sponge of Dactylospongia elegans were clarified to exhibit the selective growth inhibitory activity against the hypoxiaadapted human prostate cancer DU145 cells [4, 5]. Kigamicin D (polycyclic xanthone) isolated from the culture broth of an Amycolatopsis sp. showed the preferential cytotoxic activity against the human pancreatic carcinoma PANC-1 cells under the nutrient-starved conditions compared with those under the general culture conditions [6]. In addition, we recently isolated an 3-alkyl pyridine alkaloid named N-methylniphatyne A, which showed the antiproliferative activity against the PANC-1 cells adapted to the glucose-deficient conditions, from a marine sponge of Xestospongia sp. [7]. In our continuous search for inhibitors against the cancer cells adapted to nutrient starvation, two polybrominated diphenyl ethers, 3,4,5-tribromo-2-(2',4'-dibromophenoxy)-phenol (1) and 3,5-dibromo-2-(2',4'-dibromophenoxy)-phenol (2) were isolated from an Indonesian marine sponge of Dysidea sp. In this paper, the

Masayoshi Arai araim@phs.osaka-u.ac.jp

Motomasa Kobayashi kobayasi@phs.osaka-u.ac.jp

anti-proliferative activity and mode of action of compounds 1 and 2 are presented.

#### Materials and methods

#### Materials

Dulbecco's Modified Eagle's medium (DMEM), WST-8 colorimetric reagent, and KCN were purchased from Nacalai Tesque, Inc. (Kyoto, Japan). Fetal bovine serum (FBS) and Dialyzed FBS were purchased from Equitech-Bio Inc. (Kerrville, TX, USA) and Thermo Fisher Scientific Inc. (Waltham, MA, USA), respectively. Anti-Akt, Anti-phosphorylated Akt, anti-GRP78, and anti-\beta-tubulin antibodies were obtained from Cell Signaling Technology, Inc. (Danvers, MA, USA). Horseradish peroxidase (HRP)linked anti-rabbit IgG antibody (GE Healthcare Life Sciences, Buckinghamshire, UK) was used as secondary antibody. Mito Check Complex Activity Assay Kit (Cayman Chemical, Ann Arbor, MI, USA) was used to evaluate the effect of compound 1 on the mitochondrial complex I-V. Rotenone, thenoyltrifluoroacetone (TTFA), antimycin A, and oligomycin mixture were obtained from Tokyo Chemical Industry Co., LTD. (Tokyo, Japan), Wako Pure Chemical Industries, Ltd. (Osaka, Japan), LKT Laboratories, Inc. (St. Paul, MN, USA), and Cayman Chemical (Ann Arbor, MI, USA), respectively. Other chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA) or Kishida Chemical Co., Ltd. (Osaka, Japan).

#### Isolation of compounds 1 and 2

3,4,5-Tribromo-2-(2',4'-dibromophenoxy)-phenol (1) and 3,5-dibromo-2-(2',4'-dibromophenoxy)-phenol (2) were isolated from a marine sponge *Dysidea* sp. collected at Maumere, Indonesia (Fig. 1). Briefly, the MeOH extract [10 g, IC<sub>50</sub> (Glucose Deficient Medium) = 5.7 µg/mL, IC<sub>50</sub>



Fig. 1 Chemical structures of 3,4,5-tribromo-2-(2',4'-dibromophenoxy)-phenol (1) and 3,5-dibromo-2-(2',4'-dibromophenoxy)-phenol (2)

(General Glucose Medium) = >30 µg/mL] was partitioned into a water-EtOAc mixture (1:1). The active EtOAc soluble portion [3 g, IC<sub>50</sub> (Glucose Deficient Medium) = 1.6 µg/ mL, IC<sub>50</sub> (General Glucose Medium) = >10 µg/mL] was further fractionated by SiO<sub>2</sub> gel column chromatography [CHCl<sub>3</sub>-MeOH-H<sub>2</sub>O (lower phase)] to give eleven fractions (Fr. 1–Fr. 11). The active Fr. 2 [460 mg, IC<sub>50</sub> (Glucose Deficient Medium) = 0.18 µg/mL, IC<sub>50</sub> (General Glucose Medium) = >10 µg/mL] was then separated by HPLC [COSMOSIL 5C<sub>18</sub>-AR-II (Nacalai tesque, Kyoto, Japan); eluted with MeOH-H<sub>2</sub>O = 8:2] to isolate compounds **1** (126 mg) and **2** (178 mg). Both compounds were identified to be 3,4,5-tribromo-2-(2',4'-dibromophenoxy)-phenol (**1**) and 3,5-dibromo-2-(2',4'-dibromophenoxy)-phenol (**2**) by the EI-MS and 2D-NMR analyses [8, 9].

#### Cell culture and bioassay

Human pancreatic carcinoma PANC-1 cells were maintained in the DMEM supplemented with heat-inactivated 10 % FBS and kanamycin (50 µg/mL) in a humidified atmosphere of 5 % CO<sub>2</sub> at 37 °C. The nutrient-starved PANC-1 cells were cultured in the Glucose Deficient Medium [Basal Medium (25 mM HEPES buffer (pH 7.4) supplemented with 6.4 g/L NaCl, 700 mg/L NaHCO<sub>3</sub>, 400 mg/ L KCl, 265 mg/L CaCl<sub>2</sub>·2H<sub>2</sub>O, 200 mg/L MgSO<sub>4</sub>·7H<sub>2</sub>O, 125 mg/L NaH<sub>2</sub>PO<sub>4</sub>, 0.1 mg/L Fe(NO<sub>3</sub>)·9H<sub>2</sub>O, 15 mg/L Phenol red, 10 mL/L MEM vitamin solution (X100) (GIBCO, Carlsbad, CA), 200 mmol/L L-glutamine solution (GIBCO, Carlsbad, CA), 25 mg/L kanamycin) containing 10 % dialyzed FBS]. The General Glucose Medium [Basal Medium supplemented with 10 % FBS and 2.0 g/L glucose (final 25 mM)] was also used in the bioassay for comparison.

The bioassay was carried out according to the method described previously [7]. Briefly, PANC-1 cells  $(1 \times 10^4 \text{ cells/100 } \mu\text{L} \text{ in 96 well plastic plate})$  were pre-incubated in the DMEM supplement with 10 % FBS for 24 h. The medium was then replaced with either the General Glucose Medium or Glucose Deficient Medium to induce cells adaption to the nutrient starvation. After 12 h incubation, the serially diluted samples were added, and the cells were incubated for an additional 12 h in a humidified atmosphere of 5 % CO<sub>2</sub> at 37 °C. The cell proliferation was detected by using the WST-8 colorimetric reagent. The IC<sub>50</sub> value was determined by linear interpolation from the growth inhibition curve. We assessed the selectivity of the anti-proliferative activity (Selective Index, SI) based on the difference in the IC<sub>50</sub> values of the General Glucose and Glucose Deficient Media.

#### Western blotting analysis

PANC-1 cells (5  $\times$  10<sup>5</sup> cells/2 mL in 6 well plastic plate) were pre-incubated in the DMEM supplement with 10 %



Fig. 2 Anti-proliferative activity of compounds 1 and 2 against the PANC-1 cells cultured in the Glucose Deficient and General Glucose Medium. PANC-1 cells ( $1 \times 10^4$  cells) were treated with indicated concentrations of **a** antimycin A (positive control), **b** compounds 1 or

FBS for 24 h. The medium was then replaced with either General Glucose or Glucose Deficient Medium. After 12 h incubation, compound 1 (10  $\mu$ M) or antimycin A (3.0 nM) as a positive control was added, and the cells were incubated for an additional 8 h (for the compound 1-treated cells) or 4 h (for the antimycin A-treated cells) in a humidified atmosphere of 5 % CO2 at 37 °C. These experimental conditions were intended to demonstrate the 70 % viability against the PANC-1 cells cultured in the Glucose Deficient Medium. Then, the cells were rinsed with ice-cold PBS and lysed in the lysis buffer (10 mM Tris-HCl (pH 7.5) containing 135 mM NaCl, 200 mM EDTA, 1 mM NaF, 1 % Triton X-100, 1 % protease inhibitor cocktail, and 1 % phosphatase inhibitor cocktail). The cell lysate was subjected to SDS-PAGE and transferred onto PVDF membranes (GE Healthcare Life Sciences Buckinghamshire, UK). The membranes were then incubated with appropriate primary antibodies and HRPconjugated secondary antibodies, and the immunopositive bands were visualized using an ECL kit (GE Healthcare Life Sciences). The luminescent signals were analyzed using an ImageQuant LAS4010 Scanner (GE Healthcare Life Sciences).

### **Result and discussion**

## Anti-proliferative activity of compounds 1 and 2 against the PANC-1 cells cultured under both glucose-deficient conditions and general culture conditions

The bioassay-guided separation from the active MeOHextract of the marine sponge *Dysidea* sp. let us to isolate

**c 2** in the Glucose Deficient Medium (*open circle*) or General Glucose Medium (*closed circle*) for 12 h. Cell viability was calculated by using WST-8 colorimetric reagent

3,4,5-tribromo-2-(2',4'-dibromophenoxy)-phenol (1) and 3,5-dibromo-2-(2',4'-dibromophenoxy)-phenol (2) (Fig. 1). We then evaluated the anti-proliferative activity of compounds 1 and 2 against the PANC-1 cells cultured under both glucose-starved and general culture conditions. We used antimycin A as a positive control, which inhibits the growth of PANC-1 cells adapted to the glucose-starved conditions through the inhibition of the mitochondrial electron transport chain [10].

In our assay system, antimycin A showed preferential anti-proliferative activity against the PANC-1 cells adapted to glucose-starved conditions with IC<sub>50</sub> value of 3.0 nM. The SI value was estimated to be more than 33. Compounds **1** and **2** also showed anti-proliferative activity against the PANC-1 cells adapted to glucose starvation by cultivating in the Glucose Deficient Medium, with IC<sub>50</sub> value of 2.1 and 3.8  $\mu$ M, respectively, whereas both compounds did not show anti-proliferative activity at concentrations up to 30  $\mu$ M in the General Glucose Medium. The SI values of compounds **1** and **2** were estimated to be more than 47 and 26, respectively (Fig. 2; Table 1). These data indicated that compounds **1** and **2** were selective growth inhibitors against the PANC-1 cells adapted to glucose starvation.

Until now, a number of polybrominated diphenyl ethers have been isolated from the marine sponges of the genus *Dysidea* [8, 11–13]. Interestingly, Unson et al. [14] reported that the polybrominated diphenyl ethers might be produced by cyanobacteria associated with marine sponge. Moreover, this class of compounds has been found to exhibit a variety of bioactivities such as anti-bacterial [13, 15, 16], anti-fungal [17], anti-viral [18, 19], as well as inhibition of microtubule assembly [20], Tie2 kinase [21], 15-lipoxygenase, inosine monophosphate dehydrogenase, Table 1Anti-proliferative activity of compounds 1 and 2 againstPANC-1cellscellsunder the glucose-deficient and general cultureconditions

|                          | IC <sub>50</sub> (µM) |                          |                 |  |  |
|--------------------------|-----------------------|--------------------------|-----------------|--|--|
|                          | Glucose $(-)^a$       | Glucose (+) <sup>b</sup> | SI <sup>c</sup> |  |  |
| Compound 1               | 2.1                   | >100                     | >47             |  |  |
| Compound 2               | 3.8                   | >100                     | >26             |  |  |
| Antimycin A <sup>d</sup> | 0.003                 | >0.1                     | >33             |  |  |

<sup>a</sup> Conditions of Glucose Deficient Medium

<sup>b</sup> Conditions of General Glucose Medium

<sup>c</sup> Selective Index

<sup>d</sup> Compound for positive control

and guanosine monophosphate synthetase [12]. For the first time, polybrominated diphenyl ethers were shown to exhibit the preferential anti-proliferative activity against the cancer cell adapted to glucose starvation.

# Effects of compound 1 on the Akt signaling and induction of GRP78

Recent biological studies of cancer cells adapted to nutrient starvation have revealed that the activation of PI3k/Akt/ mTOR signaling pathway and the unfolded protein response (UPR) such as induction of glucose-related protein 78 (GRP78) were important for the adaptation of cancer cells to nutrient starvation [22, 23]. Therefore, these processes have attracted much attention as drug targets for cancer chemotherapy. This observation prompted us to investigate the effect of compound 1 on the Akt signaling and the induction of GRP78 by utilizing a western blotting method, and we used antimycin A as a positive control for comparison (Fig. 3; Fig. S1). The PANC-1 cells cultured in the Glucose Deficient Medium were adapted to the nutrient starvation and increased the expression levels of phosphorylated Akt and GRP78 proteins compared with those cultured in the General Glucose Medium (Fig. 3a, lanes 1 and 2, b, lanes 5 and 6). The antimycin A-treated PANC-1 cells cultured in the Glucose Deficient Medium showed an inhibition of phosphorylated Akt and GRP78 proteins (Fig. 3a, lanes 1 and 3), whereas no effect was observed in the expression levels of the other investigated proteins in the PANC-1 cell cultured in the General Glucose Medium (Fig. 3a, lanes 2 and 4). Compound 1 weakly inhibited the inductions of phosphorylated Akt and GRP78 in the PANC-1 cells cultured in the Glucose Deficient Medium (Fig. 3b, lanes 5 and 7). Interestingly, compound 1 enhanced the expression levels of phosphorylated Akt accompanied by the induction of Akt expression on the PANC-1 cells cultured in the General Glucose Medium



Fig. 3 Effects of compound 1 on the Akt signaling and induction of GRP78 by using western blotting analysis. Glc (–): Culture conditions of Glucose Deficient Medium. Glc (+): Culture conditions of General Glucose Medium. The PANC-1 cells cultured in the Glucose Deficient Medium were treated with **a** antimycin A or **b** compound 1 by the 70 % cell-viable conditions. Cell lysate was resolved by using SDS-PAGE and detected with antibodies against the indicated proteins

(Fig. 3b, lane 8). Although further studies on the effect of compound 1 against the expression of the Akt protein on the PANC-1 cells cultured in the General Glucose Medium would be required, the present results suggest that compound 1 showed a similar behavior with that of antimycin A against the PANC-1 cells cultured in the Glucose Deficient Medium.

# Effects of compound 1 on the mitochondrial electron transport chain

Compound 1 exhibited a similar effects with antimycin A on the PANC-1 cells adapted to the glucose-deficient conditions (Fig. 3), and antimycin A is known to be an inhibitor of complex III in the mitochondrial electron transport chain. Therefore, we next examined the effect of compound 1 on the function of each mitochondrial complex (I–V) by using the Mito Check Complex Activity Assay Kit (Cayman Chemical). As shown in Table 2,

| -                             | IC <sub>50</sub> value |                 |                     |                 |           |  |
|-------------------------------|------------------------|-----------------|---------------------|-----------------|-----------|--|
|                               | Complex I (µM)         | Complex II (µM) | Complex II/III (µM) | Complex IV (µM) | Complex V |  |
| Compound 1                    | 3.4                    | 0.0064          | 0.86                | >100            | 10.0 µM   |  |
| Positive control <sup>a</sup> | 0.1                    | 30              | 0.03                | 38.4            | 0.2 µg/mL |  |

Table 2 Effect of compound 1 on the mitochondrial electron transport chain

<sup>a</sup> Compounds used as a positive control are rotenone, thenoyltrifluoroacetone, antimycin A, KCN, and oligomycin for complex I, II, III, IV, and V, respectively

compound **1** strongly inhibited complexes II and III with  $IC_{50}$  values of 6.4 nM and 0.86  $\mu$ M, respectively, while complexes I and V were slightly inhibited with  $IC_{50}$  values of 3.4 and 10  $\mu$ M, respectively. From the reason that the assay system for complex III partly uses complex II enzyme, the major target of compound **1** was presumed to be complex II of the mitochondrial electron transport chain.

In conclusion, the selective anti-proliferative activity of the polybrominated diphenyl ethers, compounds 1 and 2, against the cancer cells adapted to the glucose-starved conditions might be mediated by the inhibition of complex II enzyme in the mitochondria. Therefore, these compounds would be potential candidates for further development as anti-cancer drugs. Further mechanistic studies and in vivo efficacy of compound 1 are currently underway.

Acknowledgments The human pancreatic carcinoma cell line, PANC-1 (RCB2095), was provided by the RIKEN BRC through the National Bio-Resource Project of the MEXT, Japan. The authors are grateful to Dr. Nicole J. de Voogd, National Museum of Natural History, the Netherlands for identifying the sponge specimen. This study was financially supported by the Platform Project for Supporting in Drug Discovery and Life Science Research (Platform for Drug Discovery, Informatics, and Structural Life Science) from the Japan Agency for Medical Research and development (AMED), the Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science (JSPS, 15H03114, 26242074, and 26305002), and the Grant-in-Aid for Scientific Research on Innovative Areas from MEXT (23102005).

### References

- 1. Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a Review. Cancer Res 49:6449–6465
- Rohwer N, Cramer T (2011) Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways. Drug Resist Updat 14:191–201
- Chen S, Rehman SK, Zhang W, Wen A, Yao L, Zhang J (2010) Autophagy is a therapeutic target in anticancer drug resistance. Biochim Biophys Acta 1806:220–229
- Arai M, Kawachi T, Kotoku N, Nakata C, Kamada H, Tsunoda S, Tsutsumi Y, Endo H, Inoue M, Sato H, Kobayashi M (2016) Furospinosulin-1, marine spongean furanosesterterpene, suppresses the growth of hypoxia-adapted cancer cells by binding to transcriptional regulators p54<sup>nrb</sup> and LEDGF/p75. ChemBio-Chem 17:181–189

- Sumii Y, Kotoku N, Fukuda A, Kawachi T, Arai M, Kobayashi M (2015) Structure-activity relationship and in vivo anti-tumor evaluations of dictyoceratin-A and -C, hypoxia-selective growth inhibitors from marine sponge. Mar Drugs 13:7419–7432
- Lu J, Kunimoto S, Yamazaki Y, Kaminishi M, Esumi H (2004) Kigamicin D, a novel anticancer agent based on a new antiausterity strategy targeting cancer cells' tolerance to nutrient starvation. Cancer Sci 95:547–552
- Arai M, Kamiya K, Shin D, Matsumoto H, Hisa T, Setiawan A, Kotoku N, Kobayashi M (2016) *N*-Methylniphatyne A, a new 3-alkylpyridine alkaloid as an inhibitor of the cancer cells adapted to nutrient starvation, from an Indonesian marine sponge of *Xestospongia* sp. Chem Pharm Bull 64:766–771
- Fu X, Schmitz FJ (1996) New brominated diphenyl ether from an unidentified species of *Dysidea* sponge. <sup>13</sup>C NMR Data for some brominated diphenyl ethers. J Nat Prod 59:1102–1103
- Capon R, Ghisalberti EL, Jefferies PR, Skelton BW, White AH (1981) Structural studies of halogenated diphenyl ethers from a marine sponge. J Chem Soc Perkin Trans 1:2464–2467
- Momose I, Ohba S, Tatsuda D, Kawada M, Masuda T, Tsujiuchi G, Yamori T, Esumi H, Ikeda D (2010) Mitochondrial inhibitors show preferential cytotoxicity to human pancreatic cancer PANC-1 cells under glucose-deprived conditions. Biochem Biophys Res Commun 392:460–466
- Carte B, Faulkner DJ (1981) Polybrominated diphenyl ethers from *Dysidea herbacea*, *Dysidea chlorea* and *Phyllospongia foliascens*. Tetrahedron 37:2335–2339
- Fu X, Schmitz FJ, Govindan M, Abbas SA, Hanson KM, Horton PA, Crews P, Laney M, Schatzman RC (1995) Enzyme inhibitors: new and known polybrominated phenols and diphenyl ethers from four Indo-Pacific *Dysidea* sponges. J Nat Prod 58:1384–1391
- 13. Handayani D, Edrada RA, Proksch P, Wray V, Witte L, van Soest RWM, Kunzmann A, Soedarsono (1997) Four new bioactive polybrominated diphenyl ethers of the sponge *Dysidea herbacea* from West Sumatra, Indonesia. J Nat Prod 60:1313–1316
- 14. Unson MD, Holland ND, Faulkner DJ (1994) A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar Biol 119:1–11
- Hanif N, Tanaka J, Setiawan A, Trianto A, de Voogd NJ, Murni A, Tanaka C, Higa T (2007) Polybrominated diphenyl ethers from the Indonesian sponge *Lamellodysidea herbacea*. J Nat Prod 70:432–435
- Sun S, Canning CB, Bhargava K, Sun X, Zhu W, Zhou N, Zhang Y, Zhou K (2015) Polybrominated diphenyl ethers with potent and broad spectrum antimicrobial activity from the marine sponge *Dysidea*. Bioorg Med Chem Lett 25:2181–2183
- Sionov E, Roth D, Sandovsky-Losica H, Kashman Y, Rudi A, Chill L, Berdicevsky I, Segal E (2005) Antifungal effect and possible mode of activity of a compound from the marine sponge *Dysidea herbacea*. J Infect 50:453–460
- Salam KA, Furuta A, Noda N, Tsuneda S, Sekiguchi Y, Yamashita A, Moriishi K, Nakakoshi M, Tani H, Roy SR, Tanaka J,

Tsubuki M, Akimitsu N (2014) PBDE: structure-activity studies for the inhibition of hepatitis C virus NS3 helicase. Molecules 19:4006–4020

- 19. Yamashita A, Fujimoto Y, Tamaki M, Setiawan A, Tanaka T, Okuyama-Dobashi K, Kasai H, Watashi K, Wakita T, Toyama M, Baba M, de Voogd NJ, Maekawa S, Enomoto N, Tanaka J, Moriishi K (2015) Identification of antiviral agents targeting hepatitis B virus promoter from extracts of Indonesian marine organisms by a novel cell-based screening assay. Mar Drugs 13:6759–6773
- 20. Liu H, Namikoshi M, Meguro S, Nagai H, Kobayashi H, Yao X (2004) Isolation and characterization of polybrominated diphenyl

ethers as inhibitors of microtubule assembly from the marine sponge *Phyllospongia dendyi* collected at Palau. J Nat Prod 67:472–474

- Xu Y, Johnson RK, Hecht SM (2005) Polybrominated diphenyl ethers from a sponge of the *Dysidea* genus that inhibit Tie2 kinase. Bioorg Med Chem 13:657–659
- 22. Jin S, DiPaola RS, Mathew R, White E (2007) Metabolic catastrophe as a means to cancer cell death. J Cell Sci 120:379–383
- 23. Lee AS (2007) GRP78 Induction in cancer: therapeutic and prognostic implications. Cancer Res 67:3496–3499