

JOURNAL OF ENERGY, MATERIAL, AND INSTRUMENTATION TECHNOLOGY

Journal Webpage <u>https://jemit.fmipa.unila.ac.id/</u>

Perhitungan Burn Up pada Reaktor HCLWR Model Geometri Heksagonal Dua Dimensi BahanBakar Uranium menggunakan SRAC COREBN

Wahyuning Ramadhanta Ardanti^a, Yanti Yulianti^b, Agus Riyanto^c, dan Syafriadi

Jurusan Fisika, Universitas Lampung, Bandar Lampung, Indonesia, 35141

Article Information	Abstract
Article history: Received 06 Maret 2020 Received in revised form 06 Maret 2020 Accepted 10 Maret 2020	This study about burn up calculations on the HCLWR reactor with two dimensional hexagonal geometric models of uranium using SRAC COREBN has been carried. This study used uranium-235 and uranium-238 as the fuels, light water as coolant and moderator. The calculation was done with computational simulation of COREBN. The calculation aims to produce a conversion ratio more than 1 and a critical multiplication factor (keff). The research used fuels enrichment, burn up period, burn up step, linier power and volume fraction parameters. The percentage of enrichment from U1 and U3 user 3% and U2 uses 2.5%. The volume fraction of
Keywords: burn up, COREBN, convertion ratio, keff.	each material was 52% fuels, 12% cladding, and 36% coolant, the reactor operating period for 548 days with 6 step of burn up then the reactorpower is 2400 MW and the linear poweris 1,792722 MW/cm. The calculation of conversion ratio was 1,01233 and keff was 0,901.
Informasi Artikel	Abstrak
Proses artikel: Diterima 06 Maret 2020 Diterima dan direvisi dari 06 Maret 2020 Accepted 10 Maret 2020	Telah dilakukan penelitian tentang perhitungan burn up pada reaktor HCLWR model geometri heksagonal dua dimensi bahan bakar uranium menggunakan SRAC COREBN. Penelitian ini menggunakkan bahan bakar adalah uranium-235 dan uranium-238, sedangkan air ringan digunakan sebagai pendingin dan moderator. Perhitungan dilakukan dengan simulasi komputasi menggunakan kode COREBN yang terdapat pada program SRAC. Tujuan dari perhitungan burn up dilakukan untuk menghasilkan nilai rasio konversi lebih dari 1 dan nilai keff yang optimal. Parameter yang digunakan pada penelitian ini adalah pengayaan bahan
Kata kunci: burn up, COREBN, rasio konversi, keff	bakar, periode burn up, step burn up, daya linier serta fraksi volume. Pengayaan yang didapat pada U1 dan U3 sebesar 3% serta U2 sebesar 2,5% dengan fraksi volume dari masing-masing material yaitu 52% bahan bakar, 12% selongsong dan 36% moderator. Sehingga reaktor dapat menyala hingga akhir periode selama 548 hari dengan 6 step burn up dan menghasilkan daya sebesar 2.400 MW, daya linier sebesar 1,792722 MW/cm, nilai rasio konversi 1,01233 dan keff sebesar 0,901.

1. Pendahuluan

Pembangkit Listrik Tenaga Nuklir (PLTN) adalah salah satu pembangkit energi alternatif yang sekarang sudah banyak digunakan di berbagai negara maju, seperti Amerika Serikat, Prancis, jerman Jepang dan negara maju lainnya. PLTN digunakan untuk membangkitkan tenaga listrik yang realtif murah, aman dan tidak mencemari lingkungan. PLTN memanfaatkan energi reaktor nuklir sebagai sumber energi listrik. PLTN menggunakan satu atau beberapa reaktor nuklir sebagai sumber panasnya yang dimanfaatkan untuk pembangkit daya termal (BATAN, 2019).

Reaktor nuklir adalah tempat berlangsungnya reaksi nuklir (Adiwardojo, dkk., 2010). Uranium merupakan salah satu bahan bakar yang sering digunakan. Di Indonesia memiliki cadangan uranium sebanyak 70.000 ton (Bastori dan Moch, 2017). Perkembangan reaktor nuklir dari generasi ke generasi terus mengalami perubahan dari segi efektifitas biaya, keselamatan, siklus bahan bakar dan komersialisasi. HCLWR merupakan salah satu jenis

^{*} Corresponding author.

E-mail addresa: (a)wahyuningramadhanta@gmail.com, (b) yanti.yulianti@fmipa.unila.ac.id, (c)agus.riyanto@unila.ac.

Ardanti W R, Yulianti Y, Riyanto A, dan Syafriadi, 2020. Perhitungan Burn Up pada Reaktor HCLWR Model Geometri Heksagonal Dua Dimensi BahanBakar Uranium menggunakan SRAC COREBN, Journal of Energy Material and Instrumentation Technology, Vol. 1 No. 1, 2020

reaktor hasil pengembangan dari reaktor generasi I yaitu LWR. HCLWR mulai dikembangkan oleh JAERI (*Japan Atomic Energy Research Institute*) pada tahun 1985 dengan desain konseptual. HCLWR didesain dengan tujuan untuk mencapai rasio konversi tinggi, jaminan keselamatan (setara atau lebih tinggi dari tingkat keselamatan LWR), dan memiliki nilai eknonomi yang tinggi (Sugimoto., dkk, 1989). HCLWR dengan kisi *pitch* yang lebih padat memiliki kelebihan dua fitur desain dibandingkan dengan LWR konvensional yaitu mengurangi rasio volume air terhadap bahan bakar dan pengayaan fisil plutonium yang lebih tinggi (Ishiguro, 1989). HCLWR menggunakan pendingin berupa air ringan (H₂O). HCLWR memiliki beberapa komponen penting, salah satunya yaitu teras (inti) reaktor.

Teras (inti) reaktor merupakan salah satu bagian yang penting dari reaktor nuklir (Dudeerstadt dan Louis, 1976). Desain inti reaktor menjadi tahap awal dan salah satu bagian penting dalam reaktor nuklir agar menghasilkan sistem PLTN yang aman, efektif dan ekonomis pada waktu operasi. Parameter yang menentukan aman tidaknya reaktor tersebut beroperasi selama periode tertentu disebut reaktivitas reaktor. Selain itu, proses perancangan desain inti reaktor memerlukan analisis detail, lengkap dan berkelanjutan (Nurul, dkk., 2015). Analisis yang dapat dilakukan pada inti reaktor yaitu menganalisis *burn up* inti reaktor. Kedua parameter ini memiliki hubungan dengan periode operasi reaktor. Reaktivitas reaktor akan menghasilkan daya yang konstan dan nilainya optimal ketika bernilai mendekati satu selama periode operasi.

Analisis perhitungan *burn up* inti teras reaktor perlu dilakukan untuk mengetahui pembakaran yang ada di inti reaktor melalui nilai rasio konversi seketika (*instantaneous conversion ratio*). Rasio konversi didefinisikan sebagai rasio antara laju pembentukan isotop fisil baru dengan laju destruksi isotop fisil. Jika laju ini bernilai lebih dari satu, maka nilai rasionya disebut dengan rasio pembiakan (*breeding ratio*) (Agung, 2017). Nilai rasio konversi yang besar dibutuhkan agar akses reaktivitas yang dicapai cukup rendah selama nwaktu *burn up* yang panjang (Subekhi,dkk., 2015) dan panjang rasio konversi lebih dari 1 menunjukan bahwa bahan bakar yang dikonsumsi lebih sedikit daripada bahan bakar yang diproduksi.

2. Metode Penelitian

Alat dan bahan yang digunakan dalam penelitian ini adalahseperangkat komputer dengan *Operating System Linux Mint* 18.1 dan SRAC-COREBN. Langkah-langkah penelitian yang akan dilakukan sebagai berikut.

2.1 Menentukan Pengayaan

Perangkat bahan bakar terdiri dari tiga komposisi yaitu daerah bahan bakar pertama, daerah bahan bakar kedua, dan daerah bahan bakar ketiga. Masing-masing daerah akan dilakukan pengayaan sebesar 2%- 4% dengan jarak 0,5%.

2.2 Menghitung Densitas Atom

Setiap komponen pada reaktor seperti bahan bakar (*fuel*), kelongsong (*cladding*), dan pendingin (*moderator*) dihitung densitas atomnya untuk digunakan sebagai *input* pada PIJ. PIJ adalah salah satu kode pada SRAC yang digunakan untuk melakukan perhitungan neutronik tingkat sel. Perhitungan pada PIJ digunakan untuk menghomogenisasi energi neutron. Rumus untuk menghitung densitas atom ditunjukkan pada persamaan 1.

$$N = \frac{\rho N_A}{M}$$

dengan,

(1)

N = densitas atom (atom/cm³) ρ = massa jenis (g/cm³) N_A = bilangan Avogadro (0,6022 x 10²⁴ atom/mol)

M = massa molekul (g/mol)

2.3 Melakukan Perhitungan pada PIJ

Perhitungan pada PIJ dilakukan untuk menentukan geometri tingkat sel. Geometri sel yang akan digunakan berbentuk silinder satu dimensi melingkar. 1, 2, 3 merupakan bahan bakar 4 merupakan kelongsong, dan 5, 6 merupakan pendingin. Hasil dari perhitungan tingkat sel akan disimpan dalam *file* MACRO, *file* ini akan digunakan sebagai *input* pada HIST untuk meregistrasi material yang digunakan pada COREBN. Bentuk geometri selnya ditunjukkan seperti pada **Gambar 1**.

Gambar 1. Model Geometri Silinder 1D Melingkar

2.4 Menginput Data pada HIST

HIST adalah *history file*. Pekerjaan yang dilakukan oleh HIST seperti menentukan geometri teras dan registrasi material, menentukan jenis elemen bahan bakar, menentukan jenis elemen non bahan bakar, dan melakukan pemuatan elemen bahan bakar.

2.5 Melakukan Perhitungan pada COREBN

COREBN adalah kode tambahan pada SRAC yang digunakan untuk menghitung burn up pada tingkat teras (inti). Input pada COREBN berhubungan dengan kondisi operasi seperti daya termal, periode operasi, pola pemuatan elemen bahan bakar, dan pola pemuatan elemen kendali (Okimura, 2007). Geometri teras reaktor yang akan digunakan berbentuk silinder 2 dimensi dengan perhitungan 1/6 bagian teras reaktor seperti yang ditunjukkan pada **Gambar 2**.

Gambar 2. Desain konfigurasi 1/6 bagian permukaan teras reaktor

3. Hasil dan Pembahasan

3.1 Variasi Pengayaan Bahan Bakar

Pengayaan dilakukan untuk memperkaya jumlah persentase isotop U²³⁵ dalam bahan bakar. Hasil dari variasi pengayaan di ketiga daerah bahan bakar ditunjukkan pada **Gambar 3. Gambar 3** menunjukkan semakin besar pengayaan yang diberikan kepada bahan bakar U²³⁵, maka nilai k_{eff} akan semakin meningkat. Hal ini menunjukkan telah terjadi reaksi fisi. Semakin besar pengayaan bahan bakar, maka reaksi fisi juga semakin besar karena jumlah neutron yang dihasilkan semakin meningkat.

3.2 Penambahan Periode Burn Up

Burn up (derajat bakar) digunakan untuk menyatakan jumlah bahan bakar yang terbakar atau melakukan reaksi fisi. Hasil dari penambahan periode burn up ditunjukkan pada **Tabel 1** yang menunjukkan nilai k_{eff} dan rasio konversi setelah penambahan periode burn up. Hasil yang diperoleh menunjukkan bahwa semakin lama proses pembakaran, maka nilai k_{eff} akan semakin kecil seiring dengan peningkatan nilai rasio konversi. Hal ini menunjukkan bahwa konsumsi bahan bakar fisil memiliki rasio yang lebih rendah dibandingkan periode awal teras reaktor, sehingga bahan bakar fisil tersebut tidak mampu untuk menyediakan neutron yang cukup dan mengakibatkan teras menjadi kritis ataupun superkritis. Ketika nilai rasio konversi yang dihasilkan cukup baik, teras reaktor akan berada dalam keadaan subkritis (Ardiansyah, 2018). Faktor lain yang mengakibatkan nilai k_{eff} yang ada di dalam teras reaktor (Permata dan Handayani, 2016).

Ardanti W R, Yulianti Y, Riyanto A, dan Syafriadi, 2020. Perhitungan Burn Up pada Reaktor HCLWR Model Geometri Heksagonal Dua Dimensi BahanBakar Uranium menggunakan SRAC COREBN, Journal of Energy Material and Instrumentation Technology, Vol. 1 No. 1, 2020

Gambar 3. Pengaruh pengayaan bahan bakar terhadap nilai k_{eff} (a) Daerah pertama; (b) Daerah kedua; (c) Daerah ketiga

Tabel 1. Pengaruh penambahan periode burn up terhadap nilai k_{eff} dan nilai rasio konversi

Ardanti dkk, 2020/ J. Energy Mater. Instrum. Technol. Vol. 1 No. 1, 2020

			Periode I	<i>Burn Up</i> (Hari)		
Step	182	54	18		912	
burn up	$k_{e\!f\!f}$	Rasio	$k_{e\!f\!f}$	Rasio	$k_{e\!f\!f}$	Rasio
-		konversi		konversi		konversi
1	1,291	0,489	1,291	0,489	1,291	0,489
2	1,177	0,524	1,177	0,524	1,177	0,524
3	1,134	0,551	1,094	0,583	1,030	0,641
4	1,103	0,576	1,008	0,668	0,921	0,771
5	1,091	0,588	0,933	0,755	0,838	0,864

3.3 Variasi Daya Linear

Perubahan daya linear dapat ditentukan dengan mengubah daya yang ada pada reaktor. Berdasarkan penelitian yang telah dilakukan sebelumnya, semakin besar nilai daya linear maka nilai k_{eff} akan semakin kecil (Antartika, 2017). Hasil dari variasi daya linear terhadap nilai k_{eff} dan rasio konversi bertutur-turut ditunjukkan pada **Tabel 2** dan **Tabel 3**. Berdasarkan **Tabel 2** dan **Tabel 3** diperoleh bahwa semakin bertambah nilai daya linear, maka nilai k_{eff} akan berkurang. Penurunan nilai k_{eff} akan menyebabkan nilai rasio konversi meningkat. Perubahan daya linear belum memberikan perubahan yang signifikan terhadap nilai rasio konversi. Rasio konversi paling tinggi yang dapat dicapai yaitu 0,692345 dengan k_{eff} 0,987pada daya linear sebesar 1,868 MW/cm.

Tabel	2.	Hasil	Nilai	k_{eff}	Sete	lah	Peru	ba	han	Daya	Linear
-------	----	-------	-------	-----------	------	-----	------	----	-----	------	--------

Daya linear	Daya (MW)	Faktor Multiplikasi ($k_{e\!f\!f}$)						
(11117)	(101 00)	1	2	3	4	5	6	
1,494	2000	1,291	1,974	1,112	1,112	1,079	1,022	
1,569	2100	1,291	1,195	1,107	1,107	1,073	1,014	
1,644	2200	1,291	1,194	1,103	1,103	1,061	1,010	
1,718	2300	1,291	1,192	1,009	1,009	1,062	1,010	
1,793	2400	1,291	1,192	1,094	1,094	1,057	0,994	
1,868	2500	1,291	1,189	1,091	1,091	1,052	0,987	

Tabel 3. Hasil Nilai Rasio Konversi Setelah Perubahan Daya Linear

Daya linear	Daya (MW)	Rasio konversi					
	(11111)	1	2	3	4	5	6
1,494	2000	0,489	0,516	0,534	0,568	0,599	0,653
1,569	2100	0,489	0,516	0,536	5,721	0,604	0,660
1,644	2200	0,489	0,517	0,537	0,576	0,608	0,671
1,718	2300	0,489	0,517	0,539	0,579	0,614	0,679
1,793	2400	0,489	0,518	0,541	0,583	0,619	0,684
1,868	2500	0,489	0,519	0,542	0,587	0,624	0,692

3.4 Perubahan Fraksi Volume

Perhitungan fraksi volume digunakan untuk menentukan persentase jumlah material seperti bahan bakar, kelongsong, dan moderator pada teras reaktor. Hasil dari perubahan fraksi volume tiap material ditunjukkan pada **Tabel 4**. Hasil nilai k_{eff} dan rasio konversi dari perubahan fraksi volume berturut-turut ditunjukkan pada **Tabel 5** dan **Tabel 6**.

|--|

Komponen	Radius (cm)	Fraksi Volume (%)
Bahan Bakar	0,538300	52
Selongsong	0,595300	12
Moderator	0,746336	36

Berdasarkan hasil pada Tabel 5 yang menghasilkan nilai k_{eff} agar reaktor dapat menyala hingga akhir waktu operasi terjadi pada semua daya linear kecuali daya linear 1,868460 (daya reaktor sebesar 2500 MW) dengan nilai k_{eff} sebesar 0,897209.

Berdasarkan hasil pada Tabel 6 menunjukkan bahwa nilai rasio konversi yang diperoleh hampir semua 1, hanya pada daya linear 1,494 MW/cm dan 1,569 MW/cm yang tidak menghasilkan 1 tetapi, jika dilihat dari nilai k_{eff} yang diperoleh tidak semuanya akan menghasilkan reaktor yang dapat menyala hingga akhir waktu operasi.

Ardanti W R, Yulianti Y, Riyanto A, dan Syafriadi, 2020. Perhitungan Burn Up pada Reaktor HCLWR Model Geometri Heksagonal Dua Dimensi BahanBakar Uranium menggunakan SRAC COREBN, Journal of Energy Material and Instrumentation Technology, Vol. 1 No. 1, 2020

Daya linear (MW/cm)	Daya	Faktor multiplikasi efektif ($k_{e\!f\!f}$)							
	(111.11)	1	2	3	4	5	6		
1,494	2000	1,090	1,021	0,996	0,964	0,944	0,914		
1,569	2100	1,090	1,020	0,994	0,961	0,940	0,910		
1,644	2200	1,090	1,019	0,992	0,958	0,937	0,907		
1,718	2300	1,090	1,018	0,990	0,956	0,934	0,903		
1,793	2400	1,090	1,016	0,988	0,953	0,931	0,901		
1,868	2500	1,090	1,015	0,986	0,950	0,928	0,897		

Tabel 5. Nilai keffHasil Dari Perubahan Fraksi Volume

Tabel 6. Nilai Rasio Konversi Hasil Dari Perubahan Fraksi Volume

Daya linear (MW/cm)	Daya (Mw)	Rasio konversi						
()	()	1	2	3	4	5	6	
1,494	2000	0,839	0,876	0,895	0,926	0,950	0,992	
1,569	2100	0,839	0,877	0,897	0,929	0,954	0,997	
1,644	2200	0,839	0,878	0,898	0,932	0,959	1,002	
1,718	2300	0,839	0,878	0,900	0,936	0,963	1,101	
1,793	2400	0,839	0,879	0,902	0,939	0,967	1,012	
1,868	2500	0,839	0,880	0,903	0,942	0,970	1.016	

Berdasarkan hasil penelitian yang telah dilakukan, perubahan yang signifikan untuk menghasilkan rasio konversi 1 yaitu ketika melakukan perubahan pada persentase bahan bakar (perubahan fraksi volume). Hal ini dikarenakan semakin kecil persentase bahan bakar yang digunakan akan mengakibatkan jumlah bahan bakar yang digunakan semakin banyak untuk proses pembakaran atau reaksi fisi (Nurkholiah dan Fitriyani, 2019). Persentase bahan bakar yang kecil akan membuat komposisi bahan fertil yang terdapat dalam reaktor juga sedikit, sehingga untuk menjaga kekritisan reaktor bahan bakar yang digunakan menjadi lebih banyak (Permata dan Handayani, 2016).

4. Kesimpulan

Berdasarkan hasil penelitian, analisis dan pembahasan diperoleh bahwa Semakin besar persentase pengayaan pada U²³⁵, maka nilai k_{eff} akan semakin besar. Persentase yang optimal pada daerah satu dan tiga sebesar 3% sedang kan pada daerah dua 2,5%. Periode *burn up* semakin lama, maka nilai k_{eff} akan berkurang dan nilai rasio konversi akan bertambah. Pada periode *burn up* 548 hari reaktor tetap menyala hingga akhir periode. Semakin besar nilai daya linear, maka nilai k_{eff} akan berkurang dan nilai rasio konversi bertambah. Hal ini dikarenakan berkurangnya nuklida fisil seiring bertambahnya *burn up*. Daya linear yang menghasilkan k_{eff} dan rasiokonversi optimal yaitu1,792722 MW/cm. Fraksi volume yang dapat menghasilkan nilai rasio konversi 1 dengan k_{eff} dapat membuat reactor menyala hingga akhir yaitu ketika persentase bahan bakar 52%, kelongsong 12%, dan moderator 36%. Daya reaktor 2400 MW, dan daya linear 1,792722 MW/cm.

5. Daftar Pustaka

- Adiwardojo., Natio, L.A., Ruslan., Madi, P.E., dan Effendi, E. 2010. Mengenal Reaktor Nuklir dan Manfaatnya. Pusat Diseminasi Iptek Nuklir. Jakarta.
- Agung, A. 2017. Diktat Kuliah: Analisis Reaktor Nuklir. UGM. Yogyakarta.
- Antartika, A.P. 2017. Perhitungan Burn Up Model Assembly X-Y 2 Dimensi Pada SCWR Menggunakan Bahan Bakar Thorium. (Skripsi). Universitas Lampung. Lampung.
- Ardiansyah, H., Agung, A., dan Widi, A.H. 2018. Studi Parameter Desain Teras Integral Pressurized Water Reactor dengan Bahan Bakar Mixed Oxide Fuel Menggunakan Program SRAC. Jurnal Forum Nuklir. Vol. 12. No. 2. Hal. 61-72.
- Badan Tenaga Nuklir Indonesia (BATAN). Pengenalan Pembangkit Listrik Tenaga Nuklir. <u>http://www.batan.go.id/index.php/id/infonuklir/pltn-infonuklir/generasi-pltn/924-pengenalan-pembangkit-listrik-tenaga-nuklir</u>. Di akses pada tanggal 19 Juni 2019.

Bastori, Imam dan Moch Djoko Birmano. 2017. Analisis Ketersediaan Uranium di Indonesia untuk Kebutuhan PLTN Tipe PWR 1000 MWe. *Jurnal Pengembangan Energi Nuklir.* Vol. 19. No.2. Hal. 95-102.

Duderstadt, J.J dan Louis J.H. 1976. Nuclear Reactor Analysis. John Wiley and Sons, Inc. New York.

- Ishiguro, Y. 1989. Development of High Conversion Light Water Reactor. *Journal of Nuclear Science and Technology*. Vol. 26. No. 1. Hal. 33-36.
- Nurkholilah dan Fitriyani, D. 2019. Analisis Burn Up pada Reaktor Pembiak Cepat Berpendingin Pb-Bi dengan Variasi Fraksi Bahan Bakar dan Bahan Pendingin. Jurnal Fisika Unand. Vol. 8. No. 2. Hal. 184-190.
- Nurul, M.S., Su'ud, Z., Waris, A., dan Permana, S. 2015. Studi Desain Reaktor Air Bertekanan (PWR) Berukuran Kecil Berumur Panjang Berbahan Bakar Thorium. Vol. 9. No. 1. Hal. 32-49.
- Okumura,K. 2007. COREBN: A Core Burn-Up Calculation Module for SRAC2006. Reactor Physics Group, Nuclear Science and Engineering Directorate, Japan Atomic Energy Research Institute (JAERI). Tokaimura, Nakagun, Ibaraki-ken. Japan.
- Permata, N.S., Fitriyani, D., dan Handayani, F.I. 2016. Analisis Neutronik Super Critical Water Reactor (SCWR) dengan Variasi Bahan Bakar (UN-PuN, UC-PuC, dan MOX). Jurnal Fisika Unand. Vol. 5. No. 1. Hal. 47-52
- Subekhi, M. N., Suud, Z., Waris, Abdul., dan Permana, S. 2015. Studi Desain Air Bertekanan (PWR) Berukuran Kecil Berumur Panjang Berbahan Bakar Thorium. Vol. 9. No. 1. Hlm. 32 – 49..
- Sugimoto, J., Takamichi, I., Tsutomu, O., dan Yoshio, M. 1989. *Thermal-Hydraulic Characteristic of Double Flat Core* HCLWR. Tokai Research Establishment. Japan Atomic Energy Research Institute.