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Abstract. Time series analysis (time series) is one method with the aim to find out events 

that will occur in the future based on data and past circumstances. Time series are widely used 

in economics, business, environmental science, and finance. The analytical tool that is widely 

used to answer quantitative research problems is the Autoregressive Vector (VAR). The VAR 

model is used if the data is stationary. If the variable has cointegration and stationary at the 

first difference value, the VAR model is modified to become the Error Correction Model 

(VECM). Then we can find out the influence of variables with other variables by looking at 

the Impulse Response Function and Granger Causality. In this research, PT Kalbe Farma Tbk's 

stock data will be analyzed. (KLBF) and PT Kimia Farma (Persero) Tbk (KAEF). The data 

used are weekly data from January 2010 to June 2020. Based on data analysis, it is known that 

the data is not stationary and there are unit roots. Furthermore, first differencing is done to 

make the data stationary. Because there was cointegration, a VECM analysis was performed 

and a VECM (p) was obtained with a lag of p = 4. So the best model for this research is 

VECM (4) with rank = 2. Causal relationships between variables using Granger Causality 

showed that KLBF influenced KAEF in the past. Based on IRF analysis, each variable gives a 

fluctuating response with itself and with other variables. 

 

 

Keywords: VAR model,VECM, cointegration, Granger Causality, Impulse Response 

Function 

 

 

1. Introduction 

Time series analysis is one method with the aim to find out events that will occur in the future based 

on data and past circumstances. In general, the time series econometrics model is a structural model 

because it is based on existing economic theories. In 1980 Christopher A. Sims introduced the VAR 

model as an alternative in macroeconomic analysis. The analytical tool commonly used to answer 

quantitative research problems is the Autoregressive Vector (VAR). The VAR model is used to 

explain the simultaneous variables that have influence on each other. The VAR model is used if the 

data is stationary at the level. The data is not stationary at the level but stationary at the first difference 

value we will use the Autoregressive Vector in Difference (VARD) if all variables do not have 
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cointegration. When the variables have cointegration and stationary at the first difference value, then 

the Error Correction Model (VECM) is used. In this applied statistical research various cases of 

multivariate time series data will be examined. Modeling that will be used for multivariate time series 

data is the Error Correction Model (VECM) Vector, which will then be seen the causal relationship 

between time series variables using Granger Causality, to see the effect of the shock of a variable 

against other variables will be used Impulse Response Function (IRF) ). Discussed the relationship 

and forecasting between the price indexes of two oil companies in Indonesia using VAR [1]. 

In this research, modeling will be carried out on the stock data of PT Kalbe Farma Tbk. (KLBF) 

and PT Kimia Farma (Persero) Tbk (KAEF). PT Kalbe Farma Tbk., with its subsidiaries, develop, 

manufacture, and trade pharmaceutical products in Indonesia. It operates in four segments: 

Prescription Pharmacy, Consumer Health, Nutrition, and Distribution and Logistics. The company 

was founded in 1966 and based in Jakarta, Indonesia. PT Kalbe Farma Tbk. is a subsidiary of PT Gira 

Sole Prima. PT Kimia Farma (Persero) Tbk manufactures and sells medicines, herbal medicines, 

iodine, salt, quinine and its derivative products, and vegetable oils in Indonesia, throughout Asia, 

Europe, Australia, Africa and New Zealand. The company operates through the manufacturing, 

distribution, retail and other services segments. The company was founded in 1817 and based in 

Jakarta, Indonesia. Both of these variable data are time series data. So that time series analysis can be 

done to make multivariate modeling that can be used for the future. The objectives of this study are 

(1) Formulating a Multivariate Time series data model with the Vector Error Correction Model 

(VECM) approach. (2) Review the behavior of Multivariate data with Granger Causality. (3) Assess 

how the behavior of one variable with respect to other variables in the event of shock and how long 

the equilibrium will occur. 

 
2. Literature Review 

2.1 Test Cointegration 

The concept of cointegration was introduced by Engle and Granger and the development of practical 

and inferential estimation methods was given by Johansen. In much of the literature, the time series 

Xt is said to be integrated with the sequence process 1, I (1), if (1-B) Xt is stationary and cannot be 

reversed. If the time series data is stationary and can be reversed, it says process I (0). In general, 

univariate time series Xt is process I(d), if (1-B)dXt stationary and non invertable [2],[3],[4]. Burke 

and Hunter proposed the procedure of Johansen’s for estimation and inferencial [5]. If there is 

cointegration between variables, then we must test the cointegration ranking. Some cointegration rank 

testing methods are as follows: Trace test and Test the maximum eigenvalue. In the cointegration test 

Johansen cointegration test is used as follows: It is known that the model 𝑉𝐴𝑅 (𝑝) is 

𝑦𝑡 = 𝐴𝑡𝑦𝑡−1 + ⋯ + 𝐴𝑝𝑦𝑡−𝑝 + 𝐵𝑥𝑡 + ε𝑡 

where y_t is a vector with 𝑘 non stationary variable I (1), 𝑥𝑡 is a vector with 𝑑 deterministic variable, 

𝜀𝑡 is an error vector. The equation 𝑉𝐴𝑅 (𝑝) can also be written as 

∆𝑦𝑡 = Π𝑦𝑡−1 + ∑  Γ𝑖∆y𝑡−1 +

𝑝−1

𝑖=1

𝐵𝑥𝑡 + ε𝑡 

where  

Π = ∑ 𝐴𝑖 + 𝐼

𝑝

𝑖=1

,           Γ𝑖 = − ∑ 𝐴𝑗

𝑝

𝑖=1

 

For testing the hypotheses can be used the trace test :  

𝐿𝑅𝑡𝑟(r|k)  =  −T ∑ log (1 − λ𝑖)

𝑘

𝑖=𝑟+1

 

And statistical test for maximum eigen value  

LRmax(r|r + 1) =  −T log(1 − λ𝑟+1)  
              = 𝐿𝑅𝑡𝑟(r|k) − 𝐿𝑅𝑡𝑟(r + 1|k) 

for 𝑟 = 0, 1, …, 𝑘 − 1, with the null hypotheses is 𝐻0 ∶ there is 𝑟 cointegration equation. 

At the significance level (1 - 𝛼) 100%, 𝐻0 is accepted if the trace test statistic and the maximum 

eigenvalue are smaller than the critical value when 𝛼, or 𝑝-value is greater than the significance value 
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𝛼 [6]. If there is cointegration between variables, the representation the error-correction VAR model 

was modified, so the model became a VECM model [7] [8]. 

 

2.2 Vector Autoregressive (Var) 

Vector Autoregressive (VAR) is a special form of simultaneous equation system. The VAR model can 

be applied if all variables used are stationary, but if the variables in the Y_t vector are not stationary 

then the model used is the Vector Error Correction Model (VECM) provided that there is one or more 

cointegration relationships between the variables. VECM is a limited VAR that is designed to be used 

in non-stationary data which is known to have a cointegration relationship [9]. 

𝑦𝑡 = 𝐴1𝑦𝑡−1 + ⋯ + 𝐴𝑝𝑦𝑝−1 + 𝜀𝑡 

where,  

𝑦𝑡 : is vector of observation,  

𝐴  : matrix of parameter,  

𝜀𝑡 : vektor error 

If the data used is stationary at the same differencing level and there is cointegration, then the 

VAR model will be combined with the error correction model into the Vector Error Correction Model 

(VECM) [7]. 

 

2.3 Vector Error Correction Model (VECM) 

VECM is a limited VAR model designed to be used in non-stationary time series but has a 

cointegration relationship between variables. VECM is very useful because it can estimate the short-

term effects between variables and the long-term effects of time series data. The general form of 

VECM (p) where p is the lag of endogenous variables with cointegration rank r ≤ k is as follows [2]: 

∆𝑦𝑡 =  Π𝑦𝑡−1 + ∑𝑖=1
𝑝−1 

Γ𝑖 ∆𝑦𝑡−𝑖 + 𝐷𝑡 + ε𝑡              

where: 

∆ = operator differencing, where ∆𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1, 

𝑦𝑡−1 = vector variable endogenous with lag 1, 

εt = kx1 vector residuals,  

𝐷𝑡  = kx1 vektor constant, 

Π         = matrix coefficient of cointegration (Π = 𝛼𝛽t ; 𝛼 = vector adjustment, kxr matrix and 𝛽 = 

matrix cointegration (long-run parameter) (k × r))  

Γ𝑖         = kxk matrix coefficient the ith variable endogenous. 

 

2.4 Test For Normality Of Residuals 

Residual normality test is used to determine the residual normality in a multivariate model. The 

normality test is carried out using the Jarque-Bera (JB) Test of Normality. This test uses a measure of 

skewness and kurtosis. Jarque-Bera (JB) used in the normality test on the residual model where the 

calculation is done by adding indicators of the number of independent variables or predictors, JB 

calculation is as follows: 

𝐽𝐵 =  [
𝑁

6
 𝑏1

2 +  
𝑁

24
 (𝑏2 − 3)2]     

Where: 

𝑁  = number of sample size, 

𝑏1 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 

𝑏2 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐸𝑥𝑐𝑒𝑠𝑠 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 

where Jarque-Bera (JB) Test of Normality with chi-square 𝑥2 distribution with degrees of freedom 2 

[10].  

 

2.5 Granger Causality 

Granger causality is used to see short-term relationships in the form of reciprocity between variables 

in a vector. A stable VAR is defined as follows: 

𝑦𝑡 =  [
𝑦1𝑡

𝑦2𝑡
] = [

𝐴11,1 𝐴12,1

𝐴21,1 𝐴22,1
] [

𝑦1𝑡−1

𝑦2𝑡−1
] + ⋯ + [

𝐴11,𝑝 𝐴12,𝑝

𝐴21,𝑝 𝐴22,𝑝
] [

𝑦1𝑡−𝑝

𝑦2𝑡−𝑝
] + [

𝑒1𝑡

𝑒2𝑡
]   
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𝑦𝑡 is consist of vector 𝑦1𝑡 and 𝑦2𝑡  . 𝑦2𝑡 is not grager causality for 𝑦1𝑡 if coefficient matrix of 

parameter VAR namely 𝐴21,𝑖 = 0 for i=1,2,..., p[2]. 

 

The Granger Causality Test is based on the F test which attempts to determine if there is a change 

in one variable due to a change in another variable. A variable X is said to be a Granger Cause 

variable Y, if the previous value of X can predict the current Y value. 

VAR Model: 

𝑦𝑡 = ∑𝑖=1
𝑝

∅𝑖𝑦𝑡−𝑖 + 𝜀𝑡 

      

If all the coefficients ∅ on the lag value of 𝑦 are significant then X Granger Causal Y. If X Granger 

Causal Y and not vice versa, it is called indirect causality. If causality is found in both, from X to Y 

and from Y to X, then it is called bidirectional causality [11] [12] [13]. 

 

2.6 Impulse Response Function (IRF)  

The Impulse Response Function is a method used to see the response of an endogenous variable to 

shock given by another variable. A Vector Autoregressive (VAR) can be written in the form of a 

Vector Moving Average (VMA) that allows us to see various responses from veriable in the VAR 

system. The VAR model can be written in the MA vector (∞) as 

      
And the matrix has an interpretation as follows: 

         
Row i, column j element identifies the consequence of increasing one unit in the innovation of 

variable j on the date t (μjt) for the value of the i variable at time t + s (Xi, t + s), holding all other 

innovations at all constant dates. If the first μt element is changed by δ1, at the same time, the second 

element is changed by δ2, .., and element n by δn, then the combined effect of this change on the 

vector value Xt + s will 

                                            
Plot of row I, column j element of Ψs is called Impulse Response Function (IRF).  

 

3. Results And Discussion 

The first step that must be passed to get the VECM estimate is to test the stationarity of each variable's 

data. Stationary data is needed to influence the results of the VECM estimation test. In this study, to 

detect whether or not the stationary variable of each variable data, it can be seen with a time series 

plot, ACF graph (Autocorrelation Function), and Augmented Dickey-Fuller Unit Root Test. 

 

       
Figure 1. Trend and correlation analysis for KLBF and for KAEF 

 

Table 1. Augmented Dickey Fuller Unit Roots Test 
Variable Type lags ρ Pr < ρ Tau Pr <Tau 

Kurs KLBF Zero mean 3 -0.4354 0.5837 -0.68 0.4204 
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Single mean 3 -19.7479 0.0113 -3.20 0.0215 

trends 3 -21.6944 0.0454 -3.26 0.0747 

Kurs KAEF Zero mean 3 -0.6201 0.5441 -0.58 0.4652 

Single mean 3 -3.7952 0.5605 -1.32 0.6227 

trends 3 -2.7430 0.9466 -0.85 0.9589 

 

From Figure 1, the time series plot shows that the two variables above are not stationary because 

they still contain elements of trend. Furthermore, the instability of the data is also shown by the ACF 

graph where from lag 1 to the next lag falls slowly linearly near zero, this shows that the coefficient of 

autocorrelation is significantly different from zero. From table 1, all variables contain unit roots or are 

not stationary at the level. This can be seen in the p value of the statistical value Tau (τ) all types of 

testing for each variable is greater than the significance limit used, namely α = 0.05, so the data is not 

stationary (there is a unit root). Thus it can be said that all the variables above contain unit roots or are 

not stationary. Since all veriabels are not stationary at the level level, the first differencing is 

performed on the data, then checked again using time series plots, ACF charts and unit root tests. 

 

       
Figure 2. Trend and correlation analysis for KLBF and for KAEF 

 

                                     Table 2. Augmented Dickey Fuller Unit Roots Test 
Variable Type lags ρ Pr < ρ Tau Pr <Tau 

Kurs KLBF Zero mean 3 -462.644 0.0001 -11.24 <.0001 

Single mean 3 -464.561 0.0001 -11.23 <.0001 

trends 3 -466.902 0.0001 -11.23 <.0001 

Kurs KAEF Zero mean 3 -305.689 0.0001 -9.91 <.0001 

Single mean 3 -305.725 0.0001 -9.89 <.0001 

trends 3 -314.081 0.0001 -9.97 <.0001 

 

From Figure 2 in the time series plot it can be seen that the two variables are stationary to the mean 

and variance because they no longer contain an element of trend. Furthermore, the stationarity of the 

data is also shown by the ACF graph where from lag 0 to the next lag it slowly decreases 

exponentially to zero. So it can be concluded that the five variables above are stationary to the mean 

and variance. From Table 2, all variables no longer contain unit or stationary roots in the 1st 

Differencing. This can be seen in the p value of statistical Tau all types of testing for each variable is 

smaller than the significance limit used, α = 0.05, so that the data is stationary (there is no unit root). 

Thus it can be said that all of the above variables do not contain unit roots or stationary data. 

 

3. 1 Test for Lag Optimal 

VECM estimates are very sensitive to the lag length of the data used. The length of the lag is used to 

determine the time needed for the effect of each variable on its past variable. In this study, 

determining the length of the lag is done by looking at the smallest value of the information criteria. 

Determination of the optimum lag as follows: 

 

Table 3. Lag Optimal 
Information criterion VAR(1) VAR(2) VAR(3) VAR(4) VAR(5) 

AICC 17.36952 17.36942 17.3686 17.35107* 17.36112 
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HQC 17.38788* 17.39994 17.41118 17.40565 17.42762 

AIC 17.36939 17.36908 17.36793 17.34995* 17.35944 

SBC 17.41668* 17.448 17.47856 17.4924 17.53379 

FPEC 34948784 34938002 34897684 34276010* 34603014 

 

Based on table 3, it can be seen that the optimal lag length lies in lag 4. The selection of lag 2 as 

the optimal lag is based on the smallest values of AICC, AIC, and FPEC. So cointegration testing will 

be carried out in lag 4. 

 

3.2 Test Cointegration 

Cointegration testing is used to determine the long-term relationship of each variable. The 

requirement in estimating VECM is that there is a cointegration relationship in it. If there is no 

cointegration relationship, then the VECM estimate is canceled, but must use the VAR (Vector 

Atouregression) model. The cointegration test used in this study is the Johansen cointegration test. 

 

Table 4. Table cointegration 

H0: Rank=r H1: Rank>r Eigenvalue Trace Pr > Trace 

0 0 0.1979 227.9709 <.0001 

1 1 0.1807 108.2325 <.0001 

 

ased on Table 4, it can be seen that the p value for rank = 1 is smaller than the significance limit 

used, namely α = 0.05, so there is not enough evidence to reject H1: rank> r. Thus it can be said that 

there is a cointegration relationship between variables with rank = 2. Because the data used there is a 

cointegration relationship, the VAR (p) model used is VECM (p) with rank = 2. 

 

3.3 Selection of VECM(p) 

Selection of VECM(p) based on the information criterion of AICC, HQC, AIC, SBC and FPEC, the 

best VECM(p) is as follows: 

 

Table 5. Selection VECM(p) 
Information criterion VECM(1) VECM(2) VECM(3) VECM(4) VECM(5) 

AICC 17.36952 17.36942 17.3686 17.35107* 17.36112 

HQC 17.38788* 17.39994 17.41118 17.40565 17.42762 

AIC 17.36939 17.36908 17.36793 17.34995* 17.35944 

SBC 17.41668* 17.448 17.47856 17.4924 17.53379 

FPEC 34948784 34938002 34897684 34276010* 34603014 

 

Based on Table 5 it can be seen that the smallest values of AICC, AIC, and FPEC are found in VECM 

(4). So that VECM (4) was chosen as the best model. 

 

3.4 The estimation Parameter of VECM(4) with rank r=2 

Based on the above analysis, VECM (4) was selected as the best model with rank r = 2. Next, we will 

estimate the model for VECM (4) as follows: 

 

Table 6. Long-Run Parameter Beta  

Estimates when RANK=2 

Variable 1 2 

KLBF 0.04208 0.01324 

KAEF -0.00844 0.01620 
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Table 7. Adjustment Coefficient Alpha  

Estimates When RANK=2 

Variable 1 2 

KLBF -23.09162 -10.51971 

KAEF 14.39345 -50.96496 

 

Table 8. Parameter Alpha *  

Beta' Estimates 

Variable KLBF KAEF 

KLBF -1.11094 0.02450 

KAEF -0.06902 -0.94739 

 

Table 9. Model Parameter Estimates 

Equation Parameter Estimate Standard Error t Value Pr > |t| Variable 

 D_KLBF AR1_1_1 -1.11094 0.09739     KLBF(t-1) 

  AR1_1_2 0.02450 0.04034     KAEF(t-1) 

  AR2_1_1 0.00790 0.08104 0.10 0.9224 D_KLBF(t-1) 

  AR2_1_2 0.00962 0.03526 0.27 0.7851 D_KAEF(t-1) 

 AR3_1_1 -0.02219 0.06415 -0.35 0.7296 D_KLBF(t-2) 

 AR3_1_2 -0.03383 0.02925 -1.16 0.2479 D_KAEF(t-2) 

 AR4_1_1 -0.13230 0.04263 -3.10 0.0020 D_KLBF(t-3) 

 AR4_1_2 -0.05164 0.02018 -2.56 0.0108 D_KAEF(t-3) 

 D_KAEF AR1_2_1 -0.06902 0.21217     KLBF(t-1) 

  AR1_2_2 -0.94739 0.08788     KAEF(t-1) 

  AR2_2_1 0.11690 0.17653 0.66 0.5081 D_KLBF(t-1) 

  AR2_2_2 -0.08981 0.07681 -1.17 0.2428 D_KAEF(t-1) 

 AR3_2_1 -0.02170 0.13974 -0.16 0.8767 D_KLBF(t-2) 

 AR3_2_2 -0.04961 0.06371 -0.78 0.4365 D_KAEF(t-2) 

 AR4_2_1 -0.00970 0.09288 -0.10 0.9168 D_KLBF(t-3) 

 AR4_2_2 -0.04136 0.04396 -0.94 0.3472 D_KAEF(t-3) 

 

Based on the parameter estimation results, the VECM estimation (4) is obtained, i.e.  

          

∆𝑌𝑡 = Π𝑌𝑡−1 + Γ1∆𝑌𝑡−1+Γ2∆𝑌𝑡−2 + Γ1∆𝑌𝑡−3 + 𝜀𝑡 

 

∆𝑌𝑡 = [
−1.11094 0.02450
−0.06902 −0.94739

] 𝑌𝑡−1 + [
0.00790 0.00962
0.11690 −0.08981

] ∆𝑌𝑡−1

+ [
−0.02219 −0.03383
−0.02170 −0.04961

] ∆𝑌𝑡−2 
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                                                + [
−0.13230 −0.05164
−0.00970 −0.04136

] ∆𝑌𝑡−3 +  [
𝜀𝑡1

𝜀𝑡2
] 

 

Table 10. Schematic Representation of Cross Correlations  

of Residuals 

Variable/Lag 0 1 2 3 4 5 6 7 8 9 10 11 12 

KLBF ++ .. .. .. .. .. .. .. .. .. .. .. .. 

KAEF ++ .. .. .. .. .. .. .. .- .+ .. .. .. 

+ is > 2*std error, - is < -2*std error, . is between 

 

Table 11. Portmanteau Test for Cross  

Correlations of Residuals 

Up To Lag DF Chi-Square Pr > ChiSq 

5 4 5.86 0.2099 

6 8 8.06 0.4272 

7 12 9.46 0.6636 

8 16 17.40 0.3604 

9 20 24.82 0.2082 

10 24 25.74 0.3663 

11 28 26.92 0.5227 

12 32 30.73 0.5308 

 

3.5 Normality Residual 

 

  
Figure 3. Prediction Error Normality for KLBF and for KAEF 

 
 

Table 12. Univariate Model White Noise Diagnostics 

Variable Durbin 

Watson 

Normality ARCH 

Chi-Square Pr > ChiSq F Value Pr > F 

KLBF 1.98909 241.34 <.0001 4.57 0.0330 

KAEF 2.00446 2234.35 <.0001 41.99 <.0001 
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Table 13. Univariate Model AR Diagnostics 

Variable AR1 AR2 AR3 AR4 

F Value Pr > F F Value Pr > F F Value Pr > F F Value Pr > F 

KLBF 0.02 0.8993 0.01 0.9877 0.03 0.9941 0.03 0.9986 

KAEF 0.00 0.9566 0.00 0.9976 0.00 0.9999 0.00 1.0000 

 

Tables 12 and 13 are used to examine residual white noise on the condition of a univariate 

equation. The table shows a statistical test for distribution normality using the Jarque Bera normality 

test. Table 12 shows the p-values for KLBF and KAEF <0.05, meaning that the residuals are normally 

distributed. From Figure 3 it can be seen that the residual is approaching the normality line. 

 

3.6 Test for Stability Model 

The model stability test is used to see whether the model is stable or not. 

 

Table 14. Roots of AR Characteristic Polynomial 

Index Real Imaginary Modulus Radian Degree 

1 0.48209 0.03817 0.4836 0.0790 4.5274 

2 0.48209 -0.03817 0.4836 -0.0790 -4.5274 

3 0.04416 0.65159 0.6531 1.5031 86.1226 

4 0.04416 -0.65159 0.6531 -1.5031 -86.1226 

5 -0.00620 0.38205 0.3821 1.5870 90.9301 

6 -0.00620 -0.38205 0.3821 -1.5870 -90.9301 

7 -0.50635 0.00000 0.5064 3.1416 180.0000 

8 -0.67399 0.00000 0.6740 3.1416 180.0000 

 

Based on Table 14, you can see the modulus value <1. So that VECM (4) is a model that is feasible to 

use. 

 

3.7 Test for fit the Model 

The model fit test can be seen from the ANOVA table of the univariate model to determine the 

significance of the model. Based on the equation of the VECM model (4) written univariately, the 

model feasibility test is as follows: 

 

Table 15. Univariate Model ANOVA Diagnostics 

Variable R-Square Standard Deviation F Value Pr > F 

KLBF 0.5688 48.41149 32.32 <.0001 

KAEF 0.5423 18.57153 29.03 <.0001 

 

Based on Tabel 15, the univariate F-test are 32.32 and 29.03 with p-values <0.0001 for both KLBF 

and KAEF respectively.  
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3.8 Analisys of Granger-Causality 

Granger-Causality Test is intended to determine the causal relationship of each independent variable 

on the dependent variable. The Granger-Causality test is based on the wald-test with the chi-square 

distribution or F-test. The null hypothesis in the Granger-Causality test is where group one is 

influenced by itself not by group two. 

Table 16. Granger Causality Wald Test 

Test Group Variables Pr > ChiSq Conclusion 

1 Group 1 Variables : KLBF 

Group 2 Variables : KAEF 

0.0056 Reject H0 

2 Group 1 Variables : KAEF 

Group 2 Variables : KLBF 

0.5926 Not enough evidence to reject H0 

 

Based on table 16, in test 1, the p-value <0.05 reject H0 means that KLBF is affected by KAEF. In 

test 2, p-value> 0.05 was obtained, it means that there was not enough evidence to reject H0. So in the 

second test, KAEF is affected only on itself and not on KLBF. 

 

3.9 Impulse Response Function (IRF) 

 

 
Figure 4. Response to Impulse in KLBF 

 

Based on Figure 4, if the Impulse Response Function (IRF) graph experiences a shock of one 

standard deviation it will affect the KAEF variable and itself. If the IRF chart approaches the point of 

equilibrium or returns to the zero line, it means that the response of the variable to show other 

variables is getting lost so that the shock does not leave a permanent effect on the variable. Shock one 

standard deviation at ITMA, because ITMA gives a fluctuating response from the first week to the 

ninth week. In the first week to the second week the response is negative. The third and fourth weeks 

provide positive responses. The fifth and sixth week gives positive responses. The seventh and eighth 

week gives positive responses. The ninth week onwards the response begins to approach the point of 

balance and positive response. Shock one standard deviation at ITMA, because ELSA gives a positive 

fluctuating response from the first week to the seventh week. In the first week and second week 

negative responses. In the third week and the fourth week the value dropped but the response was 

positive. In the fifth week and the sixth week the response is negative. Then in the seventh week it 

starts to strike a balance point.  
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Figure 5. Response to Impulse in KAEF 

Based on Figure 5, if the Impulse Response Function (IRF) graph experiences a shock of one 

standard deviation it will affect the KAEF variable and itself. If the IRF chart approaches the point of 

equilibrium or returns to the zero line, it means that the response of the variable to show other 

variables is getting lost so that the shock does not leave a permanent effect on the variable. Shock one 

standard deviation at KAEF, because KLBF gives a fluctuating response from the first week to the 

third week. Then in the fourth week onwards it does not fluctuate and gives a positive response 

because it is above point 0. Shock one standard deviation at KLBF, because KAEF gives a fluctuating 

response from the first week to the third week. Then in the fourth week and so on it does not fluctuate 

but gives a negative response because it is below the 0 point. 

 

4. Conclusion 

Based on the analysis of KLBF and KAEF time series data per week during January 2010-June 2020. 

This study examines the relationship between KLBF and KAEF, there is a cointegration relationship 

between KLBF and KAEF stock data with rank = 2. Based on the cointegration test and the smallest 

value of the information criteria, the best model is VECM (p) with lag p = 2. Meanwhile, the granger 

causality test explains that in test one a p-value of <0.05 starting with H0 means that KLBF is affected 

by KAEF. Whereas in the second test, there was not enough evidence to reject H0, meaning that 

KAEF stock data was affected only by itself and not by KLBF stock data. Based on IRF analysis, 

each variable gives a fluctuating response with itself and with other variables. 
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