International Journal on Advanced Science Engineering Information Technology

Available online at http://ijaseit.insightsociety.org

Advanced Science Image processing 10 Back Projection fuzzy Engineering 10 Mobile Agent Interpolation Soft Tissue 10 Sampling Theorem Magnetic fields 10 Parsimony Database Server 20 Graphical User Interface VIFUS (10 Current shaping Phylogenetic Analysis (20 Metamorphic Virus neural network real parallel port Obfuscation Techniques 10 Power factor Boost regulator catalyst Construction Delay real breast phantom Effects of Delay set

DAFTAR ISI

- 1. Halaman pengesahan
- 2. Detail jurnal
- 3. Artikel final yang sudah dipublikasi
- 4. Review dari reviewer jurnal
- 5. Lampiran Jawaban penulis untuk Review pertama dari reviewer jurnal
- 6. Lampiran Tracing result perbaikan artikel
- 7. Lampiran Hasil pengecekan plagiasi artikel
- 8. Lampiran Acceptance Letter
- 9. Lampiran tagihan pembayaran publikasi artikel

1 HALAMAN PENGESAHAN

HALAMAN PENGESAHAN HASIL PENELITIAN

Judul	•	Fuzzy-Based Application Model and Profile Matching for Recommendation Suitability of Type 2 Diabetic
Penulis	:	Agus Wantoro, Admi Syarif, Khairun Nisa Berawi, Lukman Pura
NIP	:	196701031992031003
Instansi	;	Jurusan Ilmu Komputer, FMIPA, Universitas Lampung
Publikasi	:	International JournalonAdvanced Science, Engineering, Information and Technology (IJASEIT) Vol. 11, No. 2, 2021
Alamat Web (Link)	:	http://ijaseit.insightsociety.org/ http://repository.lppm.unila.ac.id/id/eprint/
Penerbit	:	INSIGHT - Indonesian Society for Knowledge and Human Development
ISSN	:	2460-6952 (eISSN), 2088-5334 (pISSN)
Indeks	:	Scopus: Q2 (2019), SJR 2019 : 0.27
Jenis Publikasi	:	Jurnal Internasional Bereputasi

Dekan Fakultas MIPA Unila Dr. Eng. Suripto Dwi Yuwono, M.T. NIP 19740705200003100184 Bandar Lampung, 5 Februari 2021 Renulis

Dr. Eng. Admi Syarif NIP. 196701031992031003

Mengetahui Ketua LPPM Universitas Lampung

7 au

Dr. Lusmeilia Afriani, D.E.A , NIP. 196505101993032008

A STATISTICS OF A STATE 23/01/2021 40/3/3/1/FM1PF12021 Jurnal, 1

2 DETAIL JURNAL

1. Detail Jurnal

Nama Jurnal	:	International Journal on Advanced Science, Engineering and
		Information Technology
Publisher	:	2088-5334
ISSN	:	2088-5334 (pISSN), 2460-6952 (eISSN)
Index Status	:	Q2, SJR 2019: 0.27
URL	:	http://ijaseit.insightsociety.org/
Publication Frequency	:	6 issues per year

2. SJR Detail

International Journal on Advanced Science, Engineering and Information Technology a

COUNTRY	SUBJECT AREA AND CATEGORY	PUBLISHER	H-INDEX
Indonesia Universities and research institutions in Indonesia	Agricultural and Biological Sciences Agricultural and Biological Sciences (miscellaneous) Computer Science Computer Science (miscellaneous) Engineering Engineering (miscellaneous)		17
PUBLICATION TYPE	ISSN	COVERAGE	INFORMATION
Journals	20885334, 24606952	2015-2020	Homepage How to publish in this journal ijaseit@insightsociety.org

3. Scopus

Scopula Preview	Author search	Source
Source details		
International Journal on Advanced Science, Engineering and Infor Gravitans () Scopus caverage years: from 2005 to Present Publishes: INSIGHT - Inderestian Society for Knowledge and Human Development ISSN: 2022-5324 E-155N: 2460-6852 Subjectares: (Advance Religious Science Societ Spinitual and Religious Science Regions Gaussi Regions (Regions Gaussi Religious Science Societ Spinitual and Religious Science Science Spinitual and Religious Science Spinitual and Religious Science Spinitual and Religious Science Science Spinitual and Religious Science Science Spinitual and Religious Science Spinitual and Religious Science Spinitual and Religious Science Science Spinitual and Religious Science Science Spinitual and Religious Science Scienc	mation Tach	
Mare al de contra la Standard mondulare 🗃 Starte anna las Starte Honopege		

CiteSearc CiteScarc rank & found Scapus content coverage
Improved CiteScore methadelogy CiteScore 2009 courts the elisticae reached in 2005-1000 to critice, review, confidences papers, book chapters and data papers published in 2006-2010, and divides the leythe number of publications publiched in 2006-2000. Loom manual
CiteScore 2.0 = 2.03 = CiteScoreTracker 2020 © 2.0 = 2.03 Excurments 2004 - 2003 1.9 = 2.038 Recomments to date 0.100 Excurments 2004 - 2003 1.9 = 2.038 Recomments to date 0.100 Excurments 2004 - 2003 1.9 = 2.038 Recomments to date 0.100 Excurments 2004 - 2003 1.9 = 2.000 Excurments to date 0.100 Excurments 2004 - 2003 1.9 = 0.000 Excurments to date 0.100 Excurments 2004 - 2003 1.9 = 0.000 Excurments to date 0.100 Excurments 2004 Excurments 2004 Excurments to date 1.9 = 0.000 Excurments to date
Contegory Carl: Percentile Againational and Rickogled Sciences Convert Agricultural and Sciences Agricultural and Sciences Agricultural and
Westing Engineering General Engineering Structure Science Structure Science
New Charles and the Carl and the the second of the the the test of test o

4. Topics

The journal scopes include (but not limited to) the followings:

Science: Bioscience & Biotechnology, Agriculture, Chemistry & Food Technology, Environmental, Health Science, Mathematics & Statistics, Applied Physics.

Engineering: Architecture, Chemical & Process, Civil & structural, Electrical, Electronic & Systems, Geological & Mining Engineering, Mechanical & Materials.

Information Science, Artificial Intelligence, Computer Science, E-Learning & Education Learning, Multimedia, Knowledge Technology, Information System, Internet & Mobile Computing, Machine Learning.

5. Editorial Team

5.1. Editor in Chief :

- Rahmat Hidayat, (Scopus ID: 57191265401) Politeknik Negeri Padang, INDONESIA
- 5.2. Associate Editors :

- Taufik, (Scopus ID: 23670809800), California Polytechnic State University, USA
- Haitham Alali, (Scopus ID: 49963007000), Amman Arab University, JORDAN
- Wan Mohtar Wan Yusoff, (Scopus ID: 15019967700), Univ. Kebangsaan Malaysia, MALAYSIA
- Halimah Badioze Zaman, (Scopus ID: 25825801600), Univ. Kebangsaan Malaysia, MALAYSIA
- Son Radu, (Scopus ID: 7005251005), Universiti Putra Malaysia, Malaysia, MALAYSIA
- Mohd Razi Ismail, (Scopus ID: 25957691400), Universiti Putra Malaysia, MALAYSIA
- Takashi Oku, (Scopus ID: 56275094900), Prefectural University of Hiroshima, JAPAN
- Kohei Nakano, (Scopus ID: 7402011766), Gifu University, JAPAN
- Nurul Huda, (Scopus ID: 6701695514), Universiti Malaysia Sabah, MALAYSIA
- Yandra Arkeman, (Scopus ID: 55946558300), Bogor Agriculture University, INDONESIA
- Sate Sampattagul, (Scopus ID: 7801640861), Chiangmai University, THAILAND
- Peeyush Soni, (Scopus ID: 9248907800), Asian Institute of Technology, THAILAND
- Yolanda Lechon Perez, (Scopus ID: 6602826000), Ciemat, Madrid, SPAIN
- Gabriele Arcidiacono (Scopus ID: 56656284600), G. Marconi University, ITALY
- Alessandra Pieroni (Scopus ID: 25929524500). , Marconi International University, Florida USA
- Nguyen Hay, (Scopus ID: 15834645900) Nong Lam University. VIETNAM
- Rita Muhamad Awang, (Scopus ID: 55957782400), Universiti Putra Malaysia, MALAYSIA
- Anton S Prabuwono, (Scopus ID: 18134309800), King Abdulaziz Univ, SAUDI ARABIA
- P Mangala C S De Silva, (Scopus ID: 7006461145), University of Ruhuna, SRI LANKA
- Bich Huy Nguyen, (Scopus ID: 36191086100), Nong Lam University, VIETNAM
- Paul Kristiansen, (Scopus ID: 23097563600), University of New England, AUSTRALIA
- Amitava Basu, (Scopus ID: 21833738300), Bidhan Chandra Krishi Vidyalaya, INDIA
- Shahrul Azman Mohd Noah, (Scopus ID: 35087633200), Universiti Kebangsaan Malaysia, MALAYSIA
- Luca Di Nunzio (Scopus ID:57195199010), University of Rome Tor Vergata, ITALY
- Rocco Fazzolari (Scopus ID:36469997900), University of Rome Tor Vergata, ITALY
- Ruben Paul Borg (Scopus ID:55246483600), L-Università ta' Malta, Msida, Malta

5.3. Editors :

• Nurhamidah, (Scopus ID: 57191636504), Andalas University, INDONESIA

- Ario Betha Juansilfero, (Scopus ID: 57189369470), Kobe University, JAPAN
- Zairi Ismael Rizman, (Scopus ID: 36959761800), Universiti Teknologi MARA (UiTM) (Terengganu) MALAYSIA
- Shahreen Kasim, (Scopus ID: 36155431900), Universiti Tun Hussein Onn MALAYSIA
- Chi-Hua Chen, (Scopus ID: 35799698800), National Chiao Tung University, TAIWAN
- Abrar Ismardi, (Scopus ID: 26633102900), Telkom University INDONESIA

3 ARTIKEL FINAL YANG SUDAH DIPUBLIKASI

International Journal on Advanced Science Engineering Information Technology

HOME ARCHIVES

Vol. 11 (2021) No. 3

Articles in Press (articles that have been accepted for publication but which have not been formally published and not yet have the complete volume, issue, page information, and DOI) that include errors, or are discovered to be accidental duplicates of other published article(s), or are determined to violate our journal publishing ethics guidelines in the view of the editors.

Articles

Acetylcholinesterase Immobilized on Glass Rod for Organophosphorus Pesticides Detection: Application on Milk Analysis

Asiya Utegenova, Zhainagul Kakimova, Alexey Klivenko, Zarina Kapshakbayeva, Galiya Imankulova, Gulmira Naurzbaeva, Gulnara Tulkebayeva, Gulmira Mirasheva pages: 843-848 [Full text] DOI:10.18517/ijaseit.11.3.12910

Immunomodulatory Potentials of Winged Bean (Psophocarpus tetragonolobus) Bioactive Compounds on Human Lymphocyte Proliferation

Arindra Nirbaya, Fransiska Rungkat Zakaria, Hendra Wijaya, - Erniati pages: 849-855 [Full text] DOI:10.18517/ijaseit.11.3.11527

Spatial Delineation of Rice Yield and Production by the Combination of Rice Crop Modelling and Remote Sensing: A Case Study in Soc Trang Province, Vietnam

Vo Quang Minh, Truong Chi Quang, Thai Thanh Du, Tran Thi Hien pages: 856-863 [Full text] DOI:10.18517/ijaseit.11.3.11449

Potential Availability of Indigenous Resources to Reduce Agriculture Environmental Problems in Klaten, Indonesia

Sigit Soebandiono, Anton Muhibuddin, Edi Purwanto, Djoko Purnomo pages: 864-873 [Full text] DOI:10.18517/ijaseit.11.3.11585

Vertical Market Integration for Beef Prices Using Vector Error Correction Model (VECM) In Indonesia

Rudi Wibowo, Ahmad Zainuddin, Rena Yunita Rahman, Intan Kartika Setyawati, Illia Seldon Magfiroh, Indah Ibanah

pages: 874-879 Full text DOI:10.18517/ijaseit.11.3.9667

A Conceptual Framework for Flood Impact Mitigation Through Transboundary River Management

Georgina Clegg, Richard Haigh, Dilanthi Amaratunga, Harkunti Rahayu, Harshinie Karunarathna, Deni Septiadi

pages: 880-888 Full text DOI:10.18517/ijaseit.11.3.14329

Morphometric Characteristics of Cipeles Watershed to Identify Flood Prone Area

Pradnya Paramarta Raditya Rendra, Emi Sukiyah pages: 889-897 [Full text] DOI:10.18517/ijaseit.11.3.12937

Simulation of Oil Spill Pollution due to Tsunami in Cilacap, Central Java, Indonesia

Rizky Hidayat, Mardi Wibowo, Aida Sartimbul pages: 898-906 Full text DOI:10.18517/ijaseit.11.3.14264

Performance of Water Wheel Knock Down System (W2KDS) for Rice Milling Drive

Asep Neris Bachtiar, Ahmad Fauzi Pohan, Riko Ervil, Irwan Yusti, - Santosa, Isril Berd, Uyung Gatot S Dinata pages: 907-916 [Full text] DOI:10.18517/ijaseit.11.3.10468

Water Quality Analysis in Mantaro River, Peru, Before and After the Tailing's Accident Using the Grey Clustering Method

Alexi Delgado, Francisco Gil, Juan Chullunquía, Tom Valdivia, Chiara Carbajal pages: 917-922 [Full text] DOI:10.18517/ijaseit.11.3.11928

The Verification Significant Wave Height Technique in Indonesian Waters and Analysis of Low Air Pressure

Eko Supriyadi, Sri Puji Rahayu pages: 923-929 Full text DOI:10.18517/ijaseit.11.3.12342

Loads of Pollution to Lake Toba and Their Impacts

- Lukman, H. Hidayat, Luki Subehi, Rahmi Dina, Novi Mayasari, Irma Melati, Yuli Sudriani pages: 930-936 [Full text] DOI:10.18517/ijaseit.11.3.12733 Multi-Hazard Early Warning System (MHEWS) Assessment Methodology for Schools

Samantha Louise N Jarder, Raniel Cris L Macabare, Salvador G. Oleivar, Abraham Matthew S. Carandang, Patrick Shaun N. Ngo, Richard M. de Jesus, Lessandro Estelito O. Garciano, Andres Winston C. Oreta pages: 937-946 [Full text] DOI:10.18517/ijaseit.11.3.14535

Published by INSIGHT - Indonesian Society for Knowledge and Human Development Seismic Hazard Zonation in Gedebage Fut@tJASEtTopISSN: 2088-5334 g GISSNsi/2460/6952 MODio10.18517 Creative Commons License is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Nendi Rohaendi, Rahayu Robiana, Emi Sukiyah, Dicky Muslim, Athanasius Cipta

pages: 947-954 Full text DOI:10.18517/ijaseit.11.3.149100914504 View My Stats

Geochemical of Karst Water in the Western part of Gunungkidul District Area

T. Listyani R.A, Dianto Isnawan pages: 955-961 Full text DOI:10.18517/ijaseit.11.3.14421

Preliminary Study of Ozonated Water to Preserve the Quality of Tofu: The Effect of Exposure Time and Replacement of Ozonated Water

Eva Fathul Karamah, Muhammad Zaki Zahirsyah, Rana Rezeki Najeges pages: 962-967 [Full text] DOI:10.18517/ijaseit.11.3.13130

UV-Vis Absorbance and Fluorescence Characterization of Pasig River Surface Water Samples Towards the Development of an LED Fluorescence Lidar System

Jumar G. Cadondon, Edgar A. Vallar, Lawrence P. Belo, Aileen H. Orbecido, Maria Cecilia D. Galvez pages: 968-980 [Full text] DOI:10.18517/ijaseit.11.3.12898

Remote Pressure Water Valve Control System Based on PLC

W. Widhiada, I. M. Widiyarta, I.N.G. Antara, I.N. Budiarsa, I.M.G. Karohika pages: 981-986 Full text DOI:10.18517/ijaseit.11.3.14486

The Latowu Ultramafic Rock-Hosted Iron Mineralization in the Southeastern Arm Sulawesi, Indonesia: Characteristics, Origin, and Implication for Beneficiation

- Sufriadin, Sri Widodo, Meinarni Thamrin, Akane Ito, Tsubasa Otake pages: 987-993 Full text DOI:10.18517/ijaseit.11.3.10273

The Effect of Heavy Metal Lead (Pb) on the Growth of Ammonia-Degrading Bacteria and Physical Changes of Eichhornia crassipes in Groundwater Phytoremediation

Fahruddin Fahruddin, Muhammad Farid Samawi, Mustika Tuwo, Ramlan Efendi Tanjung pages: 994-1000 [Full text] DOI:10.18517/ijaseit.11.3.12588

Effect of Blanching and Drying Process on Physicochemical and Microbiological Characteristics of Dried Chili

Tri Marwati, Yeyen Prestyaning Wanita, Titiek F. Djaafar, Retno Utami Hatmi, Erni Apriyati, Siti Dewi Indrasari pages: 1001-1006 [Full text] DOI:10.18517/ijaseit.11.3.12132

Anaerobic Digestion of Industrial Tempeh Wastewater with Sludge from Cow Manure Biogas Digester as Inoculum: Effect of F/M Ratio on the Methane Production

Yunus Fransiscus, Tuani L. Simangunsong pages: 1007-1013 [Full text] DOI:10.18517/ijaseit.11.3.11846

Initial Stage in Designing Household Constructed Wetlands: Selection of a Suitable Aquatic Plant

Siti Qomariyah, Ari Handono Ramelan, Prabang Setyono, - Sobriyah pages: 1014-1021 Full text DOI:10.18517/ijaseit.11.3.12343

Synthesis and Characterization of Nanoemulsion Andaliman Aroma Compound

- Rienoviar, Dwi Setyangingsih, - Sudirman, Fitriani Kasim pages: 1022-1028 [Full text] DOI:10.18517/ijaseit.11.3.10569

Effect of Small-Scale Box-Fermentation on Catechin and Epicatechin Content of Lampung Cocoa Beans Varieties

- Fahrurrozi, Ario Betha Juanssilfero, Urip Perwitasari, - Stepanie, Aryo Putra Purwanto, Imam Bagus Nugroho, Shanti Ratnakomala, Rizna Triana Dewi, Nur Ajijah, Puspita Lisdiyanti pages: 1029-1034 Full text DOI:10.18517/ijaseit.11.3.14846

Preparation and Characterization of Nanocrystalline Cellulose from Cladophora sp. Algae

S. Steven, Y. Mardiyati, Silvia Mar'atus Shoimah, Raden Reza Rizkiansyah, Sigit Puji Santosa, Rochim Suratman pages: 1035-1041 [Full text] DOI:10.18517/ijaseit.11.3.10278

Effect of Annealing at High Temperatures on Microstructural Formation of 15Cr-25Ni Austenitic Stainless Steel Cast

- Syahbuddin, - Parikin, Mohammad Dani, Salim Mustofa, Andon Insani, Eddy Agus Basuki, Ching An Huang pages: 1042-1048 [Full text] DOI:10.18517/ijaseit.11.3.10456

A Comparative Survey of Coding, Multiplexing, and Equalization Techniques Used in Coherent Optical Fiber Communications

John Martin Ladrido, Emmanuel Trinidad, James Agustin Molina, Lawrence Materum pages: 1049-1066 [Full text] DOI:10.18517/ijaseit.11.3.14093

A Comprehensive Review on Big Data-Based Potential Applications in Marine Shipping Management

Viet Duc Bui, Hoang Phuong Nguyen pages: 1067-1077 [Full text] DOI:10.18517/ijaseit.11.3.15350

Local Freshwater Fish Recognition Using Different CNN Architectures with Transfer Learning

Anup Majumder, Aditya Rajbongshi, Md. Mahbubur Rahman, Al Amin Biswas pages: 1078-1083 Full text DOI:10.18517/ijaseit.11.3.14134

Tech Tools for Anticipating Human Trafficking in Archipelago State

Soni A. Nulhaqim, Nandang Alamsyah Deliamoor, - Suryaningsih pages: 1084-1091 Full text DOI:10.18517/ijaseit.11.3.11265

Improved Self-Adaptive ACS Algorithm to Determine the Optimal Number of Clusters

Ayad Mohammed Jabbar, Ku Ruhana Ku-Mahamud, Rafid Sagban pages: 1092-1099 [Full text] DOI:10.18517/ijaseit.11.3.11723

Analysis of Waiting Time Using Three Mixtures Exponential Distribution

Wafaa Sayyid Hasanain, Waleed Mohammed Elaibi pages: 1100-1104 [Full text] DOI:10.18517/ijaseit.11.3.14091

Fuzzy-Based Application Model and Profile Matching for Recommendation Suitability of Type 2 Diabetic

Agus Wantoro, Admi Syarif, Kurnia Muludi, Khairun Nisa Berawi pages: 1105-1116 [Full text] DOI:10.18517/ijaseit.11.3.12277

Ukrainian MOOC: Quantitative and Thematic Analysis of Online Courses

Sergii Sharov, Anatolii Zemlianskyi, Tetiana Sharova, Hapotii Viktor pages: DOI:10.18517/ijaseit.11.3.13705

Fuzzy-Based Application Model and Profile Matching for Recommendation Suitability of Type 2 Diabetic

Agus Wantoro^{a,b}, Admi Syarif^{c,*}, Kurnia Muludi^c, Khairun Nisa Berawi^d

^a Doctoral program, Department of Mathematics and Natural Sciences, Universitas Lampung, Bandar Lampung, 35145, Indonesia

^b Department of Engineering and Computer Science, Universitas Teknokrat Indonesia, Bandar Lampung, 35132, Indonesia

^c Department of Computer Sciences, Universias Lampung, Bandar Lampung, 35145, Indonesia

^d Department of Medical Sciences, Universitas Lampung, Bandar Lampung, 35145, Indonesia

Corresponding author: *admi.syarif@fmipa.unila.ac.id

Abstract—Diabetes Mellitus (DM) is a metabolic disease characterized by hyperglycemia due to insulin secretion abnormalities and a global health threat. DM has several types, namely type 1, 2, gestational, and other types. Type 2 diabetes patients have the largest number in the world. DM therapy can be done in 2 (two) ways: improving lifestyle and administering drugs. The problems and risks in recommending drugs are essential in the patient's healing process because they are likely to take medicine for life. Approximately 260,000 patients with type 2 diabetes experienced medication errors in 2017. The doctor's mistake in recommending drugs causes a long healing process and costs more. Recommending drugs requires pharmacological knowledge, and not all hospitals have pharmacologists. Several researchers have researched recommendations for antidiabetic drugs, but no studies have yet been found that discuss recommendations for combination antidiabetic drugs for type two to determine dosage and frequency. The number of medications used is 6 to 7, with many parameters 5 to 8. The latest endocrinology guidelines for 2020 state that in recommending antidiabetic drugs, not only 6 to 7 participants, but still need to maintain other aspects. Therefore, this study aims to build an expert system model with a new approach in recommending antidiabetic drugs with more complete parameters and recommend dosage and frequency. The model developed uses the Fuzzy Profile Matching method. Fuzzy is used to calculate the suitability between the patient's condition and the type of antidiabetic drug. Profile Matching is used to calculate the core factor and secondary factor to obtain each drug's total value. The dose was calculated using the FIS Tsukamoto for inputting low dosage, and high dosage calculated the weighted average value. Determination of frequency using the IF-Then function. Model evaluation is done by comparing recommendation data from doctors. The results of the evaluation of the model obtained an accuracy of 90%. This system will reduce medical personnel errors in recommending antidiabetic drugs that can positively impact patients' time, the healing process, and costs. This study provides knowledge that antidiabetes drugs' determination requires many parameters, while other studies used only 4 to 8. This study also provides an overview of the dosages of drugs that drug companies can produce. Usually, the company only makes low and high dosage. This study shows that creating multiple drug dosage is more efficient for patients.

Keywords-Model evaluation; diabetic type 2; fuzzy Tsukamoto; profile matching; drugs; dosage; frequency.

Manuscript received 20 Jun. 2020; revised 13 Feb. 2021; accepted 20 Apr. 2021. Date of publication 30 Jun. 2021. IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Diabetic Mellitus (DM) Type 2 is a group of metabolic diseases with hyperglycemia characteristics that occurs because of an abnormality receptor insulin that lasts long also affects its secrecy. DM type is classified into 4 (four) groups, namely Type 1 DM, type 2 DM, gestational DM, and other type DM [1][2]. Blood glucose levels are expressed as diabetic, among others, with a rate of HbA1c > 6.5% (mmol/L) [3]. Until today DM is still one of the global health threats. Epidemiological research indicates the tendency to

increase the incidence rate and prevalence of type 2 Diabetic Mellitus in various parts of the world[4]. The majority of DM is predicted to grow 3 (three) times in 2030. This increase has been expected by the World Health Organization (WHO) that the year 2030 will reach 21.3 million[1], and Predicted from the International Diabetic Federation (IDF) in 2045 will reach 16.7 million [3].

DM can occur in patients accompanied by other diseases. DM therapy can be done 2 (two) to improve the lifestyle and Drug Administration [2]. Treatment of medications using Oral and Insulin types [5]. Commonly used oral drugs are types of Sulfonylurea, Glinide, Biguanide, Tiazolidin, Alpha Glucose inhibitors, GLP-1, SGLT-2, DPP-4, while for Insulin there are Lispo, Aspart, Glulysine and Faster Aspart [6]. The goal of therapy in DM is to reduce hyperglycemia symptoms, reduce the onset and development of complications, reduce mortality, and improve life quality [6]. Antidiabetic drugs usually pay attention to age, comorbidities, risk of hypoglycemia, and many other factors [7].

Efforts to manage DM still have obstacles in terms of service and health financing [4]. It should be noted that health workers in carrying out their work require high pharmacological accuracy and knowledge [8]. Around 260,000 patients with diabetes experienced medication errors in 2017 [8]. Ignorance and negligence of action to the patient will have an impact on patient safety. One thing that must be considered is the procedure for administering injectable and oral drugs. Giving injection drugs is more at risk of causing hypoglycemic conditions that are dangerous for patients. In addition to economic wastage, irrational drug use patterns can decrease treatment services quality, increase drug side effects, increase treatment failure, and increase insulin resistance [9]. Cases in various health institutions were found to be incorrectly given unnecessary drug combinations. The selection of an appropriate oral hypoglycemic drug is crucial to the success of diabetic therapy, depending on the severity and condition of the patient. Oral hypoglycemic pharmacotherapy can be done using one drug or a combination of two types of drugs [7].

Sub-therapeutic drug administration results in ineffective drug therapy. Drug administration with excessive dosage results in hypoglycemic effects and the possibility of toxicity [10]. Inappropriate use of Insulin often results in hypoglycemia and can lead to weight gain. Unwanted drug effects can occur in long-term use, such as lipodystrophy or loss of fat tissue at the injection site, and allergic reactions can occur, including edema [11]. Treatment must be started as early as possible to prevent or slow the progression of betacell failure in people with impaired glucose tolerance [4].

Several researchers have conducted research that discusses antidiabetic drug recommendations. In the study showed Rung-Ching Chen et al. [12], the drug recommendations used the SWRL technique with 6 (six) types of antidiabetic drugs Metformin, DPP4, Sulfonylurea, Glinide, Thiazolidinedione, Alpha-Glucosidase (AGI) with 6 (six) parameters of HbA1c, Hypoglycemia, Renal, Heart, BMI, and liver. This research was developed with the Fuzzy method that can display the results of drug recommendations based on the most appropriate level of choice [13]. Drug recommendations are also carried out using Fuzzy-TOPSIS with 7 (seven) types of drugs and 8 (eight) parameters [14]. In 2018 Fuzzy, combined with MULTIMOORA with input data scoring, recommended antidiabetic drugs using 8 (eight) parameters. Several researchers have researched recommendations for antidiabetic drugs, but no studies have yet been found that discuss recommendations for combination antidiabetic drugs for type two to determine dosage and frequency. The number of medications used is 6 to 7, with many parameters 5 to 8. The latest endocrinology guidelines for 2020 state that in recommending antidiabetic drugs, not only 6 to 7 participants, but still need to maintain other aspects such as glucagon secretion (Cell Alpha Pancreas), insulin secretion (Cell Beta), glucose fat, glomerular filtration, muscle glycogen and

contraindications with pregnant or nursing women and infections [15]. Drug recommendations must be adapted to the patient's condition or variables to avoid errors and drug side effects. The number of patient variables has the main and second variables [16]; therefore, the Profile Matching (PM) method is very appropriate because it has a Core Factor and Secondary Factor calculations.

The problem and the risk of recommending drugs are essential in healing patients to maintain health services quality [10]. This research supports this research; this study aims to build an expert system model with a new approach to recommending antidiabetic drugs with more complete parameters and recommend dosage and frequency. The model developed uses the Fuzzy Profile Matching method. Fuzzy is used to calculate the suitability between the patient's condition and the type of antidiabetic drug. Profile Matching is used to calculate the core factor and secondary factor to obtain each drug's total value. Model evaluation is done by comparing recommendation data from doctors. A safe treatment system needs to be developed and maintained to ensure that patients receive good drug services due to the increasingly varied drugs and the increasing number of drugs and types of antidiabetic drugs [17]. This study's results can be used as an alternative to help paramedics. Young doctors recommend the right dosage and frequency of medicines to improve the quality of health services, accelerate the healing process, and reduce medical costs.

II. MATERIALS AND METHOD

The application of the suitability of antidiabetic drugs to the patient's health condition was developed by illustrating the proposed model's architecture. The development of the model consists of 2 (two) main parts, namely the development knowledge base and development environment presented in Fig. 1 model was developed from the drug suitability model [16].

Fig. 1. Model of the suitability of type 2 antidiabetic drugs

A. Development Stages

The first development from the expert consultation stage and the result is presented in Figure. 2. Expert consultation was carried out by specialists in internal medicine, diabetes, and pharmacology to obtain parameters and knowledge base. The next step is the process of matching antidiabetic drugs to the patient's condition using a membership curve. The next match's result was calculated by the core and secondary factors using the Profile Matching method. In addition to the

type of drug, for determining the dose using Tsukamoto FIS. The stages of development can be seen in Fig. 2.

B. Expert Consultation

Based on consultations with internists and pharmacologists, as well as a review of several works of literature [5], [18], [19], [4], there are 17 (seventeen) parameters that influence determining the delivery of antidiabetic type 2 drugs. In addition to considering the patient's health parameters, the drug's efficacy and price are presented in Table I.

TABLE I INPUT PARAMETERS FOR THE DETERMINATION OF ANTIDIABETIC MELLITUS TYPE 2 DRUGS

P1	P2	P3	3 P4	P5	P6	P7	P8	P9
HbAlc	Age	Body mass	index Renal	Liver	Heart	Blood pressure	Hypoglycemi a	Cell of beta
%	year	kg/1	m ² mg/o	dl μ/L	pg/ml	mm/Hg	%	%
P10	P11 ס	P12	P13	P14	P15	P16		P17
Cell of alph	Free fatty aci	Muscle glycog	Filtration glomerulus	Pregnant/lactat	Infection	Efficacy		Cost
%	%	%	ml/min utes	Yes/ No	Yes/ No	High/N ddle	Mi	Low/H igh

Brief description of each patient's health parameters that influences in determining the type 2 antidiabetic drug administration:

- HbA1c (hemoglobin A1c) is a protein containing iron in red blood cells. High or low HbA1c levels will affect drug administration. Intake of HbA1c by pricking a needle in a vein in the arm. Normal levels of Hba1c <6.5% [2]
- Age is taken from the year of birth. Age>60 years old and <60 years old is young. The age of the patient will determine the choice of drug type because not all ages can be given the same drug [1]
- BMI is taken from body weight and height [20]. Kadar normal BMI <25. If someone has a BMI>25, then the drug to be given is different from patients who have a BMI <25kg/m²[20]
- Renal is the level of kidney health obtained based on laboratory tests with the Enzymatic method performed on patients by calculating creatinine levels [21]. Patients with kidney patients need special attention from doctors [18]
- The liver is SGPT (Serum Glutamic Pyruvic Transaminase) level is an abundant enzyme in the liver. Normal levels of 7-56 micro per liter of serum (μ/L) [22].

- Heart health uses the value of B-type natriuretic peptide (BNP) is a hormone produced by the heart. The BNP hormone (NT-proBNP) is a non-active hormone released from the same molecule that has BNP [23]
- Hypoglycemia is a condition when the body's blood sugar levels are too low. Hypoglycemia normal <50% mmol/L [5]. Provision of antidiabetic drugs pay attention to the effects of hypoglycemia [24]
- Beta cells (β cells) are cells found in pancreatic islets that synthesize and secrete Insulin. Beta cells account for about 50-70% of cells in the islet of the pancreas in the human body [25]
- Pancreatic Alpha Cells are cells that function to produce glucagon hormone. This hormone increases blood sugar levels, breaks down the liver reserves in the liver, and then carries it to the blood. Alfa cells account for around 25% of the island of Langerhans [22]
- Free fatty acid (FFA) is the content of free fatty acids in the body that cause cholesterol that can affect drug administration. Normal levels of 30-50 FFA%[4]
- Muscle glycogen is a type of sugar polysaccharide that is stored in liver cells and body muscle cells. Glycogen data is obtained by converting glucose levels obtained from food [22]
- Glomerular filtration is the average rate of blood filtration that occurs in the glomerulus in ml/min units [26]
- Pregnant/lactating is the condition of the patient's history of being pregnant or breastfeeding. Some anti-diabetic drugs have contraindications with this condition [10]
- Infection is the condition of the patient who has a wound or postoperatively. Patients who are experiencing disorders should not be given drugs Sulfonilurena, Glinide, Biguanide, and SGLT-2 [18]
- Efficacy is the level of effectiveness of the drug [18]
- Cost is the cost of purchasing drugs. Determination of the price of medicines taken from the guidelines for the treatment of type 2 diabetes [5]

C. Expert System Knowledge Base

The parameters used are made in the form of a knowledge base for each parameter's degree of compatibility with the type of antidiabetic drugs. The knowledge base is presented in Table II. Almost all type 2 diabetic drugs should not be given to DMT2 patients with impaired liver or kidney function, liver, high blood pressure, and severe heart problems. Patients with T2DM aged ≥ 60 years and overweight (BMI) should be aware of the onset of hypoglycemia. There are types of contraindicated drugs in patients with impaired renal function with LFG ≤ 30 mL/[4]. Also, drug administration needs to be considered for pregnant or breastfeeding patients and have infections [10].

												i ave a					
Туре	HbA1c	Age	BMI	Renal	Liver	Heart	Blood pressure	Hypo glycemia	Cell Beta Pancreas	Cell Alpha	Free Fatty Acid	Muscle Glycogen	Filtrasi Glomerulus	Pregnant /Lactating	Infection	Efficacy	Cost
Biguanide	>6.5	17-60	25-35	>1.2	<56	<100	>90	>50	>50%	<20%	<50%	<1%	>30	No	No	High	Low
Sulfonilurena	>7.0	<60	<25	<1.2	<56	>100	>140	<50	<50%	<20%	<50%	>1%	<30	No	No	High	Low
Glinide	>7.5	>60	<25	>0.55	<56	>100	<140	<50	<50%	<20%	<50%	>1%	<30	Yes	No	High	High
Thiazolidin	>7.0	18-45	<25	>0.55	<56	<100	<140	>50	>50%	<20%	>50%	<1%	<30	Yes	Yes	High	Low
Alpha Glucose	7.5 - 9	<60	>25	<1.2	<56	>100	<140	>50	>50%	<20%	<50%	>1%	>30	Yes	Yes	High	Low
GLP-1	7-9	>55	>25	>1.2	>56	>100	>140	>50	<50%	>20%	<50%	>1%	>30	Yes	Yes	High	High
SGLT2	>9	>55	>25	>1.2	>56	>100	>140	>50	>50%	<20%	<50%	>1%	>45	Yes	No	Middle	High
DPP-4	7-9	>55	>18.5	>1.2	<56	>100	>140	>50	<50%	>20%	<50%	>1%	<30	Yes	Yes	Middle	High
Insulin	>9	>13	<25	0.55 - 1.2	>56	<100	>140	<50	>50%	<20%	<50%	>1%	<30	Yes	Yes	High	Low

 TABLE II

 KNOWLEDGEBASE FOR THE SUITABILITY OF ANTI-DIABETIC DRUGS [5], [18], [19], [4]

 TABLE III

 CURVES AND MEMBERSHIP FUNCTIONS FOR BIGUANIDE DRUGS

Parameters	Curve	Membership function
HbA1c (%)	$1 \longrightarrow 0 \longrightarrow 5.5 \longrightarrow 6.5$	$\mu(x) = \begin{cases} 0; & x \le 5.5\\ \frac{x-5.5}{5.5-6.5}; & 5.5 \le x \le 6.5\\ 1; & x > 6.5 \end{cases}$
Age (years)		$\mu(x) = \begin{cases} 1; & x \le 60\\ \frac{65-x}{65-50}; & 60 \le x \le 65\\ 0; & x > 65 \end{cases}$
Weight (BMI)	$1 \qquad \qquad$	$\mu(x) = \begin{cases} 0; & x \le 18.5\\ \frac{x - 18.5}{25 - 18.5}; & 18.5 \le x \le 25\\ 1; & x > 25 \end{cases}$
Hypoglyce mia	$1 \longrightarrow 0 \longrightarrow 50 \longrightarrow 70$	$\mu(x) = \begin{cases} 0; & x \le 50\\ \frac{x-50}{70-50}; & 50 \le x \le 70\\ 1; & x > 70 \end{cases}$
Renal	1 0 1.5 3.0	$\mu(x) = \begin{cases} 1; & x \le 1.5\\ \frac{3.0 - x}{3.0 - 1.5}; & 1.5 \le x \le 3.0\\ 0; & x > 3.0 \end{cases}$

Liver		$\mu(x) = \begin{cases} 0; & x \le 40\\ \frac{x - 145}{150 - 145}; & 40 \le x \le 100\\ 1; & x > 100 \end{cases}$
Heart		$\mu(x) = \begin{cases} 1; & x \le 100\\ \frac{110 - x}{110 - 100}; & 100 \le x \le 110\\ 0; & x > 110 \end{cases}$
Blood pressure		$\mu(x) = \begin{cases} 0; & x \le 80\\ \frac{x - 80}{90 - 80}; & 80 \le x \le 90\\ 1; & x > 90 \end{cases}$
Cell of beta		$\mu(x) = \begin{cases} 0; & x \le 45\\ \frac{x - 145}{150 - 145}; & 45 \le x \le 50\\ 1; & x > 50 \end{cases}$
Cell of alpha		$\mu(x) = \begin{cases} 1; & x \le 20\\ \frac{25-x}{25-20}; & 20 \le x \le 25\\ 0; & x > 25 \end{cases}$
Free Fatty Acid		$\mu(x) = \begin{cases} 1; & x \le 50\\ \frac{55 - x}{55 - 50}; & 50 \le x \le 55\\ 0; & x > 55 \end{cases}$
Muscle Glycogen		$\mu(x) = \begin{cases} 1; & x \le 1\\ \frac{3-x}{3-1}; & 1 \le x \le 3\\ 0; & x > 3 \end{cases}$
Filtration	$1 \longrightarrow 0 \longrightarrow 25 \longrightarrow 30 \longrightarrow 0$	$\mu(x) = \begin{cases} 0; & x \le 25\\ \frac{x - 25}{30 - 35}; & 25 \le x \le 30\\ 1; & x > 30 \end{cases}$
Pregnant /Lactating	$1 \qquad \qquad$	$\mu(x) = \begin{cases} 0 & \text{Yes} \\ 1 & \text{No} \end{cases}$
Infection	$1 \qquad Yes \qquad No \\ 0 \qquad 0 \qquad 1 \qquad \qquad$	$\mu(x) = \begin{cases} 0 & \text{Yes} \\ 1 & \text{No} \end{cases}$
Efficacy	$1 \uparrow High Middle \\ 0 \downarrow 1 0 \downarrow$	$\mu(x) = \begin{cases} 1 & \text{High} \\ 0 & \text{Middle} \end{cases}$
Cost	$1 \qquad \qquad$	$\mu(x) = \begin{cases} 1 & \text{Low} \\ 0 & \text{High} \end{cases}$

D. Fuzzy Membership Functions

Based on the knowledge base in table II, they then made in the form of curves and fuzzy logic membership functions for each parameter with the suitability of the type of antidiabetic drug. Curves and membership functions of the kind of antidiabetic drug Biguanide are shown in Table III.

TABLE IV CALCULATION VALUE MEMBERSHIP FUNCTIONS

Id	Parameters	Data	Value of membership
1	HbA1c	6.9	1
2	Age	62	0.6
3	BMI	24	0.84
4	Renal	2.3	1
5	Liver	54	1
6	Hearts	98	1
7	Blood pressure	138	1
8	Hypoglycemia	60	1
9	Cell of beta	67	1
10	Cell of alpha	19	1
11	Free fatty acid	45	1
12	Muscle glycogen	2.6	0.2
13	Filtration glomerulus	33	1
14	Pregnant/lactating	No	1
15	Infection	Yes	0
16	Efficacy	High	1
17	Price	Low	1

Membership functions need to be made for the types of antidiabetic drugs Sulfonylurea, Glinid, Thiazolidinedione, Alpha-Glucosidase, GLP-1, SGLT-2, DPP4, and Insulin need to be made. Based on the membership function in Table III, the value of each parameter is then calculated. Table IV displays the membership values for each parameter with the type of antidiabetic drug Biguanide

E. Core Factor and Secondary Factor

Parameter grouping is divided into 2 (two), namely Core Factor (CF) and Secondary Factor (SF). Core Factor is the leading parameter group where the determination of the type of drug given is very dependent on the parameters in this group, whereas a Secondary Factor is a parameter group that does not have a strong influence on the determination of the type of drug given to patients [27]

TABLE V
CLASSIFYING PARAMETERS CF AND SF

Core Factor (CF)	Secondary Factor (SF)
Age (P2)	HbA1c (P1)
Renal (P4)	BMI (P3)
Liver (P5)	Blood pressure (P7)
Heart (P6)	Cell alpha (P10)
Hypoglycemia (P8)	Free fatty acid (P11)
Cell beta (P9)	Muscle glycogen (P12)
Filtration glomerulus (P13)	Efficacy (P16)
Pregnant/lactating (P14)	Price (P17)
Infection (P15)	

Calculate the value of CF using a formula:

$$CF = \frac{\sum NC}{\sum IC} \tag{1}$$

CF = The average value of the core factor

NC = Total number of core factor values IC = Number of items CF value

$$SF = \frac{\Sigma NS}{\Sigma IS}$$
(2)

SF = The average value of the secondary factor NS = Total number of secondary factor values IS = Number of secondary factor items

Based on the grouping of core factors and the subsequent factors calculated the average value:

The value of the average core factor parameters

$$CF = \frac{(0.6+1+1+1+1+1+1+0)}{9} = 0.84$$

The value average secondary factor parameters
$$SF = \frac{(1+0.84+1+1+1+0.2+1+1)}{8} = 0.88$$

The grouping core factor's value average value multiplied the weight of 75%, and the secondary factor bore with a weight of 25%. The result of the core factor and secondary factor weights are then added to get a matching value:

Total = (Weigt CF * CF) + (WeightSF * SF)(3) Total = (0.75 * CF) + (0.25 * SF) = (0.75 * 0.84) + (0.25 * 0.88) = 0.63 + 0.22 = 0.85Results calculate of the value 0.85 indicate that the patient "P1" if given the class of antidabetic medicine Biguanide has

"P1" if given the class of antidiabetic medicine Biguanide has suitable $(0.85 / 1) \times 100\% = 85\%$ and for the second medicine 76% that Alpha-glucose, the medications are given can be combined, the show is Table VI.

TABLE VI DRUG SUITABILITY CALCULATION RESULTS

Id	Туре	Value	Level
1	Sulfonylurea	0.56	7
2	Glinide	0.55	8
3	Biguanide	0.85	1
4	Thiazolidinedione	0.71	5
5	Alpha-Glucosidase	0.76	2
6	GLP-1	0.73	3
7	SGLT2	0.52	9
8	DPP-4	0.60	6
9	Insulin	0.72	4

This model can evaluate the suitability of the patient's condition with various types of antidiabetic drugs.

F. Dosage and Frequency Drug

e

The dose and frequency of drug administration are very influential in the therapeutic effect of the drug. Giving excessive dosage, especially for drugs with a narrow range of therapy, will be very at risk of side effects. Conversely, a too small dose will not guarantee the achievement of less than optimal therapeutic levels [17].

	Type, Do	TABLE VI SAGE, AND FREQUE	II NCY DRUGS [18]	[4]
[d	Туре	Drugs	Dosage	Frequency (Ones/Day)
	Sulfonvlure	Glibenclamid	25-	

20mg/dl

1-2

1

а

		Gliclazide	40 - 320	1-2	
			mg/dl	1-2	
	~	Repaglinide	1-16 mg/dl	2-4	
2	Glinide	Nateglinide	180 - 360	2-3	
		e	mg/dl		
		Metformin	500 - 2000 m a/d1	1-3	
3	Biguanide		5000mg/u		
		Buformin	50 - 100	1-2	
			15 - 45		
4	Thiazolidine	Pioglitazone	mg/dl	1-2	
•	dione	Rosiglitazone	4 - 8 mg/dl	1-2	
		. 1	100 - 300		
~	Alpha-	Acarbose	mg/dl	2-3	
3	Glucose	Miglital	25-100	2.2	
		wingintoi	mg/dl	2-3	
		Liraolutide	0.6 - 1.8	1-2	
6	GLP-1	Lindgiunde	mg/dl	1-2	
Ū		Lixisenatide	10 - 20	1-2	
		D 1'0 '	mg/dl	1.0	
7	SCI T2	Dapagliflozin	5 - 10 mg/dl	1-2	
/	50L12	Empagliflozin	10 - 25	1-2	
		Vildaglintin	50-100 mg	1-2	
8	DPP-4	Sitagliptin	25-100 mg	1-2	
			0.1 - 1		
0	T 1'	Lispro	Unit/Kg	1-2	
9	Insulin	11n A	0.05 -	1.2	
		Aspan	1Unit/Kg	1-2	

G. The domain of Medicine Dosage

Determination of the dose using the parameters in Figure 4 (a). Each parameter becomes an input variable, divided by 2 (two) in linguistic and domain variables. The environment's output is a dose calculated using Tsukamoto's FIS to calculate a more appropriate dosage.

TABLE VIII DOMAIN PARAMETERS FOR DETERMINES DRUGS DOSAGE

	DOMAIN I ARAMETERS FOR DETERMINES DROGS DOSAGE				
Id	Parameters	Linguistic Variable Domain		Output (Dosage)	
1	IIIb A La	Normal	0-9		
1	HDAIC	Abnormal	6.5-12		
2		Young	0-65		
2	Age	Old	60-100	Low	
n	DMI	Low	0-27	[0-600]	
3	BMI	High	24-30		
4	D 1	Normal	0-1.5	High	
4	Kenal	Abnormal	1.2-3.0	[500-	
~	T ·	Normal	0-100	1000]	
2	Liver	Abnormal	40-100	-	
~	TT 1 ·	No	0-70		
6	Hypoglycemia	Yes	50-120		

TABLE IX
THE DOSAGE DOMAIN OF THE DRUG IS BIGUANIDE

Tumo	Drugs	Dosage	Do	omain
Type	Drugs	(mg/dl)	Low	High
Biguanide	Metformin	500 - 1000	0-600	500-1000

Based on Table IX. The next step is to make a curve for each parameter presented in Fig. 3-5, and the output curves for drug dosages are shown in Fig. 6.

Fig. 6 Curve membership function for dosage

Each parameter's membership value is then calculated based on the membership curve and function, as in Table X.

TABLE X MEMBERSHIP VALUES FOR PARAMETER Linguistic Variables Parameters Data Normal Abnormal HbA1c 6.9 0.84 0.16 0.2 62 0.8 Age BMI 24 0 1

0

0.76

0.50

1

0.23

0.50

2.3

54

60

H. Fuzzy Implication Rules for Dosage

Renal

Liver

Hypoglycemia

Monotonous fuzzy rules are used as a basis for fuzzy implication techniques. The number of practices used is calculated based on the number of criteria and sub-criteria [28]. The parameters used are 6 (six) as HbA1c, Age, BMI, Renal, Liver, Hypoglycemia, and sub-criteria of each criterion are 2 (two), so the number of rules use is $2^6 = 64$ rules. Examples of the use of practices as follows:

"[R13]If HbA1c= Normal and Age=Young and BMI=High and Renal=Abnormal and Liver=Normal and Hypoglicemia=No Then Low dosage;" "[R29]If HbA1c= Normal and Age=Old and BMI=High and Renal=Abnormal and Liver=Normal and Hypoglicemia=No Then Low dosage;" "[R30]If HbA1c= Abnormal and Age=Young and BMI=Low and Renal=Normal and Liver=Normal and Hypoglicemia=Yes Then High dosage;" "[R45]If HbA1c= Abnormal and Age=Young and BMI=High and Renal=Abnormal and Liver=Normal and Hypoglicemia=No Then High dosage;" "[R45]If HbA1c= Abnormal and Age=Young and BMI=High and Renal=Abnormal and Liver=Normal and Hypoglicemia=No Then High dosage;" "[R45]If HbA1c= Abnormal and Age=Young and BMI=High and Renal=Abnormal and Liver=Normal and Hypoglicemia=No Then High dosage;"

"[R61]If HbA1c= Abnormal and Age=Old and BMI=High and Renal=Abnormal and Liver=Normal and Hypoglicemia=No Then Low dosage;" "[R64]If HbA1c= Abnormal and Age=Old and BMI=High and Renal=Abormal and Liver=Abnormal and Hypoglicemia=Yes Then Low dosage;"

Then value z calculation will be performed to look for output using FIS Tsukamoto from each rule given explicitly (crisp) based on α -predicate (fire strength). In this calculation, not all α and z_{1-64} rules are displayed. The final result is obtained using a weighted average. Examples of the use of practices as follows:

	= Min (0.84; 0.8; 1; 1; 0.76; 0.5)
	= 0.5
Z13	= High - (α_{13} * (High-Low))
	= 3000 - (0.5 * (3000 - 500))
	= 1750
α-predicat ₂₉	= μ HbA1c Normal $\Omega \mu$ Age Old $\Omega \mu$ BMI High
Ω µRenal Abormal	Ω µLiver Normal ΩµHypoglycemia No Then
Low dosage;	
	= Min (0.84; 0.2; 1; 1; 0.76; 0.5)
	= 0.2
Z29	= High - $(\alpha_{29} * (High-Low))$
	= 3000 - (0.2 * (3000 - 500))
	= 2500
α-predicat ₃₀	= μ HbA1c Normal $\Omega \mu$ Age Old $\Omega \mu$ BMI High
Π μRenal Abormal	Ω µLiver Normal ΩµHypoglycemia Yes Then
Low dosage;	
	= Min (0.84; 0.2; 1; 1; 0.76; 0.5)
	= 0.2
Z30	= High - (α_{30} * (High-Low))
	= 3000 - (0.2 * (3000 - 500))
	= 2500
α-predicat45	= μ HbA1c Abormal $\Omega \mu$ Age Young $\Omega \mu$ BMI
High I µRenal Abo	ormal Ω µLiver Normal Ω µHypoglycemia No
TT1 TT 1 1	

D

Then High dosage; = Min (0.16; 0.8; 1; 1; 0.76; 0.5) = 0.16 Z_{45} = α_{45} * (High-Low) + Low = 0.16 * (3000-500) + 500 = 900 α -predicat₆₁ = μ HbA1c Abnormal $\Omega \mu$ Age Old $\Omega \mu$ BMI High $\Omega \mu$ Renal Abnormal $\Omega \mu$ Liver Normal $\Omega \mu$ Hypoglycemia No Then Low dosage;

	= Min (0.16; 0.2; 1; 1; 0.76; 0.5)
	= 0.16
Z61	= High - $(\alpha_{61} * (High-Low))$
	= 3000 - (0.16 * (3000-500))
	= 2600
α-predicat ₆₄	= μ HbA1c Abnormal $\Omega \mu$ Age Old $\Omega \mu$ BM

High Π $\mu Renal Abnormal <math display="inline">\Pi$ $\mu Liver Abnormal <math display="inline">\Pi$ $\mu Hypoglycemia Yes Then Low dosage;$

	= Min (0.16; 0.2; 1; 1; 0.23; 0.5)
	= 0.16
Z64	= High - $(\alpha_{64} * (\text{High-Low}))$
	= 3000 - (0.16 * (3000 - 500))
	= 2600

TA	ABLE XI	
MEMBERSHIP VALUE FOR ALL	A1-64 AND Z1-64 FROM PARAMETER	RS

Id	HbA1c	Age	BMI	Renal	Liver	Нуро	Min (α1-64)	Z ₁₋₆₄
13	0.84	0.8	1	1	0.76	0.5	0.5	1750
29	0.84	0.2	1	1	0.76	0.5	0.2	2500
30	0.84	0.2	1	1	0.76	0.5	0.2	2500
45	0.16	0.8	1	1	0.76	0.5	0.16	900
61	0.16	0.2	1	1	0.76	0.5	0.16	2600
64	0.16	0.2	1	1	0.23	0.5	0.16	2600

I. Determining Dosage

After a combination of forming rules, the next step is doing a calculation to get the value of defuzzification by adding the rules to regulations 64 to get the weighted average values (Weight Average)

$$z (Dosage) = \frac{(a1*z1) + (a2*z2) + (a3*z3) + (a4*z4) + \dots (a64*z64) +}{a1+a2+a3+a4\dots a64}$$
(4)

z (Dosage) = 2160 mg/dl. Based on the name of the drug Metformin with the lowest dose of 500 ml/gl and the highest dosage of 3000 ml/dl in Table XI, based on the results of the system recommendations for the correct dosage given by patients as many as 2160 mg/dl.

TABLE XII
FFERENCES IN RECOMMENDED DOSAGES BETWEEN DOCTORS AND THE SYSTEM

				Input				Outp	out
Id	HbA1c	Age	BMI	Renal	Liver	Hypo glycemia	Type and drugs	The daily dose recommended by the doctor	Daily dose obtained from the system
1	6.5	39	25	0.7	78	6.5	Insulin/Lispro	1 Unit/mL	6 Unit/mL
2	6.9	62	24	2.3	54	60	Biguanide/Metformin	500 mg/dl	2160 mg/dl
3	8.3	60	20	0.8	33	55	Biguanide/Metformin	500 ml/dl	1703 mg/dl
4	6.65	40	30	0.8	98	65	Thiazolidinedione/ Pioglitazone	15 mg/dl	28 mg/dl
5	6.8	37	27	2.1	100	66	Biguanide/Metformin	500 mg/dl	1571 mg/dl
6	11	44	29	0.6	140	70	Biguanide/Buformin	50 mg/dl	50 mg/dl
7	7.9	50	27	3.8	130	68	Biguanide/Buformin	50 mg/dl	78 mg/dl
8	11.6	62	20	2.7	130	0	Biguanide/Metformin	500 mg/dl	1300 mg/dl
9	9.8	37	27	3.8	80	40	Insulin/Aspart	1 Unit/mL	5 Unit/mL
10	6.8	65	20	0.6	0	55	Alfa-Glucosidase/ Miglitol	25 mg/dl	56 mg/dl

Fig. 7 The daily dose of medicine recommended by doctor and system

Fig. 7 shows the system recommendations can provide daily dosage according to the patient's severity, while the doctor's recommended dosage begins using a low dosage [29]. Giving too low a dosage can result in suboptimal results [17], and recovery is prolonged for up to 1 year. However, for patients receiving the system's recommended daily dose, recovery duration is shorter to ≤ 3 months [30].

J. Determine Drugs Frequency

DI

The low frequency of use will result in a healing process and have an extended usage interval frequency of drug use that can cause side effects that can worsen the patient's condition. The dose should consider the HbA1c level <8% to determine the drug dosage and frequency [18]; we need proper consideration in determining the dosage and frequency. The frequency of administration of antidiabetic drugs using IF-Then about HbA1c levels shown in Table XIII.

	TABLE XIII	
TED OUDIG E	DEGUENCY D	ACED ON UD 41

Ub A 1 a	Eno mon ou	Value							
пратс	Frequency	value							
>9	Frequency high	3							
>7.5	Frequency middle	2							
>6.5	Frequency low	1							
Algorithm									
Input: HbA1c;									
Output: Frequen	Output: Frequency;								
Variable									
REAL: HbA1c, H	Frequency;								
Begin									
If HbA1C >9 T	Then Frequency = High								
Else	Else								
If HbA1C >9 T	If HbA1C >9 Then Frequency = Middle								
Else	Else								
Frequency = lov	Frequency = low;								
End;									

K. Expert System Application

This application uses fuzzy-profile matching, which was built using the Pascal programming language with the Delphi IDE. The application interface can be seen in Fig. 8.

Fuzzy logic calculates the value of the match between the patient's condition with the type of drug and profile matching as an inference to display the total amount of each kind of medication. The dose was calculated using the FIS Tsukamoto for inputting low dosage, and high dosage calculated the weighted average value. Determination of frequency using the IF-Then function. Doctors or medics will use this application by inputting several parameters, and the system will display the match values of each antidiabetic drug. Also, the system can communicate as well as the frequency of administration of the appropriate medication

				[Patient 1	Ada Ba	<mark>iress</mark> ndär Lampung	1			Sex Woman ▼	
Parameters Medicine Class of Antidiabetes												
			Sulfonilurena	Glinide	Biguainide	Thiazolidin	Alpha GI	GLP-1	SGLT2	DPP-4	Insuin	
HbA1c	6.9	*	0.6	0.6	1	0.6	0.7	0.8000000	0	0.8000000	0	
Age	62	Year	0.6	1	0.6	0	0.6	1	1	1	1	
BMI	24	Kg/m2	1	1	0.8461538	1	0.8571428	0.8571428	0.8571428	0.8571428	1	
Renal	2.3	mg/dl	0	1	1	1	0	1	1	0	1	
Liver	54	mg/dl	1	1	1	1	1	0.6666666	0.6666666	1	0.6666666	
Heart	98	pg/ml	0.8	0.8	1	1	0.8	0.8	0.8	0.8	1	
Blood Pressure	138	mg/dl	0.9	1	1	1	1	0.9	0.9	0.9	0.9	
Hypoglycemia	60	*	0	0	1	1	1	1	1	1	0	
Cell of beta	67	2	0	0	1	1	1	0	0	0	1	
Cell of alpha	19	*	1	1	1	1	1	0.8	1	0.8	1	
Free fatty acid	45	*	0	1	1	0	1	1	1	1	1	
Muscle glycogen	2.6	*	1	1	0.2	0.2	1	1	1	1	1	
Filtrasi Glomerulus	33	ml/minutes	0.4	0.4	1	0.4	1	1	0	0.4	0.4	
Pregnan/Lactating	No 👻	Yes/No	1	0	1	0	0	0	0	0	0	
Infection	Yes 🔻	Yes/No	0	0	0	1	1	1	0	1	1	
Eficacy	High 💌	High/Middle	1	1	1	1	1	1	0	0	1	
Cost	Low v	Low/High	1	0	1	1	1	0	0	0	1	
	Total		0.5510416	0.5510416	0.8535256	0.7145833	0.7694940	0.7375496	0.5208829	0.6007440	0.721180	
Medicine Metformin												
Minimal	Dosage	500	Max Dosage	3000		Free	quency		1	Once/Day		
		Fig.	. 8 Th	e dev	elope	1 inte	rface s	systen	1			

L. Comparison with Existing System

Table XIV shows the differences between several studies of antidiabetic drug recommendations with this study. The difference between this study and previous research is that this study uses more complex parameters to recommend the type of drug and its name. Also, being able to calculate the dosage and frequency based on parameters so that the dose and frequency are more precise and consider the price and efficacy of the drug

	COMIARI	Sold with Existing	STSTEMS RECOMMEN	DATION DROGS						
	Authors									
Parameter	Rung Chin	Shyi-Ming	Rung Ching	M. Eghbali et	Switi et	This research				
	Chen et al [12]	Chen et al[13]	Chen et al[14]	al.[31]	al.[32]	This research				
Years	2012	2013	2017	2018	2019	2020				
Mathad	SWRL/	Fuzzy	Fuzzy	Fuzzy	GA	Fuzzy DM				
Method	JESS	Fuzzy	TOPSIS	Multimoora	UA	$\Gamma uzzy = \Gamma IvI$				
Number of Parameters	6	6	8	5	7	17				
Number of class medicine	6	6	7	7	2	9				
Class of medicines	Yes	Yes	Yes	Yes	Yes	Yes				
Medicine	No	No	No	No	No	Yes				
Recommend levels	No	Yes	Yes	Yes	Yes	Yes				
Dosage	No	No	No	No	No	Yes				
Frequency dosage	No	No	No	No	No	Yes				
Cost	No	No	Yes	No	No	Yes				

TABLE XIV	
COMPARISON WITH EXISTING SYSTEMS RECOMMENDATION DRUG	iS

III. RESULTS AND DISCUSSION

A. Recommendation Doctor with System

The data used were 20 test data taken from patients' medical record data at the Bumi Waras Hospital in Bandar Lampung, Lampung, Indonesia, in 2019. Medical record data were calculated using the ordinal scale 1 and 0, as shown in Figure 9. in mapping the suitability of the patient's condition with antidiabetic drugs. The calculation uses a database query by creating a table; then, the selection is based on each patient's condition stored in the view. Data in the next statement is calculated using a query formula to get the total. The results of the query calculation in Figure 10

Fig. 9. Weight comparison curve using Ordinal scale and Fuzzy

Calculations using an ordinal scale have weaknesses because they do not produce flexible values to affect the quality of drug recommendations [16]. For example, antidiabetic Sulfonylurea is used for ≤ 60 years. If calculated using an ordinal scale, patients who are 61 years old cannot be given the type of Sulfonilurena drug, even though up to 65 years of age can still be given the medication. Therefore we need a more flexible calculation using Fuzzy logic [16].

Compared with Ordinal scale calculations, the application of fuzzy logic produces drug recommendations that approach the dataset; this is because fuzzy logic can provide flexible values to provide better anti-diabetic drug recommendations. Based on the number of recommended first-line antidiabetic drugs, Biguanide (Metformin), while for the second-line Insulin. This is according to management guidelines for type 2 Diabetes Mellitus [18].

 TABLE XV

 DATA COMPARISON OF RECOMMENDED SCALE ORDINAL, FUZZY AND DATASET DRUGS

	А	в	Re	Liv	He	DB	Hy	đ	0	FF	Mus	FG	DI	10	EC	Pri		Medicine 1			Medicine 2	
Hb	ge	MI	nal	er	art	BP	po	Сь	Ca	Α	lce	FG	PL	It	Ef	ce	Ordinal	Fuzzy	Dataset	Ordinal	Fuzzy	Dataset
6.9	62	24	2.3	54	98	138	60	67	19	45	2.6	33	No	Yes	High	Lo w	Biguani de	Biguani de	Biguani de	Thiazoli dine	Alpha- Glucose	Alpha- Glucose
9	40	22	0.6	18	10 0	145	70	45	22	28	3.2	26	No	No	High	Lo w	Sulfonil urena	Sulfonil urena	Sulfonil urena	Glinide	Glinide	Glinide
8.3	60	20	0.8	33	90	110	55	50	17	45	1.7	40	No	No	High	Lo w	Biguani de	Biguani de	Biguani de	Alpha- Glucose	Alpha- Glucose	Alpha- Glucose
10	57	24. 5	1.8	80	90	105	48	75	25	57	2.1	45	No	Yes	High	Lo w	Insulin	Insulin	Biguani de	Biguani de	Biguani de	Insulin
6.8	37	27	2.1	10 0	12 0	120	66	60	30	46	1.1	56	Yes	No	High	Lo w	Alpha- Glucose	Biguani de	Biguani de	SGLT-2	Alpha- Glucose	Alpha- Glucose
11	44	29	0.6	14 0	13 0	140	70	57	18	50	0.87	37	No	No	High	Lo w	Alpha- Glucose	Biguani de	Biguani de	Biguani de	Alpha- Glucose	Alpha- Glucose
6.5	39	25	0.7	78	95	130	65	80	35	45	2.5	28	Yes	Yes	High	Lo w	Insulin	Insulin	Insulin	Alpha- Glucose	Alpha- Glucose	Alpha- Glucose
7.9	50	27	3.8	13 0	97	100	68	67	28	32	1.9	32	No	No	High	Lo w	Biguani de	Biguani de	Biguani de	Alpha- Glucose	Insulin	Insulin
7.2	45	21	1.5	80	10 5	135	40	55	17	58	0.6	55	No	Yes	High	Lo w	Alpha- Glucose	Insulin	Biguani de	Biguani de	Biguani de	Insulin
11.6	62	20	2.7	13 0	10 0	117	0	46	20	47	2.1	46	No	No	High	Lo w	Glinide	Biguani de	Biguani de	GLP-1	GLP-1	GLP-1
9	68	24. 8	2.1	78	90	125	48	54	22	28	1	50	No	No	High	Lo w	Biguani de	Biguani de	Biguani de	Insulin	Insulin	Insulin
7.85	55	23	0.6	10 0	98	150	55	70	27	35	3.7	29	No	Yes	High	Lo w	Insulin	Insulin	Insulin	Alpha- Glucose	Alpha- Glucose	Alpha- Glucose
6.65	40	30	0.8	98	97	137	65	52	18	55	2.9	31	Yes	No	High	Lo w	Alpha- Glucose	Thiazoli dine	Thiazoli dine	Biguani de	Alpha- Glucose	Alpha- Glucose
9.8	37	27	3.8	80	13 0	145	40	78	32	60	1.4	27	Yes	Yes	High	Lo w	Insulin	Insulin	Insulin	Alpha- Glucose	Thiazoli dine	Thiazoli dine
6.75	41	30	2.1	18	12 5	157	60	56	26	45	0.91	36	No	Yes	High	Lo w	Biguani de	Biguani de	Biguani de	Alpha- Glucose	Alpha- Glucose	Alpha- Glucose
7.85	57	26	2.6	14 0	11 0	142	65	48	21	58	0.85	55	No	No	High	Lo w	GLP-1	Biguani de	Biguani de	SGLT-2	GLP-1	GLP-1
10	60	22	0.7	78	89	100	46	75	17	50	2.6	40	No	No	High	Lo w	Insulin	Biguani de	Biguani de	Biguani de	Insulin	Insulin
7.78	52	21	3.9	10 0	94	140	68	82	28	35	3	28	No	No	High	Lo w	Biguani de	Biguani de	Biguani de	Insulin	Insulin	Insulin
6.8	65	20	0.6	0	10 5	120	55	65	23	27	0.76	30	No	Yes	High	Lo w	Thiazoli dine	Alpha- Glucose	Alpha- Glucose	Alpha- Glucose	Thiazoli dine	Thiazoli dine
6.5	43	22. 5	1.8	13 0	95	127	48	78	22	34	2.3	45	No	No	High	Lo w	Biguani de	Biguani de	Biguani de	Insulin	Insulin	Insulin

Information: Hb (HbA1C), BP (Blood pressure), Hypo (Hypoglicemia), Cb (Cell of Betha), Ca (Cell of Alpha), Mc (Muscle), FG (Filtrasi Glomerulus), PL (Pregnant/Lactating), If (Infection), Ef (Eficacy), Sul (Sulfonilurea), TZ (Thiazolidine), AG (Alpha Glucose), GL (GLP-1), Ins (Insulin)

B. Evaluation of drugs administration

In Antidiabetic drug recommendations, the accuracy of the system is crucial [33]. The course will display all the results, and the doctor will choose the best based on expertise. Evaluate the suitability of drugs recommendations based on the system, and the doctor, True Positive (TP) is used, which

means the doctor approves the recommended drug. The dataset (DS) is the total amount of data, the formula shown in Table XVII. The first stage of testing compares drug recommendations using the Ordinal scale, and the second stage will be carried out to compare drug recommendations using fuzzy logic. The results of drug recommendations using the Ordinal scale can be seen in Table XVI.

TABLE XVI	
THE ESTIMATION OF ANTIDIABETIC DRUGS S	SYSTEM

Parameter	Definition	
True positive rate (TP)	The system recommends, and the doctor agrees	
Dataset (DS)	The total amount of record	
	Accuracy = $\frac{TP}{DS}$	(4)

Accuracy	Tatal number of recommend drugs	v100%
Accuracy-	Total Dataset	x10070

TABLE XVII	
COMPARISON OF ACCURACY ORDINAL SCALE AND FUZZY	

Scale	First medicine	Second medicine	Average
Ordinal	$\frac{11}{20} * 100\%$ = 50%	$\frac{9}{20} * 100\%$ = 45%	47.5%
Fuzzy	$\frac{18}{20} * 100\%$ = 90%	$\frac{20}{20} * 100\%$ = 90%	90%

The recommendation to use Fuzzy does not have much difference with the dataset doctor. The difference lies in the number of Biguanide recommendations that the dataset recommends as many as 14, but the system only recommends 12. Based on the accuracy value calculation, the fuzzy logic application has better accuracy, with an average difference of 43%. The application of fuzzy logic was high-speed and lower cost in recommending reliable drugs [26].

IV. CONCLUSION

Based on the description, explanation, and testing that have been done, we get a few conclusions. This study applied antidiabetic drugs' suitability based on the patient's health condition using the Profile Matching and Fuzzy Logic methods. Based on the evaluations Fuzzy Logic can recommend antidiabetic drugs that are better than using the Ordinal scale. In addition to the recommendation of the type of medicine, the system can also recommend the dosage and frequency of using Tsukamoto's FIS so that it is more precise and reduces the errors of medical staff in recommending drugs and can have a positive impact on patients in terms of time, the healing process, and lower costs. This study provides knowledge that antidiabetic drug determination requires as many as 17 parameters, while other courses only use 4-8 parameters. This study also describes the number of drugs that drug companies can produce. Usually, companies only make low and high dosage. This research shows that creating various dosages of the drug is more efficient for patients. However, this research still needs to be reviewed and continued considering that it still has some weaknesses and shortcomings from the dataset to the number of parameters.

ACKNOWLEDGMENTS

We are grateful to the University of Teknokrat Indonesia for providing support and funding. We also acknowledge Bumi Waras Hospital for the assistance in collecting patient medical record data.

REFERENCES

[1] WHO, "Global Report on Diabetes," France, 2016.

- [2] ADA, "Classi fi cation and Diagnosis of Diabetes: Standards of Medical Care in Diabetes d 2020," *Care.diabetesjournals.org*, vol. 43, no. January, pp. 14–31, 2020.
- [3] IDF, "International Diabetes Federation Type 2 diabetes," *International Diabetes Federation*, 2019. [Online]. Available: https://www.idf.org/aboutdiabetes/type-2-diabetes.html. [Accessed: 03-Apr-2020].
- [4] PERKENI, "Pedoman Pengelolaan dan Pencegahan Diabates Melitus Tipe 2 Dewasa," in *Pedoman Pengelolaan dan Pencegahan Diabates Melitus Tipe 2 Dewasa di Indonesia*, Pertama De., D. Lindarto, Ed. Jakarta: PB PERKENI, 2019, pp. 1–132.
- [5] A. J. Garber *et al.*, "Consensus statement by the American Association of clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm - 2020 executive summary," *Endocr. Pract.*, vol. 26, no. 1, pp. 107–139, 2020.
- [6] N. D. DiPiro et al., "Lower extremity strength is correlated with walking function after incomplete SCI," *Top. Spinal Cord Inj. Rehabil.*, vol. 21, no. 2, pp. 133–139, 2015.
- [7] Y. Handelsman *et al.*, "American Association of Clinical Endocrinologists and American College of Endocrinology - Clinical practice guidelines for developing a diabetes mellitus comprehensive care plan - 2015," *Endocrine Practice*, vol. 21, no. April. pp. 1–87, 2015.
- [8] Diabetes UK, "Our story Annual report and accounts 2018 Contents," UK, 2018.
- [9] Anonim, "Royal Pharmaceutical Society of Great Britain," Br. Med. Assoc., vol. 52, no. 116–117, pp. 1–12, 2006.
- [10] J. Thrasher, "Pharmacologic Management of Type 2 Diabetes Mellitus: Available Therapies," Am. J. Cardiol., vol. 120, no. 1, pp. S4–S16, 2017.
- [11] D. Bina et al., Pharmaceutical care untuk penyakit diabetes mellitus, Second. Jakarta: Bina Kefarmasian dan Alat Kesehatan, 2005.
- [12] R. C. Chen, Y. H. Huang, C. T. Bau, and S. M. Chen, "A recommendation system based on domain ontology and SWRL for antidiabetic drugs selection," *Expert Syst. Appl.*, vol. 39, no. 4, pp. 3995–4006, 2012.
- [13] S. M. Chen, Y. H. Huang, and R. C. Chen, "A recommendation system for antidiabetic drugs selection based on fuzzy reasoning and ontology techniques," *Int. J. Pattern Recognit. Artif. Intell.*, vol. 27, no. 4, 2013.
- [14] R. C. Chen, H. Q. Jiang, C. Y. Huang, and C. T. Bau, "Clinical Decision Support System for Diabetes Based on Ontology Reasoning and TOPSIS Analysis," *J. Healthc. Eng.*, vol. 2017, pp. 9–12, 2017.
- [15] PERKENI, "Pengelolaan dan Pengobatan Diabetes Melitus Tipe 2 Dewasa," in *Pedoman Pengelolaan dan Pencegahan Diabetes Melitus Tipe 2 di Indonesia*, Pertama., vol. 1, D. D. S. A. Soelistijo, Ed. Jakarta: PB PERKENI, 2019, p. 132.
- [16] H. Soetanto, S. Hartati, R. Wardoyo, and S. Wibowo, "Hypertension drug suitability evaluation based on patient condition with improved profile matching," *Indones. J. Electr. Eng. Comput. Sci.*, 2018.
- [17] Kemenkes RI, "Modul Penggunaan Obat Rasional," kemenkes RI, pp. 3–8, 2011.
- [18] American Diabetes Association, "Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2020," *Diabetes care*, vol. 43, no. January. pp. S98–S110, 2020.
- [19] Diabetes Federation International, *IDF Diabetes Atlas Ninth edition* 2019. 2019.
- [20] F. R. Guilherme, C. A. Molena-Fernandes, V. R. Guilherme, M. T. M. Fávero, E. J. B. dos Reis, and W. Rinaldi, "Body mass index, waist circumference, and arterial hypertension in students," *Rev. Bras. Enferm.*, vol. 68, no. 2, pp. 190–194, 2015.
 [21] P. Pendidikan, D. Spesialis, P. Klinik, R. Sakit, and H. Sadikin,
- [21] P. Pendidikan, D. Spesialis, P. Klinik, R. Sakit, and H. Sadikin, "Pemeriksaan Fungsi Ginjal," *CKD-237*, vol. 43, no. 2, pp. 148–154, 2016.
- [22] S. S. Schwartz, S. Epstein, B. E. Corkey, S. F. A. Grant, J. R. Gavin, and R. B. Aguilar, "The time is right for a new classification system for diabetes: Rationale and implications of the β-cell-centric classification schema," *Diabetes Care*, vol. 39, no. 2, pp. 179–186, 2016.
- [23] C. Prontera *et al.*, "Proficiency testing project for brain natriuretic peptide (BNP) and the N-terminal part of the propeptide of BNP (NTproBNP) immunoassays: the CardioOrmocheck study," vol. 47, no. January 2005, pp. 762–768, 2009.

- [24] D. Care and S. S. Suppl, "9. Pharmacologic approaches to glycemic treatment: Standards of medical care in diabetesd2019," Diabetes Care, vol. 42, no. January, pp. S90-S102, 2019.
- J. Dolenšek, M. S. Rupnik, and A. Stožer, "Structural similarities and [25] differences between the human and the mouse pancreas," Islets, vol. 7, no. 1, 2015.
- [26] H. Marcovitch, Black's Medical Dictionary, 41st ed. London: A & C Black, 2005.
- H. Ari Suhartanto, Kusrini, "Decision Support System Untuk [27] Penilaian Kinerja Guru Dengan Metode Profile Matching," J. Komput. Terap., vol. 2, no. 2, pp. 149-158, 2016.
- [28] H. P. Sri Kusuma Dewi, Aplikasi Logika Fuzzy untuk Pendukung *Keputusan*, Kedua., vol. Kedua. Yogyakarta: Graha Ilmu, 2010. P. Made and S. D. Pathni, "Terapi Diabetes dengan SGLT-2
- [29] Inhibitor," vol. 46, no. 6, pp. 452-456, 2019.

- [30] I. Saritas, I. A. Ozkan, and N. Allahverdi, "Determination of the drug dose by fuzzy expert system in treatment of chronic intestine inflammation Determination of the drug dose by fuzzy expert system," J Intell Manuf Springer, no. April, p. 9, 2009.
- [31] M. Eghbali-Zarch, R. Tavakkoli-Moghaddam, F. Esfahanian, M. M. Sepehri, and A. Azaron, "Pharmacological therapy selection of type 2 diabetes based on the SWARA and modified MULTIMOORA methods under a fuzzy environment," Artif. Intell. Med., vol. 87, pp. 20-33, 2018.
- [32] M. Al Switi, B. Alshraideh, A. Alshraideh, A. Massad, and M. Alshraideh, "Treatment of diabetes type II using genetic algorithm," Int. J. online Biomed. Eng., vol. 15, no. 11, pp. 53-68, 2019.
- [33] L. Qin and V. Atluri, "Evaluating the validity of data instances against ontology evolution over the Semantic Web," Inf. Softw. Technol., vol. 51, no. 1, pp. 83-97, 2009.

4 REVIEW DARI REVIEWER JURNAL

Amir Husein Commented

Focus

- 1. Proplems (Object) research
- 2. Method
- 3. Evaluation and Solution

Amir Husein Commented

Overall, this section only explains the stages of drug purchase and its impact, and some method explanations, but the subject matter of the research, the state of the art research has no explanation, besides that, it should be noted that the main objectives of this study are presented in this section. some important things as input

1. The impact of drug administration errors is described in a systematic manner supported by the literature,

- 2. previous research methods and strengths and weaknesses
- 3. the proposed method and the main contribution of this research, lastly
- 4. the main purpose of research

Amir Husein Commented

In this section the author has systematically explained the proposed model equipped with a fairly good illustration of pictures and explanations, but as a consideration, it should be presented in a simpler manner where the discussion focuses on the proposed model, the rest can be presented in the supplement.

Amir Husein Commented

It still needs an explanation why it appears in this section, whereas in parts 1 and 2 there is no review of this model, besides that the proposed model is FIS Tsukamoto!

Amir Husein Commented

the proposed model is FIS Tsukamoto, while the application is built using Fuzzy-Profile Matching, maybe need an explanation in this section?

Amir Husein Commented

This study provides the conclusion that the application of anti-diabetes drug suitability based on the patient's health condition using the Profile Matching and Fuzzy Logic methods and the type of drug recommendation model, the system can also use the dosage and frequency of FIS Tsukamoto. both of these models are not explained either in the abstract section, the introduction and appear in section

2. suggestions the authors should provide an explanation of what these two approaches are used for? especially in the abstract and introduction

5 LAMPIRAN JAWABAN PENULIS UNTUK REVIEW PERTAMA DARI REVIEWER JURNAL

November 09, 2020

Dear Editor,

First of all, we would like to express our great thanks for giving the opportunity to submit the revised version of our manuscript, **"Fuzzy-Based Application Model and Profile Matching for Recommendation Suitability of Type 2 Diabetic"** for publication in the *International Journal on Advanced Science, Engineering and Information Technology.*

In this revised version, we have made significant improvements to our paper, following all reviewer comments and suggestions. We highlight the changes in the document. We have carefully checked and have proof-reading by a native-speaker on the earliest version of our paper. We also have similarity (Plagiarism) of the manuscript by using **Plagiarism Detector v.1802** by 7% (Seven Percent). We found that your comments and advice have improved and enriched the quality of the paper immensely.

Thank you very much for your assistance, and we are looking forward to hearing any information from you.

Sincerely Yours,

Agus Wantoro, M.Kom. (Assistant Professor) Admi Syarif, Ph.D. (Associate Professor) Kurnia Muludi, Ph. D. (Associate Professor) dr. Khairun Nisa Berawi, Ph. D. (Associate Professor) Department of Computer Science and Department of Medical Science University of Lampung Jl. S. Brodjonegoro No. 1, Bandar Lampung, 35145 - INDONESIA

Corresponding Author:

Email: admi.syarif@fmipa.unila.ac.id http://staff.unila.ac.id/admisyarif Tel: +62-811-722-666 International Journal on Advanced Science Engineering Information Technology

Answer to the reviewer comments

Title: Fuzzy-Based Application Model and Profile Matching for Recommendation Suitability of Type 2 Diabetic

Authors: Agus Wantoro, Admi Syarif, Kurnia Muludi, and Khairun Nisa Berawi

Dear reviewer C

First of all, we would like to thank you for giving the opportunity to submit our revised manuscript, "Fuzzy-Based and Profile Matching Application Model for Recommendation Suitability of Type 2 Diabetic" for publication in the *International Journal on Advanced Science, Engineering and Information Technology*. We much appreciate the time and effort that the reviewers dedicated to providing feedback on our manuscript. We found that those comments and advice have improved and enriched the quality of the paper immensely. We have incorporated most of the suggestions made by the reviewers. Those changes are highlighted in the manuscript. Please see below, in blue, for a point-by-point response to the reviewers' comments and concerns. We have also made the proof-reading by native-speaker and similarity check (Plagiarism) of the manuscript using Plagiarism Detector v.1802 by **7% (seven percent).**

1. Focus problems (Object) research, Method and Evaluation and Solution

- 1. Thank you very much for the advice given. We strongly agree with the suggestions given and we follow up by making changes to the **abstract** section of our article according to the suggestions given by reviewers. **The problem of this research:** The doctor's mistake in recommending drugs causes a long healing process and costs more. Recommending pills requires pharmacological knowledge, and not all hospitals have pharmacologists. Several researchers have researched recommendations for antidiabetic drugs, but no studies have yet been found that discuss recommendations for combination antidiabetic drugs for type two to determine dosage and frequency. The number of medications used is 6 to 7, with many parameters 5 to 8. The latest endocrinology guidelines for 2020 state that in recommending antidiabetic drugs, not only 6 to 7 participants, but still need to maintain other aspects.
- 2. The method we use in our research is : Fuzzy and Profile Matching method. Fuzzy is used to calculate the suitability between the patient's condition and the type of antidiabetic drug. Profile Matching is used to calculate the core factor and secondary factor to obtain each drug's total value. The dose was calculated using the FIS Tsukamoto for inputting low doses, and high doses calculated the weighted average cost.
- 3. **Solution :** Build an expert system model with a new approach in recommending antidiabetic drugs with more complete parameters and recommend dosage and frequency—determination of frequency using the IF-Then function. Model evaluation is done by comparing recommendation data from doctors using confusion matrix tables. The results of the assessment of the model obtained an accuracy of 90%

2. Overall, this section only explains the stages of drug purchase and its impact and some method explanations. Still, the research's subject matter, the state of the art research, has no description; besides that, it should be noted that the main objectives of this study are presented in this section. Some important things as input

- 1. The impact of drug administration errors is described in a systematic manner supported by the literature,
- 2. Previous research methods and strengths and weaknesses
- 3. The proposed method and the main contribution of this research, lastly
- 4. The primary purpose of research
- 1. Thank you very much. We have made some improvements to CHAPTER I according to the reviewer 's suggestion. **Impact of drug administration errors :** Ignorance and negligence of action to the patient will have an impact on patient safety. One thing that must be considered is the procedure for administering injectable and oral drugs. Giving injection drugs is more at risk of causing hypoglycemic conditions that are dangerous for patients. In addition to economic wastage, irrational patterns of drug use can result in a decrease in the quality of treatment services and an increase in drug side effects, increase treatment failure, and increase insulin resistance
- 2. Weaknesses of the method in previous research : Several researchers have researched recommendations for antidiabetic drugs, but no studies have yet been found that discuss recommendations for combination antidiabetic drugs for type two to determine dosage and frequency. The number of medications used is 6 to 7, with many parameters 5 to 8. The latest endocrinology guidelines for 2020 state that in recommending antidiabetic drugs, not only 6 to 7 participants, but still need to maintain other aspects
- 3. **Proposed method :** In this study, we propose the Fuzzy-Tsukamoto method and Profile Matching. Fuzzy is used to calculate the suitability between the patient's condition and the type of antidiabetic drug. Profile Matching is used to calculate the core factor and secondary factor to obtain each drug's total value. The dose was calculated using the FIS Tsukamoto for inputting low doses, and high doses calculated the weighted average cost. **The contribution of this study is :** that the model we have developed can be used to determine drugs in other diseases. For doctors this application can help in recommending drugs that are in accordance with the patient's condition so that they can reduce the error rate and medical costs
- 4. **The primary purpose of research :** Aims to build an expert system model with a new approach in recommending antidiabetic drugs with more complete parameters and also able to recommend dosage and frequency

3. In this section, the author has systematically explained the proposed model equipped with a fairly good illustration of pictures and explanations. Still, as a consideration, it should be presented in a more straightforward manner where the discussion focuses on the proposed model; the rest can be shown in the supplement.

Thank you very much for the advice given. We have made some improvements to CHAPTER II according to the reviewer 's suggestion. We have made several changes regarding the stages of our research according to the suggestions. The steps that we improve are according to the following picture

4. It still needs an explanation why it appears in this section, whereas in parts 1 and 2 there is no review of this model, besides that the proposed model is FIS Tsukamoto, the proposed model is FIS Tsukamoto, while the application is built using Fuzzy-Profile Matching, maybe need an explanation in this section

- Thank you very much for the advice given. We have made some improvements to the description of the expert application by adjusting reviewer suggestions. We use three methods (Fuzzy-Tsukamoto and Profile Matching). Fuzzy logic calculates the value of the match between the patient's condition with the type of drug and Profile Matching as an inference to display the total amount of each kind of medicine.
- We use Tsukamoto's FIS : for inputting low doses, and high doses calculated the weighted average value. Determination of frequency using the IF-Then function. Doctors or medics will use this application by inputting several parameters, and the system will display the match values of each antidiabetic drug. Also, the system can communicate as well as the frequency of administration of the appropriate drug

5. This study concludes that the application of anti-diabetes drug suitability based on the patient's health condition using the Profile Matching and Fuzzy Logic methods and the type of drug recommendation model, the system can also use the dosage and frequency of FIS Tsukamoto. Both of these models are not explained either in the abstract section, the introduction, and appear in section 2. Suggestions the authors should explain what these two approaches are used for, especially in the abstract and introduction

• Thank you very much for the advice given. We've covered the abstract and an introduction to our approach. Fuzzy is used to calculate the suitability between the patient's condition and the type of antidiabetic drug. Profile Matching is used to calculate the core factor and secondary factor to obtain each drug's total value. The dose was calculated using the FIS Tsukamoto for inputting low doses, and high doses calculated the weighted average value. Determination of frequency using the IF-Then function. Model evaluation is done by comparing recommendation data from doctors using confusion matrix tables

Leave this box blank Please submit online <u>http://www.insightsociety.org/ojaseit/index.php/ijaseit</u> in DOC file Editor will not receive submission by email **Please be sure to check for spelling and grammar before submitting your paper.**

Fuzzy-Based Application Model and Profile Matching for Recommendation Suitability of Type 2 Diabetic

Agus Wantoro[#], Admi Syarif*, Kurnia Muludi[#], Khairun Nisa Berawi^{*}

[#]Department Computer Sciences, University of Lampung, Prof. Dr. Sumantri Brojonegoro No. 1 Street, Bandar Lampung, 35145, Indonesia

[#]Department of Engineering and Computer Science, Universitas Teknokrat Indonesia, ZA Pagar Alam Number 9-11, Bandar Lampung, 35132, Indonesia E-mail : aguswantoro@teknokrat.ac.id

*Department Computer Sciences, University of Lampung, Prof. Dr. Sumantri Brojonegoro No. 1 Street, Bandar Lampung, 35145, Indonesia E-mail : admi.syarif@fmipa.unila.ac.id

E-mail : kmuludi@fmipa.unila.ac.id

*Department Medical Sciences, University of Lampung, Prof. Dr. Sumantri Brojonegoro No. 1 Street, Bandar Lampung, 35145, Indonesia E-mail : khairun.nisa@fk.unila.ac.id

Abstract -Diabetes mellitus Diabetic Mellitus (DM) is a group of metabolic disease characterized by diseases with the characteristics of the tries of the main symptoms, namely polyphagia (lots to eat), polydipsia (lots to drink), and polyuria (lots of urination). The primary marker is derived from blood laboratory results where hyperglycemia <u>due to abnormalities in insulin secretion and a globa</u> <u>health threat. DM has several types, namely type 1, 2, gestational, and other types_occurs, where blood glucose levels are above the</u> standard threshold. Type 2 diabetes <u>patients have the largest number in the world</u> is the most cases due to impaired insulin receptor sensitivity due to unhealthy lifestyles, mainly found in obese individuals. DM therapy can be done in 2 (two) ways, namely by improvin lifestyle and administering drugs. The problems drug administration. Problems and risks in recommending drugs are essential becom famous in the patient's healing process of healing patients with type 2 DM because they are it is likely to take the drug consume dr for life. Approximately 260,000 patients with type 2 diabetes experienced medication errors in 2017. The doctor's mistake recommending drugs causes a long healing process and costs more. Recommending drugs requires pharmacological knowledge, a not all hospitals have pharmacologists. Several researchers have researched recommendations for antidiabetic drugs but no stud have yet been found that discuss recommendations for combination antidiabetic drugs for type two to determine dosage and frequence The number of drugs used is 6 to 7, with many parameters 5 to 8. The latest endocrinology guidelines for 2020 state that recommending antidiabetic drugs, not only 6 to 7 participants, but still need to maintain other aspects. Therefore, this study aims build an expert system This circumstance supports this research to develop a model with a new approach in recommending antidiabetic drugs with more complete parameters and also able to recommend dosage and frequency. The model developed uses t Fuzzy Profile Matching method. Fuzzy is used to calculate the suitability between the patient's condition and the type of antidiabe drug. Profile Matching is used to calculate the core factor and secondary factor to obtain each drug's total value. The dose w calculated using the FIS Tsukamoto for inputting low doses, and high doses calculated the weighted average valu Determination of frequency using the IF-Then function. Model evaluation is doncand application that can help medical staff recommending the right prescription, right dose, and the right frequency. Evaluation results by comparing recommendation data from the recommendations of doctors and the system using a confusion matrix tables. The results of the evaluation of the modeltable obtaine an accuracy value of 90%. This The existence of this system will is expected to reduce the risk of medical personnel errors mistakes i recommending <u>antidiabetic</u>drugs <u>that, and can positivelyhave a positive impact on patients in terms of time, the healing process, ar</u> lower-costs. This study research using a different from previous research and provides knowledge that antidiabetes drugs' abe different ways of building a drug recommendation system that is suitable for the patient's condition, and also the research shows th the determination of anti-diabetes drugs requires many parameters, while other studies used only use 4 to 8. This study-8 parameter In also, this study provides an overview of the dosagesnumber of drugs that can be produced by drug companies. Usually, the

Formatted: Font color: Auto
Formatted: Font color: Auto
Commented [a1]: Sir, we will add an explanation regarding Tsukamoto's FIS as suggested
Formatted: Font color: Auto
Formatted: Font color: Auto
Formatted: Font color: Auto
company<mark>Generally, companies</mark> only <u>producesproduce</u> low and high doses. This <u>studyrescareh</u> shows that producing <u>multipleseveral</u> doses of a drug <u>doses isean be</u> more <u>efficient</u>effective in the accuracy of therapy for patients

Keywords — Model; Diabetic type 2; Fuzzy Tsukamoto; Profile Matching; Drugs; Dosage; Frequency.

I. INTRODUCTION

Diabetic Mellitus (DM) Type 2 is a group of metabolic diseases with the characteristics of hyperglycemia that occurs because of an abnormality receptor insulin that lasts long also affects its secrecy. DM type classified into 4 (four) groups, namely Type 1 DM, type 2 DM, gestational DM, and other type DM [1][2]. Blood glucose levels are expressed diabetic, among others, with a rate of HbA1c > 6.5% (mmol/L) [3]. Until today DM is still one of the global health threats. Epidemiological research indicates the tendency to increase the incidence rate and prevalence of type 2 Diabetic Mellitus in various parts of the world[4]. The prevalence of DM is predicted to increase 3 times in 2030. This increase has been predicted by the World Health Organization (WHO) that the year 2030 will reach 21.3 million[1] and Predicted from the International Diabetic Federation (IDF) in 2045 will reach 16.7 million [3]

DM can occur in patients accompanied by other diseases. DM therapy can be done 2 (two) ways with the improvement of lifestyle and Drug Administration [2]. Treatment of medications using Oral and Insulin types [5]. Commonly used oral drugs are types of Sulfonylurea, Glinide, Biguanide, Tiazolidin, Alpha Glucose inhibitors, GLP-1, SGLT-2, DPP-4, while for Insulin there are Lispo, Aspart, Glulysine and Faster Aspart [6]. The goal of therapy in DM is to reduce the symptoms of hyperglycemia, reduce the onset and development of complications, reduce mortality, and improve quality of life [6]. Anti-diabetic drugs usually pay attention to age, comorbidities, risk of hypoglycemia, and many other factors [7].

Efforts to manage DM still have obstacles in terms of service and health financing [4]. It should be noted that health workers in carrying out their work require high pharmacological accuracy and knowledge [8]. Around 260,000 patients with diabetic experienced medication errors in 2017[8]. Ignorance and negligence of action to the patient will have an impact on patient safety. One thing that must be considered is the procedure for administering injectable and oral drugs. Giving injection drugs is more at risk of causing hypoglycemic conditions that are dangerous for patients. In addition to economic wastage, irrational patterns of drug use can result in a decrease in the quality of treatment services and an increase in drug side effects, increase treatment failure, and increase insulin resistance [9]. Cases in various health institutions were found to be incorrectly given unnecessary drug combinations. The selection of an appropriate oral hypoglycemic drug is crucial to the success of diabetic therapy depending on the severity and condition of the patient, Oral hypoglycemic pharmacotherapy can be done using one drug or a combination of two types of drugs [7]

Sub-therapeutic drug administration results in ineffective drug therapy. Drug administration with excessive doses result in hypoglycemic effects and the possibility of toxicity [10]. Inappropriate use of Insulin often results in hypoglycemia and can lead to weight gain. Unwanted drug effects can occur in long-term use such as lipodystrophy or loss of fat tissue at the injection site, and allergic reactions can occur, including edema [11]. Treatment must be started as early as possible to prevent or slow the progression of betacell failure that has occurred in people with impaired glucose tolerance [4].

Several researchers have conducted research that discusses anti-diabetic drug recommendations. The research conducted Rung-Ching Chen et al. [12]In previous studies, the drug recommendations used SWRL technique with 6 (six) types of anti-diabetic drugs Metformin, DPP4, Sulfonylurea, Glinide, Thiazolidinedione, Alpha-Glucosidase (AGI) with 6 (six) parameters of HbA1c, Hypoglycemia, Renal, Heart, BMI, and liver [12]. This research was developed with the Fuzzy method that can display the results of drug recommendations based on the most appropriate level of choice [13]. Drug recommendations are also carried out using Fuzzy-TOPSIS with 7 types of drugs and 8 parameters [14]. In 2018 Fuzzy combined with MULTIMOORA with input data scoring, was able to recommend anti-diabetic drugs using parameters. Several researchers have researched recommendations for antidiabetic drugs, but no studies have yet been found that discuss recommendations for combination antidiabetic drugs for type two to determine dosage and frequency. The number of drugs used is 6 to 7, with many parameters 5 to 8. The latest DM endocrinology guidelines for 2020 stateexplain, that in recommending antidiabeticantidiabetic drugs, not only 6 to 7 participants, but still need to maintain other aspectspay attention to HbA1c, Hypoglycemia, Renal, Heart, BMI, and Liver but there are some things to consider, such as glucagon secretion (Cell Alpha Pancreas), insulin secretion (Cell Beta), glucose fat, glomerular filtration, muscle glycogen and contraindications with pregnant or nursing women and infections [15]. Drug

recommendations must be adapted to the patient's condition or variables to avoid errors and drug side effects. The number of patient variables has the main and second variables [16]; therefore, the Profile Matching (PM) method is very appropriate because it has a Core Factor and Secondary Factor calculations The number of parameters is divided into main and second in considering drugs. Therefore the Profile Matching method is very appropriate to use because it has Core Factor and Secondary Factor calculations.

The problem and the level of risk in recommending drugs are important in the process of healing patients in order to maintain the quality of health services [10]. This situation supports this research this study aims to builddevelop an expert system modelapplication with a new approach in recommending of antidiabetic drugs with more complete parameters and also able to recommend dosage and frequency. The modelFuzzy logic that has been proven capable of providing drug recommendations that will be developed usesto prescribe the Fuzzy Profile Matching method. Fuzzy is used to calculateright drug, the suitability between right dose, and the patient's condition andright

Commented [AH2]: Focus

1. Proplems (Object) research 2 Method

3. Evaluation and Solution

Commented [a3R2]: The writing in red and blue is the result of improvement

Formatted: English (United States)

Commented [AH4]: Overall, this section only explains the stages of drug purchase and its impact, and some method explanations, but the subject matter of the research, the state of the art research has no explanation, besides that, it should be noted that the main objectives of this study are presented in this section. some important things as input

input 1. The impact of drug administration errors is described in a systematic manner supported by the literature, 2. previous research methods and strengths and weaknesses 3. the proposed method and the main contribution of this research, lastly

4. the main purpose of research

Formatted: Font color: Red

1	Formatted: Font color: Red
1	Formatted: Font color: Red
1	Formatted: Font color: Red
1	Formatted: Font color: Red

-{	Formatted: Font color: Accent 1
1	Formatted: Font color: Accent 1
1	Formatted: Font color: Accent 1
1	Formatted: Font color: Accent 1
1	Formatted: Font color: Accent 1
	Commented [a6]: I'm sorry sir, the shortcomings of previous research and the strengths of this study
1	Formatted: Font color: Accent 1
-{	Formatted: Font color: Red

Commented [a7]: Thisisproposed method

	Commented [a5]: I'm sorry sir, we have written this paragraph to explain the impact of incorrect diabetes drug recommendations
4	Formatted: Font color: Red

1	Formatted: Font color: Red
1	Formatted: Font color: Red
-	Commented [a8]: Research purposes

Fig. 3 Reference for creating a knowledge base

C. Patient Parameters

Based on consultations with internists and pharmacologists as well as a review of several literatures [5], [18], [19], [4], there are 17 (seventeen) parameters that influence in determining the delivery of anti-diabetic type 2 drugs. In addition to considering the patient's health parameters also consider the efficacy and price of the drug presented in TABLE I

TABLE I INPUT PARAMETERS FOR THE DETERMINATION OF ANTI-DIABETIC MELLITUS TYPE 2 DRUGS

P1	P2	P3	P4	P5	P6	P7	P8	P9
HbA1c	Age	Body mass index	Renal	Liver	Heart	Blood pressure	Hypogly cemia	Cell of beta
%	year	kg/m ²	mg/dl	μ/L	pg/ml	mm/Hg	%	%
P10	P11	P12	P13	Р	14	P15	P16	P17
Cell of alpha	Free fatty acid	Muscle glycogen	Filtration glomerulu	Pregn s tat	ant/lac	Infection	Efficacy	Cost
%	% % ml/minutes		s Ye	s/No	Yes/No	High/Mid dle	Low/High	

Brief description of each patient's health parameters that influences in determining the type 2 anti-diabetic drug administration:

- HbA1c (hemoglobin A1c) is a protein containing iron in red blood cells. High or low HbA1c levels will affect drug administration. Intake of HbA1c by pricking a needle in a vein in the arm. Normal levels of Hba1c <6.5% [2]
- Age is taken from the year of birth. Age>60 years old and <60 years old is young. Age of the patient will determine the choice of drug type because not all ages can be given the same drug [1]
- BMI is taken from body weight and height [20]. Kadar normal BMI <25. If someone has a BMI>25, then the drug to be given is different from patients who have a BMI <25kg/m²[20]
- Renal is the level of kidney health obtained based on laboratory tests with the Enzymatic method performed on patients by calculating creatinine levels [21]. Patients with kidney patients need special attention from doctors [18]
- The liver is SGPT (Serum Glutamic Pyruvic Transaminase) level is an enzyme that is abundant in the liver. Normal levels of 7-56 micro per liter of serum (μ/L) [22].
- Heart health uses the value of B-type natriuretic peptide (BNP) is a hormone produced by the heart. The BNP hormone (NT-proBNP) is a non-active hormone released from the same molecule that produces BNP [23]
- 7. Hypoglycemia is a condition when the body's blood sugar levels are too low. Hypoglycemia normal

<50% mmol/L [5]. Provision of anti-diabetic drugs

- pay attention to the effects of Hypoglycemia [24]
 8. Beta cells (β cells) are a type of cells found in pancreatic islets that synthesize and secrete insulin. Beta cells account for about 50-70% of cells in the islet of the pancreas in the human body [25]
- Pancreatic Alpha Cells are cells that function to produce glucagon hormone. This hormone works to increase blood sugar levels, and break down the reserves of sugar in the liver and then carry it to the blood. Alfa cells account for around 25% of the island of Langerhans [22]
- Free fatty acid (FFA) is the content of free fatty acids in the body that cause cholesterol that can affect drug administration. Normal levels of 30-50 FFA%[4]
- Muscle glycogen is a type of sugar polysaccharide that is stored in liver cells and body muscle cells. Glycogen data is obtained by converting glucose levels obtained from food [22]
- Glomerular filtration is the average rate of blood filtration that occurs in the glomerulus in ml/min units [26]
- Pregnant/lactating is the condition of the patient's history of being pregnant or breastfeeding. Some anti-diabetic drugs have contraindications with this condition [10]
- 14. Infection is the condition of the patient who has a wound or postoperatively. Patients who are experiencing infections should not be given drugs Sulfonilurena, Glinide, Biguanide and SGLT-2 [18]
- 15. Efficacy is the level of efficacy of the drug [18]

 Cost is the cost of purchasing drugs. Determination of the price of drugs taken from the guidelines for the treatment of type 2 diabetic [5]

D. Knowledgebase Rules

The parameters used are made in the form of a knowledge base for the degree of compatibility of each parameter with the type of anti-diabetic drugs. The knowledge base is presented in Table 2.

<u>D. Expert System Knowledge Base</u> TABLE <u>II.</u>

E

								TA	BLE II								
			KNOW	LEDGEB	ASE I	FOR T	HE SUIT.	ABILIT	Y OF AN	I-DIA	BETIC	DRUGS	[5], [18], [19	9], [4]			
Medicine Class	HbA1c	Age	BMI	Renal	Liver	Heart	Blood pressure	Hypogl ycemia	Cell Beta Pancreas	Cell Alpha	Free Fatty Acid	Muscle Glycogen	Filtrasi Glomerulus	Pregnan /Lactating	Infection	Eficacy	Cost
Sulfonilurena	>7.0	<60	<25	<1.2	<56	>100	>140	<50	<50%	<20%	<50%	>1%	<30	No	No	High	Low
Glinide	>7.5	>60	<25	>0.55	<56	>100	<140	<50	<50%	<20%	<50%	>1%	<30	Yes	No	High	High
Biguainide	>6.5	17-60	25-35	>1.2	<56	<100	>90	>50	>50%	<20%	<50%	<1%	>30	No	No	High	Low
Thiazolidin	>7.0	18-45	<25	>0.55	<56	<100	<140	>50	>50%	<20%	>50%	<1%	<30	Yes	Yes	High	Low
Alpha Glucose	7.5 - 9	<60	>25	<1.2	<56	>100	<140	>50	>50%	<20%	<50%	>1%	>30	Yes	Yes	High	Low
GLP-1	7-9	>55	>25	>1.2	>56	>100	>140	>50	<50%	>20%	<50%	>1%	>30	Yes	Yes	High	High
SGLT2	>9	>55	>25	>1.2	>56	>100	>140	>50	>50%	<20%	<50%	>1%	>45	Yes	No	Middle	High
DPP-4	7-9	>55	>18.5	>1.2	<56	>100	>140	>50	<50%	>20%	<50%	>1%	<30	Yes	Yes	Middle	High
Insulin	>9	>13	<25	0.55 - 1.2	>56	<100	>140	<50	>50%	<20%	<50%	>1%	<30	Yes	Yes	High	Low

Almost all type 2 diabetic drugs should not be given to DMT2 patients with impaired liver or kidney function, liver, high blood pressure, and severe heart problems. Patients with T2DM aged ≥ 60 years and overweight (BMI) should be aware of the onset of hypoglycemia. There are types of drugs that

Based on the knowledge base in table 2, then made in

the form of curves and fuzzy logic membership functions for

<u>Fuzzy Membership Fuctions</u> Suitable Medicine with Patient Condition are contraindicated in patients with impaired renal function with LFG \leq 30 mL/[4]. In addition, drug administration needs to be considered for patients who are pregnant or breastfeeding and have infections [10]

each parameter with the suitability of the type of anti-diabetic drug. Curves and membership functions for the type of anti-diabetic drug Biguanide are shown in <u>TABLE III.</u>

--- Formatted: Font: 10 pt, Indonesian

Furthermore, curves, and membership functions for the types of anti-diabetic drugs Sulfonylurea, Glinide, Thiazolidinedione, Alpha-Glucosidase, GLP-1, SGLT-2, DPP4, and Insulin. Based on the membership function in Table 3, the value of each parameter is then calculated. Table 4 displays the membership values for each parameter with the type of anti-diabetic drug Biguanide

TABLE IV									
ID	ALCULATION VALUE ME Parameters	MBERSHI Data	P FUNCTIONS Value of membership						
1	HbA1c	6.9	1						
2	Age	62	0.6						
3	BMI	24	0.84						
4	Renal	2.3	1						
5	Liver	54	1						
6	Hearts	98	1						
7	Blood pressure	138	1						
8	Hypoglycemia	60	1						
9	Cell of beta	67	1						
10	Cell of alpha	19	1						
11	Free fatty acid	45	1						
12	Muscle glycogen	2.6	0.2						
13	Filtration glomerulus	33	1						
14	Pregnant/lactating	No	1						
15	Infection	Yes	0						
16	Efficacy	High	1						
17	Price	Low	1						

F. <u>F. Determination</u> Core Factor and Secondary Factor Parameter grouping is divided into 2 (two), namely Core Factor (CF) and Secondary Factor (SF). Core Factor is the main parameter group where the determination of the type of drug given is very dependent on the parameters in this group, whereas a Secondary Factor is a parameter group that does not have a strong influence on the determination of the type of drug given to patients [27]

TAB	LE V
CLASSIFYING PARA	METERS CF AND SF
Core Factor (CF)	Secondary Factor (SF)

Calculate the value of CF using a formula : $CF = \frac{\sum NC}{\sum IC}$ (1) CF = The average value of the core factor NC = Total number of core factor values IC = Number of items CF value $SF = \frac{\sum NS}{\sum IS}$ (2) SF = The average value of the secondary factor NS = Total number of secondary factor values IS = Number of secondary factor values IS = Number of secondary factor items Based on the grouping of core factors and the subsequent factors calculated the average value: The value of average core factor parameters CF = $\frac{(0.6+1+11+1+1+1+0)}{0} = 0.84$

 $CF = \frac{(0.6+1+1+1+1+1+1+0)}{9} = 0.84$ The value average secondary factor parameters $SF = \frac{(1+0.84+1+1+1+0.2+1+1)}{9} = 0.88$

The value average value of the grouping core factqr multiplied the weight of 75%, and the secondary factor multiplied with a weight of 25%. The result of the core factor and secondary factor weights are then added to get a matching value:

Total = (Weigt CF * CF) + (WeightSF * SF)⁽³⁾

Total =
$$(0.75 * CF) + (0.25 * SF)$$

= $(0.75 * 0.84) + (0.25 * 0.88)$
= $0.63 + 0.22$
= 0.85

Results calculate of the value 0.85 indicate that the patient "P1" if given the class of anti-diabetic medicine Biguanide has suitable (0.85 / 1) x 100% = 85% and for the second medicine 76% that Alpha-glucose, the medications are given can be combined, the show is TABLE VI Table 6

Field Code Changed

5	Alpha-Glucosidase	0.76	2
6	GLP-1	0.73	3
7	SGLT2	0.52	9
8	DPP-4	0.60	6
9	Insulin	0.72	4

This model can evaluate the suitability of the patient's condition with various types of anti-diabetic drugs. The calculation results are shown in TABLE VII

Table 7

TABLE VII PATIENT DATA AND THE TOTAL VALUE OF ANTI-DIABETIC DRUGS

																						-				
ID	HbA1c	Age	BMI	Renal	Liver	Heart	Blood Pressure	Hypoglic emia	Cell of Beta	Cell of Alpha	FFA	Muslce	Filtrasi Glomerulus	Pregnan / Lactating	Infection	Eficacy	Price	Sulfonilur ena	Glinide	Biguninide	Thiazolidi ne	Alpha Glucose	GLP-1	SGLT-2	DPP-4	Insulin
1	6.9	62	24	2.3	54	98	138	60	67	19	45	2.6	33	No	Yes	High	Low	0.551	0.5510	0.8535	0.7145	0.7694	0.7375	0.5208	0.6007	0.7211
2	9	40	22	0.6	18	100	145	70	45	22	28	3.2	26	No	No	High	Low	0.9041	0.9041	0.7149	0.659	0.6418	0.4784	0.3867	0.5907	0.5395
3	8.3	60	20	0.8	33	90	110	55	50	17	45	1.7	40	No	No	High	Low	0.71875	0.7187	0.9137	0.6244	0.7276	0.5118	0.4351	0.4485	0.5295
4	10	57	24.5	1.8	80	90	105	48	75	25	57	2.1	45	No	Yes	High	Low	0.427	0.4270	0.7179	0.5848	0.5738	0.6206	0.4748	0.3602	0.7395
5	6.8	37	27	2.1	100	120	120	66	60	30	46	1.1	56	Yes	No	High	Low	0.4218	0.4218	0.7171	0.5932	0.7078	0.675	0.677	0.3937	0.5666
6	11	44	29	0.6	140	130	140	70	57	18	50	0.87	37	No	No	High	Low	0.646	0.6460	0.7564	0.5708	0.7106	0.5378	0.5357	0.4168	0.5627
7	6.5	39	25	0.7	78	95	130	65	80	35	45	2.5	28	Yes	Yes	High	Low	0.4635	0.4635	0.5978	0.7994	0.7947	0.6161	0.4202	0.5989	0.8385
8	7.9	50	27	3.8	130	97	100	68	67	28	32	1.9	32	No	No	High	Low	0.5395	0.5395	0.8713	0.5505	0.6104	0.4958	0.4991	0.2645	0.6304
9	7.2	45	21	1.5	80	105	135	40	55	17	58	0.6	55	No	Yes	High	Low	0.5494	0.5494	0.6578	0.6031	0.6399	0.5347	0.4076	0.3055	0.6963
10	11.5	62	20	2.7	130	100	117	0	46	20	47	2.1	46	No	No	High	Low	0.6854	0.6854	0.6921	0.3973	0.4297	0.6651	0.6339	0.3005	0.6520
11	9	68	24.8	2.1	78	90	125	48	54	22	28	1	50	No	No	High	Low	0.4807	0.4807	0.7865	0.5062	0.4532	0.5944	0.5860	0.2965	0.6828
12	7.85	55	23	0.6	100	98	150	55	70	27	35	3.7	29	No	Yes	High	Low	0.6187	0.6187	0.6676	0.625	0.7285	0.5995	0.3701	0.5785	0.7852
13	6.65	40	30	0.8	98	97	137	65	52	18	55	2.9	31	Yes	No	High	Low	0.6187	0.6187	0.7211	0.7666	0.7638	0.6221	0.544	0.4921	0.7338
14	9.8	37	27	3.8	80	130	145	40	78	32	60	1.4	27	Yes	Yes	High	Low	0.5145	0.5145	0.4645	0.6906	0.6093	0.6375	0.4583	0.4895	0.8479
15	6.75	41	30	2.1	18	125	157	60	56	26	45	0.91	36	No	Yes	High	Low	0.523	0.523	0.802	0.6328	0.7534	0.6141	0.3777	0.4995	0.49958
16	7.85	57	26	2.6	140	110	142	65	48	21	58	0.85	55	No	No	High	Low	0.6166	0.6166	0.7625	0.451	0.5802	0.7614	0.707	0.3968	0.4831
17	10	60	22	0.7	78	89	100	46	75	17	50	2.6	40	No	No	High	Low	0.6354	0.6354	0.7464	0.4916	0.5709	0.4412	0.4704	0.3074	0.7187
18	7.78	52	21	3.9	100	94	140	68	82	28	35	3	28	No	No	High	Low	0.5854	0.5854	0.8016	0.5729	0.5342	0.4842	0.439	0.3196	0.7027
19	6.8	65	20	0.6	0	105	120	55	65	23	27	0.76	30	No	Yes	High	Low	0.5089	0.5089	0.5886	0.6489	0.6829	0.5607	0.3253	0.6064	0.612
20	6.5	43	22.5	1.8	130	95	127	48	78	22	34	2.3	45	No	No	High	Low	0.5817	0.5817	0.8385	0.538	0.5732	0.4976	0.6206	0.2372	0.6859

<u>G. Determination Drug</u>, Dosage, and Frequency The parameters used to determine the dose of the drug <u>G</u>. are HbA1c levels, age, BMI, kidney health, liver, and hypoglycemia. Determine drug frequency based on high or

TABLE VI DRUG SUITABILITY CALCULATION RESULTS

Value

0.56

0.55

0.85

0.71

Level

8

1

No

1

2

3

Medicine Class

Thiazolidinedione

Sulfonylurea

Glinide

Biguanide

low HbA1c levels. Drug administration based on frequency are shown in Fig. 4 HbAlc [16]. The parameters are shown in Fig. 4 Age BMI FIS Tsukamoto Medicine Dosage Renal Liver Frequency HbA1c IF Then FIS Tsukamoto Medicine Dosage Hypoglyce (b) (a) Liver Hypoglycemia

aims to maintain drug concentration in the blood to remain stable. The frequency of correct administration of drugs will guarantee the availability of drugs in the blood, which can produce the desired therapeutic effect [17]. The parameters

HbAlc

IF Then

Frequency

Fig. 4 (a) Parameter for recommendations dosage (b) Parameter for determining a frequency

excessive doses, especially for drugs with a narrow range of therapy, will be very at risk of side effects. Conversely, a dose

H. Dosage and Frequency Drug

The dose and frequency of drug administration are very influential in the therapeutic effect of the drug. Giving that is too small will not guarantee the achievement of less than optimal therapeutic levels [17][16]

I

No	Type of drugs	Drugs	Dosage	Frequency (Ones/Day)
1	Sulfonylurea	Glibenclamide	2.5 - 20mg/dl	1-2
1		Gliclazide	40 - 320 mg/dl	1-2
2	Glinide	Repaglinide	1-16 mg/dl	2-4
2		Nateglinide	180 - 360 mg/dl	2-3
3	Biguanide	Metformin	500 - 3000mg/dl	1-3
		Buformin	50 - 100 mg/dl	1-2
4	Thiazolidinedione	Pioglitazone	15 - 45 mg/dl	1-2
4		Rosiglitazone	4 - 8 mg/dl	1-2
5	Alpha Glucosa	Acarbose	100 - 300 mg/dl	2-3
5	Alpha-Olucose	Miglitol	25-100 mg/dl	2-3
6	GLP-1	Liraglutide	0.6 - 1.8 mg/dl	1-2
0		Lixisenatide	10 - 20 mg/dl	1-2
7	SGLT2	Dapagliflozin	5 - 10 mg/dl	1-2
/		Empagliflozin	10 - 25 mg/dl	1-2
0	DBD 4	Vildagliptin	50-100 mg	1-2
0	DFT-4	Sitagliptin	25-100 mg	1-2
0	Ingulia	Lispro	0.1 - 1 Unit/Kg	1-2
9	IIISUIIII	Aspart	0.05 - 1Unit/Kg	1-2

TABLE VIII TYPE, DOSAGE, AND FREOUENCY DRUGS[18][4]

The Domain of Medicine Dosage Determination of the dose using the parameters in Figureure 4 (a). Each parameter becomes an input variable,

each divided by 2 (two) in linguistic and domain variables. The output from the domain is a dose calculated using Tsukamoto's FIS to calculate a more appropriate dosage

	TABLE IX DOMAIN PARAMETERS FOR DETERMINES DRUGS DOSAGE										
No	Variable	Linguistic Variable	Domain	Output (Dosage)							
1	HbA1c	Normal Abnormal	0-9 6.5-12								
2	Age	Young Old	0-65 60-100	Ţ							
3	BMI	Low High	0-27 24-30	[0-600]							
4	Renal	Normal Abnormal	0-1.5 1.2-3.0	High							
5	Liver	Normal Abnormal	0-100 40-100	[500-1000]							
6	Hypoglycemia	No Yes	0-70 50-120								

TI	T. HE DOSAGE DOMAIN	ABLE X OF THE DRUG IS BI	GUANIDE	
Tuno of dayor	Duman	Decese (mg/dl)	Do	main
Type of drugs	Drugs	Dosage (Ing/ul)	Low	High
Biguanide	Metformin	500 - 1000	0-600	500-1000

Based on Table 9. The next step is to make a curve for each parameter presented in Fig. 5-7, and the output curves for drug dosages are shown in Fig. 8

"[R13]If HbA1c= Normal and Age=Young and BMI=High and Renal=Abnormal and Liver=Normal and Hypoglicemia=No Ther Low dosage;"

"[R29]If HbA1c= Normal and Age=Old and BMI=High and Renal=Abnormal and Liver=Normal and Hypoglicemia=No Then Low dosage;" "[R30]If HbA1c= Abnormal and Age=Young and BMI=Low and Renal=Normal and Liver=Normal and Hypoglicemia=Yes Then

High dosage;" "[R45]If HbA1c= Abnormal and Age=Young and BMI=High and Renal=Abnormal and Liver=Normal and Hypoglicemia=No

Then High dosage;" "[R61] If HbA1c= Abnormal and Age=Old and BMI=High and Renal=Abnormal and Liver=Normal and Hypoglicemia=No

Then Low dosage;" "[R64] If HbA1c= Abnormal and Age=Old and BMI=High and Renal=Abormal and Liver=Abnormal and Hypoglicemia=Yes Then Low dosage;" Then value z calculation will be performed to look for output using FIS Tsukamoto from each rule given explicitly (crisp) based on α -predicate (fire strength). In this calculation, not all

 α and $z_{1.64}$ rules are displayed. The final result is obtained using a weighted average. Examples of the use of rules as follows:

α -predicat ₁₃	$= \mu HbA1c \text{ Normal } \Omega \ \mu Age \text{ Young } \Omega \ \mu BMI \text{ High } \Omega \ \mu Renal \text{ Abormal } \Omega \ \mu Liver \text{ Normal } \Omega \mu Hypoglycemia$
No Then Low do	sage;
	= Mm (0.84; 0.8; 1; 1; 0.76; 0.5)
7	
Z ₁₃	$= \text{High} - (\alpha_{13} * (\text{High} - \text{Low}))$
	= 3000 - (0.5 * (3000-500))
	= 1/50
α-predicat ₂₉	= μHbA1c Normal II μAge Old II μBMI High II μRenal Abormal II μLiver Normal IIμHypoglycemia No
Then Low dosag	
	= Min (0.84; 0.2; 1; 1; 0.76; 0.5)
-	
Z ₂₉	$= \text{High} - (\alpha_{29} * (\text{High} - \text{Low}))$
	= 3000 - (0.2 * (3000-500))
	= 2500
α -predicat ₃₀	$= \mu$ HbA1c Normal II μ Age Old II μ BMI High II μ Renal Abormal II μ Liver Normal II μ Hypoglycemia Yes
Then Low dosag	e;
	$= \operatorname{Min}(0.84; 0.2; 1; 1; 0.76; 0.5)$
7	
Z30	$= \text{High} - (\alpha_3) * (\text{High} - \text{Low}) $
	= 3000 - (0.2 * (3000-500))
1	
α -predicat ₄₅	= µHbA1c Abormal II µAge Young II µBMI High II µKenal Abormal II µLiver Normal II µHypoglycemia
No Then High do	isage;
	$= \operatorname{Nim} (0.10; 0.8; 1; 1; 0.70; 0.5)$
7	=0.10
Z45	$= \alpha_{45} + (\text{High-Low}) + \text{Low}$
	$= 0.16 \times (3000-500) + 500$
1	
α-predicat ₆₁	= μ HbA1c Abnormal II μ Age Old II μ BMI High II μ Renal Abnormal II μ Liver Normal II μ Hypoglycemia
No Then Low do	sage; $(1, 0, 1, 0, 2, 1, 1, 0, 7, 0, 5)$
	$= \operatorname{Nim} (0.16; 0.2; 1; 1; 0.76; 0.5)$
7	
Z ₆₁	$= \operatorname{High} - (\alpha_0 + (\operatorname{High} - \operatorname{Low}))$
	= 3000 - (0.16 * (3000-300))
1	= 2600
α-predicat ₆₄	= µHbA1c Abnormal II µAge Old II µBMI High II µRenal Abnormal II µLiver Abnormal II µHypoglycemia
Yes Then Low d	osage;
	$= \operatorname{Min}(0.16; 0.2; 1; 1; 0.23; 0.5)$
7	
Z ₆₄	$= \text{High} - (\alpha_{0,4} + (\text{High}-\text{Low}))$
	= 3000 - (0.16 * (3000-500))
	= 2000
	ΤΑΣΙ Ε ΧΛΙΙ
	I ABLE AVII MEMBERSHIP VALUE FOR ALL ALMAND ZUM FROM PARAMETERS
	a-predicat ₁₃ No Then Low do Z ₁₃ a-predicat ₂₉ Then Low dosag Z ₂₉ a-predicat ₃₀ Then Low dosag Z ₃₀ a-predicat ₄ s No Then High do Z ₄₅ a-predicat ₆₁ No Then Low do Z ₆₁ a-predicat ₆₄ Yes Then Low do Z ₆₄

ID	HbA1c	Age	BMI	Renal	Liver	Hypo glycemia	Min (α ₁₋₆₄)	Z1-64
1	0.84	0.8	0	0	0.76	0.5	0	3000
2	0.84	0.8	0	0	0.76	0.5	0	3000
3	0.84	0.8	0	0	0.23	0.5	0	3000
4	0.84	0.8	0	0	0.23	0.5	0	3000
5	0.84	0.8	0	1	0.76	0.5	0	3000
6	0.84	0.8	0	1	0.76	0.5	0	3000
7	0.84	0.8	0	1	0.23	0.5	0	3000
8	0.84	0.8	0	1	0.23	0.5	0	3000
9	0.84	0.8	1	0	0.76	0.5	0	3000
10	0.84	0.8	1	0	0.76	0.5	0	3000
11	0.84	0.8	1	0	0.23	0.5	0	3000

12	0.84	0.8	1	0	0.23	0.5	0	3000
13	0.84	0.8	1	1	0.76	0.5	0.5	1750
14	0.84	0.8	1	1	0.76	0.5	0.5	1750
15	0.84	0.8	1	1	0.23	0.5	0.23	2416
16	0.84	0.8	1	1	0.23	0.5	0.23	2416
17	0.84	0.2	0	0	0.76	0.5	0	3000
18	0.84	0.2	0	0	0.76	0.5	0	3000
19	0.84	0.2	0	0	0.23	0.5	0	3000
20	0.84	0.2	0	0	0.23	0.5	0	3000
21	0.84	0.2	0	1	0.76	0.5	0	3000
22	0.84	0.2	0	1	0.76	0.5	0	3000
23	0.84	0.2	0	1	0.23	0.5	0	3000
24	0.84	0.2	0	1	0.23	0.5	0	3000
25	0.84	0.2	1	0	0.76	0.5	0	3000
26	0.84	0.2	1	0	0.76	0.5	0	3000
27	0.84	0.2	1	0	0.23	0.5	0	3000
28	0.84	0.2	1	0	0.23	0.5	0	3000
29	0.84	0.2	1	1	0.76	0.5	0.2	2500
30	0.84	0.2	1	1	0.76	0.5	0.2	2500
31	0.84	0.2	1	1	0.23	0.5	0.2	2500
32	0.84	0.2	1	1	0.23	0.5	0.2	2500
33	0.16	0.8	0	0	0.76	0.5	0	500
34	0.16	0.8	0	0	0.76	0.5	0	500
35	0.16	0.8	0	0	0.23	0.5	0	3000
36	0.16	0.8	0	0	0.23	0.5	0	3000
37	0.16	0.8	0	1	0.76	0.5	0	3000
38	0.16	0.8	0	1	0.76	0.5	0	3000
39	0.16	0.8	0	1	0.23	0.5	0	3000
40	0.16	0.8	0	1	0.23	0.5	0	3000
41	0.16	0.8	1	0	0.76	0.5	0	500
42	0.16	0.8	1	0	0.76	0.5	0	500
43	0.16	0.8	1	0	0.23	0.5	0	500
44	0.16	0.8	1	0	0.23	0.5	0	500
45	0.16	0.8	1	1	0.76	0.5	0.16	900
46	0.16	0.8	1	1	0.76	0.5	0.16	900
47	0.16	0.8	1	1	0.23	0.5	0.16	2600
48	0.16	0.8	1	1	0.23	0.5	0.16	2600
49	0.16	0.2	0	0	0.76	0.5	0	3000
50	0.16	0.2	0	0	0.76	0.5	0	3000
51	0.16	0.2	0	0	0.23	0.5	0	3000
52	0.16	0.2	0	0	0.23	0.5	0	3000
53	0.16	0.2	0	1	0.76	0.5	0	3000
54	0.16	0.2	0	1	0.76	0.5	0	3000
55	0.16	0.2	0	1	0.23	0.5	0	3000
56	0.16	0.2	0	1	0.23	0.5	0	3000
57	0.16	0.2	1	0	0.76	0.5	0	500
58	0.16	0.2	1	0	0.76	0.5	0	500
59	0.16	0.2	1	0	0.23	0.5	0	3000
60	0.16	0.2	1	0	0.23	0.5	0	3000
61	0.16	0.2	1	1	0.76	0.5	0.16	2600
62	0.16	0.2	1	1	0.76	0.5	0.16	2600
63	0.16	0.2	1	1	0.23	0.5	0.16	2600
64	0.16	0.2	1	1	0.23	0.5	0.16	2600

adding the rules to rules 64 to get the weighted average value (Weight Average)

<u>C. Determining Dosage</u>
 <u>C. Deffuzification Weighted Average</u>
 After a combination of forming rules, the next step is doing a calculation to get the value of defuzzification by

 $z \text{ (Dosage)} = \frac{(a1 * z1) + (a2 * z2) + (a3 * z3) + (a4 * z4) + \dots (a64 * z64) +}{a1 + a2 + a3 + a4 \dots a64}$

z (Dosage) = 2160 mg/dl

Based on the name of the drug Metformin with the lowest dose of 500 ml/gl and the highest dose of 3000 ml/dl in Table

8, based on the results of the system recommendations for the correct dose given by patients as many as 2160 mg/dl

	Input var	iable						Output variab	le
Patien t	HbA1c	Age	BMI	Renal	Liver	Hypo glyce mia	Type and drugs anti- diabetic	Daily dose recommend ed by the physician	Daily dose obtained from the system
1	6.5	39	25	0.7	78	6.5	Insulin/Lispro	1 Unit/mL	6 Unit/mL
2	6.9	62	24	2.3	54	60	Biguanide/Metformin	500 mg/dl	2160 mg/d
3	8.3	60	20	0.8	33	55	Biguanide/Metformin	500 ml/dl	1703 mg/d
4	6.65	40	30	0.8	98	65	Thiazolidinedione/ Pioglitazone	15 mg/dl	28 mg/dl
5	6.8	37	27	2.1	100	66	Biguanide/Metformin	500 mg/dl	1571 mg/d
6	11	44	29	0.6	140	70	Biguanide/Buformin	50 mg/dl	50 mg/dl
7	7.9	50	27	3.8	130	68	Biguanide/Buformin	50 mg/dl	78 mg/dl
8	11.6	62	20	2.7	130	0	Biguanide/Metformin	500 mg/dl	1300 mg/d
9	9.8	37	27	3.8	80	40	Insulin/Aspart	1 Unit/mL	5 Unit/mL
10	6.8	65	20	0.6	0	55	Alfa-Glucosidase/ Miglitol	25 mg/dl	56 mg/dl

Fig. 7 The daily dose of medicine recommended by doctor and system

Fig. 7 shows the system recommendations are able to provide daily doses according to the severity of the patient, while the doctor's recommended dosage begins using a low dose [29]. Giving too low a dose can result in suboptimal results [17], and recovery is very slow for up to 1 year. [16], and recovery is very slow for up to 1 year. However, for patients receiving the system's recommended daily dose, the duration of recovery is shorter to ≤ 3 months [30]

L. Determine Drugs Frequency

The low frequency of use will result in a healing process and have a long usage interval frequency of drug use that can cause side effects that can worsen the patient's condition. The dose should consider the HbA1c level <8% to determine the dose and frequency of the drug [18]; for that, we need proper consideration in determining the dose and frequency. The frequency of administration of anti-diabetic drugs using IF-Then with reference to HbA1c levels shown in Table 19

TABLE VIX											
DETERMINING FREQUENCY BASED ON HBAIC											
HbAlc	Value										
>9	Frequency high	3									
>7.5	>7.5 Frequency middle										
>6.5 Frequency low 1											
Algorithm											
Input : HbA1	c;										
Output : Free	uency;										
Variable											
REAL : HbA1	c, Frequency;										
Begin											
If HbA1C >	9 Then Frequency = High										
Else											
If HbA1C >9 Then Frequency = Middle											
Else											
Frequency =	low;										

<u>M. Expert System Application</u> <u>M. Interface of Applications</u>

This application uses Fuzzy-Profile Matching, which was built using the Pascal programming language with the Delphi IDE and Ms. Access database. Fuzzy logic to calculate the value of the match between the patient's condition with the type of drug and Profile Matching as an inference to display the total value of each type of drug. The dose was calculated using the FIS Tsukamoto for inputting low doses, and high doses calculated the weighted average value. Determination of frequency using the IF-Then function. This application will be used by doctors or medics by inputting a number of parameters, and the system will display the match values of each anti-diabetic drug. In addition, the system can display as well as the frequency of administration of the appropriate drug. The application interface can be seen in Fig. 8

Commented [AH12]: It still needs an explanation why it appears in this section, whereas in parts 1 and 2 there is no review of this model, besides that the proposed model is FIS Tsukamoto!

Formatted: Font color: Red

Commented [a13]: Sir, we will add an explanation regarding Tsukamoto's FIS as suggested

Commented [AH14]: the proposed model is FIS Tsukamoto, while the application is built using Fuzzy-Profile Matching, maybe need an explanation in this section?

Fig. 8 The developed interface system recommendations type of drugs, drugs, dosage, and frequency

N. Comparison with Existing System

Table 20. Shows the differences between several studies of anti-diabetic drug recommendations with this study. The difference between this study and previous research is that this study uses more complex parameters, able to recommend the type of drug and the name of the drug. In addition, being able to calculate the dosage and frequency based on parameters so that the dose and frequency are more precise and consider the price and efficacy of the drug

TABLE XX
COMPARISON WITH EXISTING SYSTEMS RECOMMENDATION DRUGS
A (1)

		Autnors					
ID	Indices	Rung Chin Chen <i>et al.</i> [12]	Shyi-Ming Chen <i>et al.</i> [13]	Rung Ching Chen <i>et al.</i> [14]	M. Eghbali <i>et al.</i> [31]	Switi <i>et</i> <i>al.</i> [32]	This research
1	Years	2012	2013	2017	2018	2019	2020
2	Method	SWRL/ JESS	Fuzzy	Fuzzy TOPSIS	Fuzzy Multimoora	GA	Fuzzy – PM
3	Number of Parameters	6	6	8	5	7	17
4	Number of class medicine	6	6	7	7	2	9
5	Class of medicines	Yes	Yes	Yes	Yes	Yes	Yes
6	Medicine	No	No	No	No	No	Yes
7	Recommend levels	No	Yes	Yes	Yes	Yes	Yes
8	Dosage	No	No	No	No	No	Yes
9	Frequency dosage	No	No	No	No	No	Yes
10	Cost	No	No	Yes	No	No	Yes

III. RESULTS AND DISCUSSION

A. Recommendation Doctor with System The data used were 20 test data taken from the medical record data of patients at the Bumi Waras Hospital in Bandar Lampung – Lampung, Indonesia in 2019. Based on the type of medical record data, then a table was made in the database used to store the data shown in Table 20

Formatted: Font: Bold

TABLE XX DATA MEDICAL RECORD PATIENT

Medical record data were calculated using the ordinal scale 1 and 0, as shown in Figure 9. in mapping the suitability of the parient's condition with anti-diabetic drogs. The calculation uses a database query by creating a table; then, the selection is based on each patient's condition stored in the view. Data in the next view is calculated using a query formula to get the total. The results of the query calculation in Figure 12

Patient	Hbalc	Age	BHI	Renal	Live	Heart	SP	Зуро	CellBetha	CellAlpa	FA Bascle	Filtrasi Pregna	Infection	Eficacy	Frice
11	6.9	6	52 24	2.3	54	98	138	60	67	19	45.2.	33 No	Yes	High	Low
0.000	pice for	1.95	100	S-300.	Second	12230	100	1512	20120	Sec. 24 Sec.	10 A 8	South Broken	 Adates 	10.00	Carl Sec.
1	3.8	1	32.24	244	1		265		- 25	3.1	105 5-9	66 (35)	200	al que	936
13	9		5.64	108		1	00	- 30		1 214	000000	9950	N0	21/33	555
1	P.2		10 < 1	5.3		<u>v</u>	100 1.1		U	12	0045.00	10 - Mu	<u>Hu</u>	40 (B	
1 3	59	1	a Mari	1.8	¥.	80		89	15		88 8 98	19 10	199	N. 192	5.00
1 .	ř.2	3	10 27	2	100	120	190		ŕí	36.	46	54 Year	Hu	Hop	i.nw
1 3	12	1	12.542	No.10	28	1.01	2.00			310		80.00	N()	15.00	630
1 0	ri. *	3	19 25	2, 2	98	(s	190	- 2 E	80	3.5	45 2.5	28 Vira	Vea	Յութ	E.nw
1 1	V. 8	1 8	s 73	8.8	2.8	1		<u>.</u>		24	3.4 2.45	364 22	S 2	10.00	1030
1	5.2	4	45 ZI	1.5	80	LCS	125	40		15	58 C. 5	55 Nu	Vea	Յեւզիս	Euw.
1 1.0	2.22	0	 (a) 	34.5	2.8		23/2		43	20	See March	43(2)	10	12.00	-ice
1 [1]	r.	1	8 24.3	2.1	58	07	125	48	14		28 1	SC No	Hu	اشداق	Eun
1 1.0	9	1	58 605	No.E	2.00	(39	2,83	23	50	1 75	2.2 2.3	1 10	lac.	10.00	lige -
1 43	6.65	1 4	F0 30	0.3	58		133	65	12	16	35 2.0	31 Vez	No.	31 tu	E04
1 1.4	9.0	1 3	12.943	5.8	1 1	0 2.80	3.43		5.6	1 32	60 X. 4.	(S 28)	2012	Stoly .	3:20
1 4 5	6.75	1 4	ul 20	2.1	1 28	125	157	éC	14	26	45 C. DL	2400	Nea	31.40	Low
1 1.4	2.32		1.90	2.8	140	1 33.0	140	100	-60	21	20 2.62	3300	N0	010br	100
1 47	LC.	-	22 00	2.7	78	1 e	100		75	17	50 2.5	40 80	No	شنقا	Low
110	2.32	1 1	10 AL	6.5	1 107	ÝI 74	1.23	23	53		3.9.8	1 2012	No	01/14	5.00
1 42	6.8	-	5 22	2.5		105	120		65	23	27 0.75	30 100	files	ສີ່ມີພ	Eov
2 32	14.7	1 3	1. 20 1		1		1 1 1 1 1						la se		1

 Comparison curve using Ordinal scale (a) with Fuzzy (b)

 Image: State of the state o

Figure Weight

Fig. 10 Query view untuk seleksi parameter dan perhitmgan total milai obat

TABLE SET DETAILORDE VALUES CALCULATING ORDER MAR SCALE

		Prevatient Fit date														Registed dispersion dispersion with the second									
6663	Aan	382/0	Xrsd	ELWY.	39ead	Rosi Sances	antia Canada	देखां को दिखाः	Collad: Notes	RØ	Medice	Novi Securito	Rogaer/ Teststing	Telation	esta er	Poles	Manî.aza	AS GARDA	Medicile	unite all the	Algine Marcer	6251	MCTA	UEN-M	Kanite.
4 X	13	35	11.9	34	¥2	Afric .	- 43	64	13	43	24.8	12	He.	50	Heli	Loca	3.84	£.40 %	6.770730	0.8849	126600	6.70617	\$44,7785	0.475062	2.3524.95
÷	10	13	43 B	14	345	Canal Provide State	79	- 55	- 38	28	5.3	26	590	8-	E.	E.cer	e ar news	102304	8241484	\$14155	8.185	638461	8/430(1);	244990	6.478
1.5	- 44	3 5	1.2	28	- 10	119	75	34	17	22	1.5	2	186	Ma	Est	1489	8,581965	N.9648	0,003	6,40003	6,66375	0.575	0.56515	0.34513	6.437
101	ম্য	\$3.0	1,2	18	- 26	188	- 12	1	20	87 1	2.3	- 13	146	755	Tree	6.78	9,056	6.465	0.035	\$ 55000	A 54014	9.263629	2896.985	2012 3	1.3425
- 9,6	19	39	- 2,1	- 190	100	178	-48	40	*	46	1.3	-	2.25	167	We k	Legar	0.275	849998	645035	\$ 50402	122623	0.25/85	8/16A112	645052	6636243
- 16	- 96	26	**	192	Υ _μ ι	146	248	*	FE	- 20	267	*	1944	₩×	6	Lyan	3 9 12	8,9454	0.9035	296,000	AN OWNER	1.17.99	P243415	0.00000	M. Spanne
6.0	. 48	15	6.7	. 8	16	100	<u> </u>	\$0	10	- 60	2.6	26	Ves	26	$\mathbf{E}^{(n)}$	Lar	3 (77)	N 1979	2010200	80.00%	P-753-946	1.191958	20496664	0/0229/04	P731357
22	32	17	8 .8	120-	27	100	63	- 27	- 28		1.2	142	200	Ma	E.S.	Last	8,932	13ch1/	2.63 6697	84,830	Augest N	1.110.00	8540637	0.332912	6454223
12	15	23	13	30	189	100	- 10	2,6	17	5 80	84	242	÷ke	100	Mg).	1-812	n.722.345	256	857287	8.1	£6.25	147668	8.404432	2,545 23	0.981464
- n.2	۰.	- 27	- 52	195		207	*	49	20	- 67	2.1	(3	44:	R.C	Mg).	form	N:508 X82	1284.097	1042 (004)	0.100360	BASSED.	\$ 26,669	108012	\$26678	6.6725
*	- 65	12.1	2)	- *#	. 89	100	48	50	35	33	•	*	08*	51e	Sec.	Lase	10 00	17894	94380	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	\$.625	1.160.45	RESERVE	102202	0.58.477
2.45	i na	3.9	4.1	140	15	150	- 55	20	*	- 26	3.2	24	680	Sec.	Electre	fair	1527622	8422617	367243	6.626	100825	0,4285	1.56275	04.6805	07362
6.54	- 6 5	- 201	44	25	127	127		22	69	24	22	JC.	See	f.	10 six	Unar	6,972	3,970	0,9873	2,596.10	ASTREE.	143795	\$242517	0,20112	8475
9.8	37	27	3.8	80	130	145	40	78	32	60	1.4	27	Yes	Yes	High	Low	0.489583	0.510417	0.375	0.625	0.625	0.604167	0.541667	0.572917	0.739583
6.75	41	30	2.1	18	125	157	60	56	26	45	0.91	36	No	Yes	High	Low	0.458333	0.3125	0.770833	0.59375	0.625	0.572917	0.427083	0.541667	0.375
7.85	57	26	2.6	140	110	142	65	48	21	58	0.85	55	No	No	High	Low	0.541667	0.395833	0.65625	0.322917	0.541667	0.739583	0.645833	0.541667	0.260417
10	60	22	0.7	78	89	100	46	75	17	50	2.6	40	No	No	High	Low	0.520833	0.4375	0.572917	0.4375	0.489583	0.34375	0.427083	0.145833	0.6875
7.78	52	21	3.9	100	94	140	68	82	28	35	3	28	No	No	High	Low	0.520833	0.40625	0.739583	0.541667	0.489583	0.40625	0.479167	0.375	0.572917
6.8	65	20	0.6	0	105	120	55	65	23	27	0.76	30	No	Yes	High	Low	0.458333	0.458333	0.489583	0.572917	0.541667	0.427083	0.364583	0.479167	0.458333
6.5	43	22.5	1.8	130	95	127	48	78	22	34	2.3	45	No	No	High	Low	0.489583	0.40625	0.739583	0.458333	0.489583	0.375	0.395833	0.177083	0.572917

Calculations using an ordinal scale have weaknesses because they do not produce flexible values so that it can affect the quality of drug recommendations [16]. For example, antidiabetic Sulfonylurea is used for <60 years. If calculated using [17]. For example, anti-diabetic Sulfonylurea is used for <60 years. If calculated using an ordinal scale, patients who are 61 years old cannot be given the type of Sulfonilurena drug, even an ordinal scale, patients who are 61 years old cannot be given the type of Sulfonilurena drug, even though up to 65 years of age can still be given the drug. Therefore we need a more flexible calculation using Fuzzy logic [16]

though up to 65 years of age can still be given the drug. Therefore we need a more flexible calculation using Fuzzy logie [17]

TABLE XXII DATA COMPARISON OF RECOMMENDED ORDINAL, FUZZY AND DATASET SCALE DRUGS

ID	10.41.		ъя	n1	¥		Blood	Hypoglic	Cell of	Cell of	TT 4	Marter	Filtrasi	Pregnan /		P.C	n.t.		Medicine 1			Medicine 2	
ID	IDATE	Age	BMI	Renai	Liver	rieart	Pressure	emia	Beta	Alpha	FFA	MUSICE	Glomerulus	Lactating	Infection	Encacy	Price	Ordinal	Fuzzy	Dataset	Ordinal	Fuzzy	Dataset
1	6.9	62	24	2.3	54	98	138	60	67	19	45	2.6	33	No	Yes	High	Low	Biguanide	Biguanide	Biguanide	Thiazolidine	Alpha-Glucose	Alpha-Glucose
2	9	40	22	0.6	18	100	145	70	45	22	28	3.2	26	No	No	High	Low	Sulfonilurena	Sulfonilurena	Sulfonilurena	Glinide	Glinide	Glinide
3	8.3	60	20	0.8	33	90	110	55	50	17	45	1.7	40	No	No	High	Low	Biguanide	Biguanide	Biguanide	Alpha-Glucose	Alpha-Glucose	Alpha-Glucose
4	10	57	24.5	1.8	80	90	105	48	75	25	57	2.1	45	No	Yes	High	Low	Insulin	Insulin	Biguanide	Biguanide	Biguanide	Insulin
5	6.8	37	27	2.1	100	120	120	66	60	30	46	1.1	56	Yes	No	High	Low	Alpha-Glucose	Biguanide	Biguanide	SGLT-2	Alpha-Glucose	Alpha-Glucose
6	11	44	29	0.6	140	130	140	70	57	18	50	0.87	37	No	No	High	Low	Alpha-Glucose	Biguanide	Biguanide	Biguanide	Alpha-Glucose	Alpha-Glucose
7	6.5	39	25	0.7	78	95	130	65	80	35	45	2.5	28	Yes	Yes	High	Low	Insulin	Insulin	Insulin	Alpha-Glucose	Alpha-Glucose	Alpha-Glucose
8	7.9	50	27	3.8	130	97	100	68	67	28	32	1.9	32	No	No	High	Low	Biguanide	Biguanide	Biguanide	Alpha-Glucose	Insulin	Insulin
9	7.2	45	21	1.5	80	105	135	40	55	17	58	0.6	55	No	Yes	High	Low	Alpha-Glucose	Insulin	Biguanide	Biguanide	Biguanide	Insulin
10	11.6	62	20	2.7	130	100	117	0	46	20	47	2.1	46	No	No	High	Low	Glinide	Biguanide	Biguanide	GLP-1	GLP-1	GLP-1
11	9	68	24.8	2.1	78	90	125	48	54	22	28	1	50	No	No	High	Low	Biguanide	Biguanide	Biguanide	Insulin	Insulin	Insulin
12	7.85	55	23	0.6	100	98	150	55	70	27	35	3.7	29	No	Yes	High	Low	Insulin	Insulin	Insulin	Alpha-Glucose	Alpha-Glucose	Alpha-Glucose
13	6.65	40	30	0.8	98	97	137	65	52	18	55	2.9	31	Yes	No	High	Low	Alpha-Glucose	Thiazolidine	Thiazolidine	Biguanide	Alpha-Glucose	Alpha-Glucose
14	9.8	37	27	3.8	80	130	145	40	78	32	60	1.4	27	Yes	Yes	High	Low	Insulin	Insulin	Insulin	Alpha-Glucose	Thiazolidine	Thiazolidine
15	6.75	41	30	2.1	18	125	157	60	56	26	45	0.91	36	No	Yes	High	Low	Biguanide	Biguanide	Biguanide	Alpha-Glucose	Alpha-Glucose	Alpha-Glucose
16	7.85	57	26	2.6	140	110	142	65	48	21	58	0.85	55	No	No	High	Low	GLP-1	Biguanide	Biguanide	SGLT-2	GLP-1	GLP-1
17	10	60	22	0.7	78	89	100	46	75	17	50	2.6	40	No	No	High	Low	Insulin	Biguanide	Biguanide	Biguanide	Insulin	Insulin
18	7.78	52	21	3.9	100	94	140	68	82	28	35	3	28	No	No	High	Low	Biguanide	Biguanide	Biguanide	Insulin	Insulin	Insulin
19	6.8	65	20	0.6	0	105	120	55	65	23	27	0.76	30	No	Yes	High	Low	Thiazolidine	Alpha-Glucose	Alpha-Glucose	Alpha-Glucose	Thiazolidine	Thiazolidine
20	6.5	43	22.5	1.8	130	95	127	48	78	22	34	2.3	45	No	No	High	Low	Biguanide	Biguanide	Biguanide	Insulin	Insulin	Insulin

Fig. 11 Comparison graph of the number of first-line drug recommendations

Fig. 12 Comparison graph of the number of second-line drug recommendations

When compared with Ordinal scale calculations, the application of fuzzy logic produces drug recommendations that approach the dataset this is because fuzzy logic is able to provide flexible values so as to provide better anti-diabtic drug recommendations. Based on the number of recommended first-line anti-diabetic drugs, Biguanide (Metformin), while for the second-line Insulin. This is according to management guidelines for type 2 Diabetes Mellitus [18]

B. Evaluation of drugs administration

In Anti-Diabetic drug recommendations, the accuracy of the system is very important [33]. The system will display all the results, and the doctor will choose the best based on expertise. Evaluate suitability of drugs recommendations based on the system, and the doctor, True Positive (TP) is used, which means the doctor approves the recommended drug. The dataset (DS) is the total amount of data, the formula shown in Table 23.

	TABLE XXIII	
THE ESTIN	MATION OF ANTI-DIABETIC DRUGS SYSTEM	
Parameter	Definition	
True positive rate (TP)	The system recommends, and the doctor agrees	
Dataset (DS)	Total amount of record	
$Accuracy = \frac{TP}{DS}$		(5)
Accuracy= Tatal number of Tota	f recommend drugs Dataset x100%	(6)

The test results are calculated using a confusion matrix table. The first stage of testing compares the results of drug recommendations using the Ordinal scale, and the second stage compares drug recommendations using fuzzy logic. The results of drug recommendations using the Ordinal scale can be seen in Table 24

TABLE XXIV CONFUSION MATRIX RECOMMENDATION DRUG WITH SCALE ORDINAL Predicted Label

					Prec	ncieu Lai	bei			
	Type of drugs	Sulfon ylurea rena	Glinide	Biguani de	Thiaz olidin e	Alpha Gluco se	GLP-1	SGLT -2	DPP-4	Insuli n
	Sulfonylurea	1	0	0	0	0	0	0	0	0
	Glinide	0	0	0	0	0	0	0	0	0
el	Biguanide	0	1	7	0	3	1	0	0	2
Cab	Thiazolidinedione	0	0	0	0	1	0	0	0	0
	Alpha Glucose	0	0	0	1	0	0	0	0	0
Ë	GLP-1	0	0	0	0	0	0	0	0	0
Ac	SGLT-2	0	0	0	0	0	0	0	0	0
	DPP-4	0	0	0	0	0	0	0	0	0
	Insulin	0	0	0	0	0	0	0	0	3

The test results using the Ordinal scale; there are some differences in the recommendations for the types of drugs Glinide, Biguanide, Thiazolidine, Alpha-Glucose, and Insulin. The dataset (expert) on the type of drug Biguinide recommends as many as 14, while calculations using the Ordinal scale only recommend as many as 7 drugs. Furthermore, the results of recommendations using Fuzzy logic can be seen in Table 25.

TABLE XXV CONFUSION MATRIX RECOMMENDATION DRUG WITH FUZZY

				110	uicicu La	bu			
Гуре of drugs	Sulfony lurea	Glinid e	Bigua nide	Thiaz olidin e	Alpha Gluco se	GLP-1	SGLT -2	DPP-4	Insuli n
Sulfonylurea	1	0	0	0	0	0	0	0	0
Glinide	0	0	0	0	0	0	0	0	0
Biguanide	0	0	12	0	0	0	0	0	2
Thiazolidinedio	0	0	0	1	0	0	0	0	0
ne									
Alpha Glucose	0	0	0	0	1	0	0	0	0
GLP-1	0	0	0	0	0	0	0	0	0
SGLT-2	0	0	0	0	0	0	0	0	0
OPP-4	0	0	0	0	0	0	0	0	0
nsulin	0	0	0	0	0	0	0	0	3
	ype of drugs ulfonylurea ilinide diguanide hiazolidinedio e ulpha Glucose iLP-1 GLT-2 DPP-4 asulin	ype of drugs burrony lurea ulfonylurea 1 ilinide 0 biazolidinedio 0 e ulpha Glucose 0 LLP-1 0 GLT-2 0 OPP-4 0 ssulin 0	ype of drugs burlony of mind lurea e ulfonylurea 1 0 ilinide 0 0 ilinide 0 0 e ulpha Glucose 0 0 iLP-1 0 0 GLT-2 0 0 OPP-4 0 0 ssulin 0 0	type of drugs burlow bur	ype of drugs burlony chind Juga olidin ulfonylurea 1 0 0 0 ilinide 0 0 0 0 iguanide 0 0 12 0 hiazolidinedio 0 0 0 1 e	ype of drugs Jurca officity officity <thofficity< th=""></thofficity<>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ype of drugs burlow offinity offinity	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

The recommendation to use Fuzzy does not have much difference with the Doctor dataset. The difference lies in the number of Biguanide recommendations that the dataset recommends as many as 14, but the system only recommends

12. The results of the accuracy of the calculation recommendations with Confusion matrix tables 23 and 24 are shown in Table 26 $\,$

	TABLE XXVI COMPARISON OF ACCURACY ORDINAL SCALE AND FUZZY							
ID	Scale	Accuracy with first medicine	Accuracy with second medicine	Average				
1	Ordinal	55%	40%	47.5%				
2	Fuzzy	90%	90	90%				

Based on the calculation of the accuracy value, the application of Fuzzy logic has better accuracy, with an average difference of 43%. The application of fuzzy logic in recommending

reliable drugs with fast processes and lower costs [26]. The results of comparison of accuracy values in recommending first and second-line drugs are shown in Fig. 12

Fig. 13 Comparison graph of Ordinal and Fuzzy scale accuracy

IV. CONCLUSION

Based on the description, explanation, and testing that have been done, we get a few conclusions. This study resulted in the application of the suitability of anti-diabetic drugs based on the patient's health condition using the Profile Matching and Fuzzy Logic methods. Based on the results of evaluations using confusion testing prove that Fuzzy Logic is able to recommend anti-diabetic drugs that are better than using the Ordinal scale. In addition to the recommendation of the type of drug, the system can also recommend the dosage and frequency of using Tsukamoto's FIS so that it is more precise and reduces the errors of medical staff in recommending drugs and can have a positive impact on patients in terms of time, the healing process and lower costs. This study provides knowledge that the determination of anti-diabetic drugs requires as many as 17 parameters, while other studies only use 4-8 parameters. This study also provides a description of the amount of drug that can be produced by drug companies. Usually, companies only produce low and high doses. This research shows that producing various dosages of the drug is more efficient for patients. However, this research still needs to be reviewed and continued considering that it still has some weaknesses and shortcomings from the dataset to the number of parameters.

ACKNOWLEDGMENTS

Thank you to the University of Teknokrat Indonesia for providing support and funding. We say thank Bumi Waras Hospital for assisting in collecting patient medical record data

REFERENCES

- WHO, "Global Report On Diabetes," France, 2016.
 ADA, "Classi fi cation and Diagnosis of Diabetes :
- Standards of Medical Care in Diabetes d 2020," *Care.diabetesjournals.org*, vol. 43, no. January, pp. ----14-31,-2020.------
- [3] IDF, "International Diabetes Federation Type 2 diabetes," *International Diabetes Federation*, 2019.
 [Online]. Available: https://www.idf.org/aboutdiabetes/type-2diabetes.html. [Accessed: 03-Apr-2020].
- [4] PERKENI, "Pedoman Pengelolaan dan Pencegahan Diabates Melitus Tipe 2 Dewasa," in *Pedoman Pengelolaan dan Pencegahan Diabates Melitus Tipe* 2 Dewasa di Indonesia, Pertama De., D. Lindarto, Ed. Jakarta: PB PERKENI, 2019, pp. 1–132.
- [5] A. J. Garber et al., "Consensus statement by the American Association of clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm - 2020 executive summary," Endocr. Pract., vol. 26, no. 1, pp. 107–139, 2020.
- [6] N. D. DiPiro et al., "Lower extremity strength is

Commented [AH15]: This study provides the conclusion that the application of anti-diabetes drug suitability based on the patient's health condition using the Profile Matching and Fuzzy Logic methods and the type of drug recommendation model, the system can also use the dosage and frequency of FIS Tsukamoto. both of these models are not explained either in the abstract section, the introduction and appear in section 2. suggestions the authors should provide an explanation of what these two approaches are used for? especially in the abstract and introduction

Formatted: Font color: Red

Commented [a16]: Sir, We have added an abstract explanation of the Fuzzy-Profile Matching and FIS Tsukamoto according to the suggestions

correlated with walking function after incomplete SCI," *Top. Spinal Cord Inj. Rehabil.*, vol. 21, no. 2, pp. 133–139, 2015.

- [7] Y. Handelsman et al., "American Association of Clinical Endocrinologists and American College of Endocrinology - Clinical practice guidelines for developing a diabetes mellitus comprehensive care plan - 2015," Endocrine Practice, vol. 21, no. April. pp. 1–87, 2015.
- [8] Diabetes UK, "Our story Annual report and accounts 2018 Contents," UK, 2018.
- [9] Anonim, "Royal Pharmaceutical Society of Great Britain," *Br. Med. Assoc.*, vol. 52, no. 116–117, pp. 1–12, 2006.
- [10] J. Thrasher, "Pharmacologic Management of Type 2 Diabetes Mellitus: Available Therapies," Am. J. Cardiol., vol. 120, no. 1, pp. S4–S16, 2017.
- [11] D. Bina et al., Pharmaceutical care untuk penyakit diabetes mellitus, Second. Jakarta: Bina Kefarmasian dan Alat Kesehatan, 2005.
- [12] R. C. Chen, Y. H. Huang, C. T. Bau, and S. M. Chen, "A recommendation system based on domain ontology and SWRL for anti-diabetic drugs selection," *Expert Syst. Appl.*, vol. 39, no. 4, pp. 3995–4006, 2012.
- [13] S. M. Chen, Y. H. Huang, and R. C. Chen, "A recommendation system for anti-diabetic drugs selection based on fuzzy reasoning and ontology techniques," *Int. J. Pattern Recognit. Artif. Intell.*, vol. 27, no. 4, 2013.
- [14] R. C. Chen, H. Q. Jiang, C. Y. Huang, and C. T. Bau, "Clinical Decision Support System for Diabetes Based on Ontology Reasoning and TOPSIS Analysis," *J. Healthc. Eng.*, vol. 2017, pp. 9–12, 2017.
- [15] PERKENI, "Pengelolaan dan Pengobatan Diabetes Melitus Tipe 2 Dewasa," in *Pedoman Pengelolaan* dan Pencegahan Diabetes Melitus Tipe 2 di Indonesia, Pertama., vol. 1, D. D. S. A. Soelistijo, Ed. Jakarta: PB PERKENI, 2019, p. 132.
- [16] Kemenkes RI, "Modul Penggunaan Obat Rasional," kemenkes RI, pp. 3–8, 2011.
- [17] H. Soetanto, S. Hartati, R. Wardoyo, and S. Wibowo, "Hypertension drug suitability evaluation based on patient condition with improved profile matching," *Indones. J. Electr. Eng. Comput. Sci.*, 2018.
- [18] American Diabetes Association, "Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2020," *Diabetes care*, vol. 43, no. January. pp. S98–S110, 2020.
- [19] Diabetes Federation International, *IDF Diabetes* Atlas Ninth edition 2019. 2019.
- [20] F. R. Guilherme, C. A. Molena-Fernandes, V. R. Guilherme, M. T. M. Fávero, E. J. B. dos Reis, and W. Rinaldi, "Body mass index, waist circumference,"

and arterial hypertension in students," *Rev. Bras. Enferm.*, vol. 68, no. 2, pp. 190–194, 2015.

- [21] P. Pendidikan, D. Spesialis, P. Klinik, R. Sakit, and H. Sadikin, "Pemeriksaan Fungsi Ginjal," *CKD-237*, vol. 43, no. 2, pp. 148–154, 2016.
- [22] S. S. Schwartz, S. Epstein, B. E. Corkey, S. F. A. Grant, J. R. Gavin, and R. B. Aguilar, "The time is right for a new classification system for diabetes: Rationale and implications of the β-cell-centric classification schema," *Diabetes Care*, vol. 39, no. 2, pp. 179–186, 2016.
- [23] C. Prontera *et al.*, "Proficiency testing project for brain natriuretic peptide (BNP) and the N-terminal part of the propeptide of BNP (NT-proBNP) immunoassays: the CardioOrmocheck study," vol. 47, no. January 2005, pp. 762–768, 2009.
- [24] D. Care and S. S. Suppl, "9. Pharmacologic approaches to glycemic treatment: Standards of medical care in diabetesd2019," *Diabetes Care*, vol. 42, no. January, pp. S90–S102, 2019.
- [25] J. Dolenšek, M. S. Rupnik, and A. Stožer, "Structural similarities and differences between the human and the mouse pancreas," *Islets*, vol. 7, no. 1, 2015.
- [26] H. Marcovitch, Black's Medical Dictionary, 41st ed. London: A & C Black, 2005.
- [27] H. Ari Suhartanto, Kusrini, "Decision Support System Untuk Penilaian Kinerja Guru Dengan Metode Profile Matching," *J. Komput. Terap.*, vol. 2, no. 2, pp. 149–158, 2016.
- [28] H. P. Sri Kusuma Dewi, Aplikasi Logika Fuzzy untuk Pendukung Keputusan, Kedua., vol. Kedua. Yogyakarta: Graha Ilmu, 2010.
- [29] P. Made and S. D. Pathni, "Terapi Diabetes dengan SGLT-2 Inhibitor," vol. 46, no. 6, pp. 452–456, 2019.
- [30] I. Saritas, I. A. Ozkan, and N. Allahverdi, "Determination of the drug dose by fuzzy expert system in treatment of chronic intestine inflammation Determination of the drug dose by fuzzy expert system," *J Intell Manuf Springer*, no. April, p. 9, 2009.
- [31] M. Eghbali-Zarch, R. Tavakkoli-Moghaddam, F. Esfahanian, M. M. Sepehri, and A. Azaron, "Pharmacological therapy selection of type 2 diabetes based on the SWARA and modified MULTIMOORA methods under a fuzzy environment," *Artif. Intell. Med.*, vol. 87, pp. 20–33, 2018.
- [32] M. Al Switi, B. Alshraideh, A. Alshraideh, A. Massad, and M. Alshraideh, "Treatment of diabetes type II using genetic algorithm," *Int. J. online Biomed. Eng.*, vol. 15, no. 11, pp. 53–68, 2019.
 [33] L. Qin and V. Atluri, "Evaluating the validity of data
- [33] L. Qin and V. Atluri, "Evaluating the validity of data instances against ontology evolution over the Semantic Web," *Inf. Softw. Technol.*, vol. 51, no. 1, pp. 83–97, 2009.

7 LAMPIRAN HASIL PENGECEKAN PLAGIASI ARTIKEL

IJASEIT21 - Plagialism Check

by Admi Syarif

Submission date: 12-Feb-2021 08:59AM (UTC+0530) Submission ID: 1507663765 File name: 12277-29027-2-RV-Authors.docx (827.61K) Word count: 7772 Character count: 38615

Fuzzy-Based Application Model and Profile Matching for Recommendation Suitability of Type 2 Diabetic

Agus Wantoro^a, Admi Syarif^{b,*}, Kurnia Muludi^c, Khairun Nisa Berawi^d

^aDoctoral Program, Mathematics and Natural Sciences, Universitas Lampung, Prof. Dr. Sumantri Brojonegoro No. 1 Street, Bandar Lampung, 35145, Indonesia

^aDepartment of Engineering and Computer Science, Universitas Teknokrat Indonesia, ZA Pagar Alam Number 9-11, Bandar Lampung, 35132, Indonesia E-mail: aguswantoro@teknokrat.ac.id

b**CDepartment Computer Sciences, Universias Lampung, Prof. Dr. Sumantri Brojonegoro No. 1 Street, Bandar Lampung, 35145, Indonesia E-mail: *admi.syarif@fmipa.unila.ac.id E-mail: * kmuludi@fmipa.unila.ac.id

^dDepartment Medical Sciences, Universitas Lampung, Prof. Dr. Sumantri Brojonegoro No. 1 Street, Bandar Lampung, 35145, Indonesia

E-mail: khairun.nisa@fk.unila.ac.id

*Corresponding Author: Admi Syarif

Abstract — Diabetes mellitus (DM) is a metabolic disease characterized by hyperglycemia due to insulin secretion abnormalities and a global health threat. DM has several types, namely type 1, 2, gestational, and other types. Type 2 diabetes patients have the largest number in the world. DM therapy can be done in 2 (two) ways: improving lifestyle and administering drugs. The problems and risks in recommending drugs are essential in the patient's healing process because they are likely to take medicine for life. Approximately 260,000 patients with type 2 diabetes experienced medication errors in 2017. The doctor's mistake in recommending drugs causes a long healing process and costs more. Recommending drugs requires pharmacological knowledge, and not all hospitals have pharmacologists. Several researchers have researched recommendations for antidiabetic drugs, but no studies have yet been found that discuss recommendations for combination antidiabetic drugs for type two to determine dosage and frequency. The number of medications used is 6 to 7, with many parameters 5 to 8. The latest endocrinology guidelines for 2020 state that in recommending antidiabetic drugs, not only 6 to 7 participants, but still need to maintain other aspects. Therefore, this study aims to build an expert system model with a new approach in recommending antidiabetic drugs with more complete parameters and recommend dosage and frequency.

The model developed uses the Fuzzy Profile Matching method. Fuzzy is used to calculate the suitability between the patient's condition and the type of antidiabetic drug. Profile Matching is used to calculate the core factor and secondary factor to obtain each drug's total value. The dose was calculated using the FIS Tsukamoto for inputting low dosage, and high dosage calculated the weighted average value. Determination of frequency using the IF-Then function. Model evaluation is done by comparing recommendation data from doctors using confusion matrix tables. The results of the evaluation of the model obtained an accuracy of 90%. This system will reduce medical personnel errors in recommending antidiabetic drugs that can positively impact patients' time, the healing process, and costs. This study provides knowledge that antidiabetes drugs' determination requires many parameters, while other studies used only 4 to 8. This study also provides an overview of the dosages of drugs that can be produced by drug companies. Usually, the company only makes low and high dosage. This study shows that creating multiple drug dosage is more efficient for patients.

Keywords — Model; Diabetic type 2; Fuzzy Tsukamoto; Profile Matching; Drugs; Dosage; Frequency.

I. INTRODUCTION

Diabetic Mellitus (DM) Type 2 is a group of metabolic diseases with hyperglycemia characteristics that occurs because of an abnormality receptor insulin that lasts long also

affects its secrecy. DM type is classified into 4 (four) groups, namely Type 1 DM, type 2 DM, gestational DM, and other type DM [1][2]. Blood glucose levels are expressed as diabetic, among others, with a rate of HbA1c > 6.5% (mmol/L) [3]. Until today DM is still one of the global health threats. Epidemiological research indicates the tendency to increase the incidence rate and prevalence of type 2 Diabetic Mellitus in various parts of the world[4]. The majority of DM is predicted to grow 3 (three) times in 2030. This increase has been expected by the World Health Organization (WHO) that the year 2030 will reach 21.3 million[1] and Predicted from the International Diabetic Federation (IDF) in 2045 will reach 16.7 million [3]

DM can occur in patients accompanied by other diseases. DM therapy can be done 2 (two) to improve the lifestyle and Drug Administration [2]. Treatment of medications using Oral and Insulin types [5]. Commonly used oral drugs are types of Sulfonylurea, Glinide, Biguanide, Tiazolidin, Alpha Glucose inhibitors, GLP-1, SGLT-2, DPP-4, while for Insulin there are Lispo, Aspart, Glulysine and Faster Aspart [6]. The goal of therapy in DM is to reduce hyperglycemia symptoms, reduce the onset and development of complications, reduce mortality, and improve life quality [6]. Antidiabetic drugs usually pay attention to age, comorbidities, risk of hypoglycemia, and many other factors [7].

Efforts to manage DM still have obstacles in terms of service and health financing [4]. It should be noted that health workers in carrying out their work require high pharmacological accuracy and knowledge [8]. Around 260,000 patients with diabetes experienced medication errors in 2017[8]. Ignorance and negligence of action to the patient will have an impact on patient safety. One thing that must be considered is the procedure for administering injectable and oral drugs. Giving injection drugs is more at risk of causing hypoglycemic conditions that are dangerous for patients. In addition to economic wastage, irrational drug use patterns can decrease the quality of treatment services and increase drug side effects, increase treatment failure, and increase insulin resistance [9]. Cases in various health institutions were found to be incorrectly given unnecessary drug combinations. The selection of an appropriate oral hypoglycemic drug is crucial to the success of diabetic therapy, depending on the severity and condition of the patient. Oral hypoglycemic pharmacotherapy can be done using one drug or a combination of two types of drugs [7]

Sub-therapeutic drug administration results in ineffective drug therapy. Drug administration with excessive dosage results in hypoglycemic effects and the possibility of toxicity [10]. Inappropriate use of Insulin often results in hypoglycemia and can lead to weight gain. Unwanted drug effects can occur in long-term use, such as lipodystrophy or loss of fat tissue at the injection site, and allergic reactions can occur, including edema [11]. Treatment must be started as early as possible to prevent or slow the progression of betacell failure in people with impaired glucose tolerance [4].

Several researchers have conducted research that discusses antidiabetic drug recommendations. In the study showed Rung-Ching Chen *et al.* [12], the drug recommendations used the SWRL technique with 6 (six) types of antidiabetic drugs Metformin, DPP4, Sulfonylurea, Glinide, Thiazolidinedione, Alpha-Glucosidase (AGI) with 6 (six) parameters of HbA1c, Hypoglycemia, Renal, Heart, BMI, and liver. This research was developed with the Fuzzy method that can display the results of drug recommendations based on the most appropriate level of choice [13]. Drug

recommendations are also carried out using Fuzzy-TOPSIS with 7 (seven) types of drugs and 8 (eight) parameters [14]. In 2018 Fuzzy, combined with MULTIMOORA with input data scoring, recommended antidiabetic drugs using 8 (eight) parameters. Several researchers have researched recommendations for antidiabetic drugs, but no studies have yet been found that discuss recommendations for combination antidiabetic drugs for type two to determine dosage and frequency. The number of medications used is 6 to 7, with many parameters 5 to 8. The latest endocrinology guidelines for 2020 state that in recommending antidiabetic drugs, not only 6 to 7 participants, but still need to maintain other aspects such as glucagon secretion (Cell Alpha Pancreas), insulin secretion (Cell Beta), glucose fat, glomerular filtration, muscle glycogen and contraindications with pregnant or nursing women and infections [15]. Drug recommendations must be adapted to the patient's condition or variables to avoid errors and drug side effects. The number of patient variables has the main and second variables [16]; therefore, the Profile Matching (PM) method is very appropriate because it has a Core Factor and Secondary Factor calculations.

The problem and the risk of recommending drugs are essential in healing patients to maintain health services quality [10]. This research supports this research; this study aims to build an expert system model with a new approach to recommending antidiabetic drugs with more complete parameters and recommend dosage and frequency. The model developed uses the Fuzzy Profile Matching method. Fuzzy is used to calculate the suitability between the patient's condition and the type of antidiabetic drug. Profile Matching is used to calculate the core factor and secondary factor to obtain each drug's total value. Model evaluation is done by comparing recommendation data from doctors using confusion matrix tables. A safe treatment system needs to be developed and maintained to ensure that patients receive good drug services due to the increasingly varied drugs and the increasing number of drugs and types of antidiabetic drugs [17]. This study's results can be used as an alternative to help paramedics. Young doctors recommend the right dosage and frequency of medicines to improve the quality of health services, accelerate the healing process, and reduce medical costs.

II. MATERIAL AND METHODS

The application of the suitability of antidiabetic drugs to the patient's health condition was developed by illustrating the proposed model's architecture. The development of the model consists of 2 (two) main parts, namely the development knowledge base and development environment presented in Fig. 1 model was developed from the drug suitability model [16]

Development Stages Α.

The first development from the expert consultation stage and the result is presented in Figure. 2. Expert consultation was carried out by specialists in internal medicine diabetes and pharmacology to obtain parameters and knowledge base. The next step is the process of matching antidiabetic drugs to the patient's condition using a membership

curve. The next match's result was calculated by the core and secondary factors using the Profile Matching method. In addition to the type of drug, for determining the dose using Tsukamoto FIS. The stages of development can be seen in Fig. 2

B. Expert Consultation

Based on consultations with internists and pharmacologists, as well as a review of several works of literature [5], [18], [19], [4], there are 17 (seventeen) parameters that influence determining the delivery of antidiabetic type 2 drugs. In addition to considering the patient's health parameters, also believe the efficacy and price of the drug presented in TABLE I

3 INPUT PARAMETERS FOR THE DETERMINATION OF ANTIDIABETIC MELLITUS TYPE 2 DRUGS										
P1	P2	P3	P4	P5	P6	P7	P8	P9		
HbA1c	Age	Body mass index	Renal	Liver	Heart	Blood pressure	Hypogly cemia	Cell of beta		
%	year	kg/m ²	mg/dl	μ/L	pg/ml	mm/Hg	%	%		
P10	P11	P12	P13	P	14	P15	P16	P17		
Cell of alpha	Free fatty acid	Muscle glycogen	Filtration glomerulus	Pregn s tat	ant/lac ing	Infection	Efficacy	Cost		
%	%	%	ml/minutes	s Yes	s/No	Yes/No	High/Mid dle	Low/High		

TABLE I

Brief description of each patient's health parameters that influences in determining the type 2 antidiabetic drug administration:

- 1. HbA1c (hemoglobin A1c) is a protein containing iron in red blood cells. High or low HbA1c levels will affect drug administration. Intake of HbA1c by pricking a needle in a vein in the arm. Normal levels of Hba1c <6.5% [2]
- 2. Age is taken from the year of birth. Age>60 years old and <60 years old is young. The age of the patient will determine the choice of drug type because not all ages can be given the same drug [1]
- 3. BMI is taken from body weight and height [20]. Kadar normal BMI <25. If someone has a BMI>25, then the drug to be given is different from patients who have a BMI <25kg/m²[20]
- 4. Renal is the level of kidney health obtained based on laboratory tests with the Enzymatic method performed on patients by calculating creatinine levels [21]. Patients with kidney patients need special attention from doctors [18]

- 5. The liver is SGPT (Serum Glutamic Pyruvic Transaminase) level is an abundant enzyme in the liver. Normal levels of 7-56 micro per liter of serum (µ/L) [22].
- Heart health uses the value of B-type natriuretic peptide (BNP) is a hormone produced by the heart. The BNP hormone (NT-proBNP) is a non-active hormone released from the same molecule that has BNP [23]
- 7. Hypoglycemia is a condition when the body's blood sugar levels are too low. Hypoglycemia normal <50% mmol/L [5]. Provision of antidiabetic drugs pay attention to the effects of hypoglycemia [24]
- 8. Beta cells (β cells) are cells found in pancreatic islets that synthesize and secrete Insulin. Beta cells account for about 50-70% of cells in the islet of the pancreas in the human body [25]
- Pancreatic Alpha Cells are cells that function to 9. produce glucagon hormone. This hormone increases blood sugar levels, breaks down the liver reserves in the liver, and then carries it to the blood. Alfa cells

account for around 25% of the island of Langerhans [22]

- Free fatty acid (FFA) is the content of free fatty acids in the body that cause cholesterol that can affect drug administration. Normal levels of 30-50 FFA%[4]
- 11. Muscle glycogen is a type of sugar polysaccharide that is stored in liver cells and body muscle cells. Glycogen data is obtained by converting glucose levels obtained from food [22]
- Glomerular filtration is the average rate of blood filtration that occurs in the glomerulus in ml/min units [26]
- Pregnant/lactating is the condition of the patient's history of being pregnant or breastfeeding. Some anti-diabetic drugs have contraindications with this condition [10]

- 14. Infection is the condition of the patient who has a wound or postoperatively. Patients who are experiencing disorders should not be given drugs Sulfonilurena, Glinide, Biguanide, and SGLT-2 [18]
- 15. Efficacy is the level of effectiveness of the drug [18]
- 16. Cost is the cost of purchasing drugs. Determination of the price of medicines taken from the guidelines for the treatment of type 2 diabetes [5]

D. Expert System Knowledge Base

The parameters used are made in the form of a knowledge base for each parameter's degree of compatibility with the type of antidiabetic drugs. The knowledge base is presented in TABLE II.

TABLE II	
KNOWLEDGEBASE FOR THE SUITABILITY OF ANTI-DIABETIC DRUGS [5], [18], [19], [4]	

Medicine Class	HbA1c	Age	BMI	Renal	Liver	Heart	Blood pressure	Hypogl ycemia	Cell Beta Pancreas	C ell Alpha	Free Fatty Acid	Muscle Glycogen	Filtrasi Glome rulu s	Pregnan /Lactating	Infection	Eficacy	Cost
Sulfonilurena	>7.0	<60	<25	<1.2	<56	>100	>140	<50	<50%	<20%	<50%	>1%	<30	No	No	High	Low
Glinide	>7.5	>60	<25	>0.55	<56	>100	<140	<50	<50%	<20%	<50%	>1 %	<30	Yes	No	High	High
Biguainide	>6.5	17-60	25-35	>1.2	<56	$<\!\!100$	>90	>50	>50%	<20%	<50%	<1 %	>30	No	No	High	Low
Thiazolidin	>7.0	18-45	<25	>0.55	<56	$<\!\!100$	<140	>50	>50%	<20%	>50%	<1 %	<30	Yes	Yes	High	Low
Alpha Gluco se	7.5 - 9	<60	>25	<1.2	<56	>100	<140	>50	>50%	<20%	<50%	>1 %	>30	Yes	Yes	High	Low
GLP-1	7-9	>55	>25	>1.2	>56	>100	>140	>50	<50%	>20%	<50%	>1 %	>30	Yes	Yes	High	High
SGLT 2	>9	>55	>25	>1.2	>56	>100	>140	>50	>50%	<20%	<50%	>1 %	>45	Yes	No	Middle	High
DPP-4	7-9	>55	>18.5	>1.2	<56	>100	>140	>50	<50%	>20%	<50%	>1 %	<30	Yes	Yes	Middle	High
Insulin	>9	>13	<25	0.55 - 1.2	>56	<100	>140	<50	>50%	<20%	<50%	>1 %	<30	Yes	Yes	High	Low

Almost all type 2 diabetic drugs should not be given to DMT2 patients with impaired liver or kidney function, liver, high blood pressure, and severe heart problems. Patients with T2DM aged \geq 60 years and overweight (BMI) should be aware of the onset of hypoglycemia. There are types of

contraindicated drugs in patients with impaired renal function with LFG \leq 30 mL/[4]. Also, drug administration needs to be considered for patients who are pregnant or breastfeeding and have infections [10]

E. Fuzzy Membership Functions

Based on the knowledge base in table 2, they then made in the form of curves and fuzzy logic membership functions for each parameter with the suitability of the type of antidiabetic drug. Curves and membership functions of the kind of antidiabetic drug Biguanide are shown in TABLE III.

	TABLE III CURVES AND MEMBERSHIP FUNCTION	1 NS FOR BIGUANIDE DRUGS
Parameter	Curve	Membership function
HbA1c (%)	$1 \qquad \qquad$	$\mu(x) = \begin{cases} 0; & x \le 5.5\\ \frac{x-5.5}{5.5-6.5}; & 5.5 \le x \le 6.5\\ 1; & x > 6.5 \end{cases}$
Age (years)	$1 \xrightarrow[0]{60} 60 \xrightarrow{65} \rightarrow$	$\mu(x) = \begin{cases} 1; & x \le 60\\ \frac{65 - x}{65 - 50}; & 60 \le x \le 65\\ 0; & x > 65 \end{cases}$

Weight (BMI)	$1 \longrightarrow 0 \longrightarrow 18.5 25$	$\mu(x) = \begin{cases} 0; & x \le 18.5\\ \frac{x - 18.5}{25 - 18.5}; & 18.5 \le x \le 25\\ 1; & x > 25 \end{cases}$
Hypoglycemia	$1 \longrightarrow 0 \longrightarrow 50 \longrightarrow 70$	$\mu(x) = \begin{cases} 0; & x \le 50\\ \frac{x-50}{70-50}; & 50 \le x \le 70\\ 1; & x > 70 \end{cases}$
Renal	1 0 1.5 3.0	$\mu(x) = \begin{cases} 1; & x \le 1.5\\ \frac{3.0 - x}{3.0 - 1.5}; & 1.5 \le x \le 3.0\\ 0; & x > 3.0 \end{cases}$
Liver		$\mu(x) = \begin{cases} 0; & x \le 40\\ \frac{x - 145}{150 - 145}; & 40 \le x \le 100\\ 1; & x > 100 \end{cases}$
Heart		$\mu(x) = \begin{cases} 1; & x \le 100\\ \frac{110 - x}{110 - 100}; & 100 \le x \le 110\\ 0; & x > 110 \end{cases}$
Blood pressure	$1 \longrightarrow 0 \longrightarrow 80 \longrightarrow 90$	$\mu(x) = \begin{cases} 0; & x \le 80\\ \frac{x - 80}{90 - 80}; & 80 \le x \le 90\\ 1; & x > 90 \end{cases}$
Cell of beta	$1 \longrightarrow 0 \longrightarrow 45 \longrightarrow 50$	$\mu(x) = \begin{cases} 0; & x \le 45\\ \frac{x - 145}{150 - 145}; & 45 \le x \le 50\\ 1; & x > 50 \end{cases}$
Cell of alpha	$1 \longrightarrow 0 \longrightarrow 20 \longrightarrow 25$	$\mu(x) = \begin{cases} 1; & x \le 20\\ \frac{25-x}{25-20}; & 20 \le x \le 25\\ 0; & x > 25 \end{cases}$
Free Fatty Acid	$\begin{array}{c c} 1 \\ \hline \\ 0 \\ \hline \\ 0 \\ \hline \\ 50 \\ \hline \\ 55 \\ \hline \\ 55 \\ \hline \\ 55 \\ \hline \\ 55 \\ \hline \\ \end{array}$	$\mu(x) = \begin{cases} 1; & x \le 50\\ \frac{55-x}{55-50}; & 50 \le x \le 55\\ 0; & x > 55 \end{cases}$
Muscle Glycogen	$1 \longrightarrow 1 \longrightarrow 3$	$\mu(x) = \begin{cases} 3 \cdot 1; & x \le 1 \\ \frac{3 - x}{3 - 1}; & 1 \le x \le 3 \\ 0; & x > 3 \end{cases}$

Membership functions need to be made for the types of antidiabetic drugs Sulfonylurea, Glinid, Thiazolidinedione, Alpha-Glucosidase, GLP-1, SGLT-2, DPP4, and Insulin need to be made. Based on the membership function in Table 3, the value of each parameter is then calculated. Table 4 displays the membership values for each parameter with the type of antidiabetic drug Biguanide

CA	TABLE IV CALCULATION VALUE MEMBERSHIP FUNCTIONS										
ID	Parameters	Data	Value of membership								

	Poromotorc	11010	
ш	rarameters	Data	membership
1	HbA1c	6.9	1
2	Age	62	0.6
3	BMI	24	0.84
4	Renal	2.3	1
5	Liver	54	1
6	Hearts	98	1
7	Blood pressure	138	1
8	Hypoglycemia	60	1
9	Cell of beta	67	1
10	Cell of alpha	19	1
11	Free fatty acid	45	1
12	Muscle glycogen	2.6	0.2
13	Filtration glomerulus	33	1
14	Pregnant/lactating	No	1
15	Infection	Yes	0
16	Efficacy	High	1
17	Price	Low	1

F. Core Factor and Secondary Factor

Parameter grouping is divided into 2 (two), namely Core Factor (CF) and Secondary Factor (SF). Core Factor is the leading parameter group where the determination of the type of drug given is very dependent on the parameters in this group, whereas a Secondary Factor is a parameter group that does not have a strong influence on the determination of the type of drug given to patients [27]

TABLE V CLASSIFYING PARAMETERS CF AND SF

Core Factor (CF)	Secondary Factor (SF)
Age (P2)	HbA1c (P1)
Renal (P4)	BMI (P3)
Liver (P5)	Blood pressure (P7)
Heart (P6)	Cell alpha (P10)
Hypoglycemia (P8)	Free fatty acid (P11)
Cell beta (P9)	Muscle glycogen (P12)
Filtration glomerulus (P13)	Efficacy (P16)
Pregnant/lactating (P14)	Price (P17)
Infection (P15)	

Calculate the value of CF using a formula :

$CF = \frac{\sum NC}{\sum IC}$	(1)
CF = The average value of the core factor	
NC = Total number of core factor values	
IC = Number of items CF value	
$SF = \frac{\sum NS}{\sum IS}$	(2)
SF = The average value of the secondary factor	
NS = Total number of secondary factor values	
IS = Number of secondary factor items	
29	

Based on the grouping of core factors and the subsequent factors calculated the average value:

The value of the average core factor parameters $CF = \frac{(0.6+1+1+1+1+1+1)}{9} = 0.84$ The value average secondary factor parameters $SF = \frac{(1+0.84+1+1+1+0.2+1+1)}{9} = 0.88$

The grouping core factor's value average value multiplied the weight of 75%, and the secondary factor bore with a weight of 25%. The result of the core factor and secondary factor weights are then added to get a matching value:

$$Total = (Weigt CF * CF) + (WeightSF * SF)$$
⁽³⁾

 $\begin{array}{l} \mbox{Total} &= (0.75 * \mbox{CF}) + (0.25 * \mbox{SF}) \\ &= (0.75 * 0.84) + (0.25 * 0.88) \\ &= 0.63 + 0.22 \end{array}$

= 0.85

Results calculate of the value 0.85 indicate that the patient "P1" if given the class of antidiabetic medicine Biguanide has suitable $(0.85 / 1) \times 100\% = 85\%$ and for the second medicine

76% that Alpha-glucose, the medications are given can be combined, the show is TABLE VI

TABLE VI DRUG SUITABILITY CALCULATION RESULTS

No	Medicine Class	Value	Level
1	Sulfonylurea	0.56	7
2	Glinide	0.55	8
3	Biguanide	0.85	1
4	Thiazolidinedione	0.71	5
5	Alpha-Glucosidase	0.76	2
6	GLP-1	0.73	3
7	SGLT2	0.52	9
8	DPP-4	0.60	6
9	Insulin	0.72	4

This model can evaluate the suitability of the patient's condition with various types of antidiabetic drugs. The calculation results are shown in TABLE VII

TABLE VII PATIENT DATA AND THE TOTAL VALUE OF ANTIDIABETIC DRUGS

	Parameter Patiens					Type of drugs anti-diabetes																				
ID	HbA1 c	Age	BMI	Renal	Liver	Heart	Blood Pressare	Hypoglic em ia	Cell of Beta	Cell of Alpha	FFA	Musice	Filtrasi Glomerulus	Pregnan / Lactating	Infection	Eficacy	Price	Sulfon ilur ena	Glinide	Biguninide	Thiazo lidi ne	Alpha Glucose	GLP-1	SGLT-2	DPP-4	Insulin
1	6.9	62	24	2.3	54	98	138	60	67	- 19	45	2.6	33	No	Yes	High	Low	0.551	0.5510	0.8535	0.7145	0.7694	0.7375	0.5208	0.6007	0.7211
2	9	40	22	0.6	18	100	145	70	45	22	28	3.2	26	No	No	High	Low	0.9041	0.9041	0.7149	0.659	0.6418	0.4784	0.3867	0.5907	0.5395
3	8.3	60	20	0.8	33	- 90	110	55	50	17	45	1.7	40	No	No	High	Low	0.71875	0.7187	0.9137	0.6244	0.7276	0.5118	0.4351	0.4485	0.5295
4	10	57	24.5	1.8	80	90	105	48	75	25	57	2.1	45	No	Yes	High	Low	0.427	0.4270	0.7179	0.5848	0.5738	0.6206	0.4748	0.3602	0.7395
5	6.8	37	27	2.1	100	120	120	66	60	30	46	1.1	56	Yes	No	High	Low	0.4218	0.4218	0.7171	0.5932	0.7078	0.675	0.677	0.3937	0.5666
6	11	44	29	0.6	140	130	140	70	57	18	50	0.87	37	No	No	High	Low	0.646	0.6460	0.7564	0.5708	0.7106	0.5378	0.5357	0.4168	0.5627
7	6.5	39	25	0.7	78	95	130	65	80	35	45	2.5	28	Yes	Yes	High	Low	0.4635	0.4635	0.5978	0.7994	0.7947	0.6161	0.4202	0.5989	0.8385
8	7.9	50	27	3.8	130	97	100	68	67	28	32	1.9	32	No	No	High	Low	0.5395	0.5395	0.8713	0.5505	0.6104	0.4958	0.4991	0.2645	0.6304
9	7.2	45	21	1.5	80	10.5	135	40	55	17	58	0.6	55	No	Yes	High	Low	0.5494	0.5494	0.6578	0.6031	0.6399	0.5347	0.4076	0.3055	0.6963
10	11.5	62	20	2.7	130	100	117	0	46	20	47	2.1	46	No	No	High	Low	0.6854	0.68.54	0.6921	0.3973	0.4297	0.6651	0.6339	0.3005	0.6520
11	- 9	68	24.8	2.1	78	- 90	125	48	54	22	28	1	50	No	No	High	Low	0.4807	0.4807	0.7865	0.5062	0.4532	0.5944	0.5860	0.2965	0.6828
12	7.85	55	23	0.6	100	98	1.50	55	70	27	35	3.7	29	No	Yes	High	Low	0.6187	0.6187	0.6676	0.625	0.7285	0.5995	0.3701	0.5785	0.7852
13	6.65	40	30	0.8	98	97	137	65	52	18	55	2.9	31	Yes	No	High	Low	0.6187	0.6187	0.7211	0.7666	0.7638	0.6221	0.544	0.4921	0.7338
14	9.8	37	27	3.8	80	130	145	40	78	32	60	1.4	27	Yes	Yes	High	Low	0.5145	0.5145	0.4645	0.6906	0.6093	0.6375	0.4583	0.4895	0.8479
15	6.75	41	30	2.1	18	125	157	60	56	26	45	0.91	36	No	Yes	High	Low	0.523	0.523	0.802	0.6328	0.7534	0.6141	0.3777	0.4995	0.499.58
16	7.85	57	26	2.6	140	110	142	65	48	21	58	0.85	55	No	No	High	Low	0.6166	0.6166	0.7625	0.451	0.5802	0.7614	0.707	0.3968	0.4831
17	10	60	22	0.7	78	- 89	100	46	75	17	50	2.6	40	No	No	High	Low	0.6354	0.6354	0.7464	0.4916	0.5709	0.4412	0.4704	0.3074	0.7187
18	7.78	52	21	3.9	100	94	140	68	82	28	35	3	28	No	No	High	Low	0.5854	0.5854	0.8016	0.5729	0.5342	0.4842	0.439	0.3196	0.7027
19	6.8	65	20	0.6	0	10.5	120	55	65	23	27	0.76	30	No	Yes	High	Low	0.5089	0.5089	0.5886	0.6489	0.68.29	0.5607	0.3253	0.6064	0.612
20	6.5	43	22.5	1.8	130	95	127	48	78	22	34	2.3	45	No	No	High	Low	0.5817	0.5817	0.8385	0.538	0.5732	0.4976	0.6206	0.2372	0.68.59

G. Dosage and Frequency

The parameters used to determine the drug dose are HbA1c levels, age, BMI, kidney health, liver, and hypoglycemia. Determine drug frequency based on high or low HbA1c levels. Drug administration based on frequency aims to maintain drug concentration in the blood to remain stable. The frequency of correct administration of drugs will guarantee the availability of drugs in the blood, producing the desired therapeutic effect [17]. The parameters are shown in Fig. 4

Fig. 4 (a) Parameter for recommendations dosage (b) Parameter for determining a frequency

H. Dosage and Frequency Drug

The dose and frequency of drug administration are very influential in the therapeutic effect of the drug. Giving excessive dosage, especially for drugs with a narrow range of therapy, will be very at risk of side effects. Conversely, a dose that is too small will not guarantee the achievement of less than optimal therapeutic levels [17]

No	Type of drugs	Drugs	Dosage	Frequency (Ones/Day)
1	Sulfonylurea	Glibenclamide	2.5 - 20mg/dl	1-2
1		Gliclazide	40 - 320 mg/dl	1-2
2	Glinide	Repaglinide	1-16 mg/dl	2-4
2		Nateglinide	180 - 360 mg/dl	2-3
2	Biguanide	Metformin	500 - 3000mg/dl	1-3
5		Buformin	50 - 100 mg/dl	1-2
4	Thiazolidinedione	Pioglitazone	15 - 45 mg/dl	1-2
4		Rosiglitazone	4 - 8 mg/dl	1-2
5	Alaha Chuasaa	Acarbose	100 - 300 mg/dl	2-3
5	Alpha-Glucose	Miglitol	25-100 mg/dl	2-3
6	GLP-1	Liraglutide	0.6 - 1.8 mg/dl	1-2
0		Lixisenatide	10 - 20 mg/dl	1-2
7	SGLT2	Dapagliflozin	5 - 10 mg/dl	1-2
		Empagliflozin	10 - 25 mg/dl	1-2
0	DDD 4	Vildagliptin	50-100 mg	1-2
0	DFF-4	Sitagliptin	25-100 mg	1-2
0	Inculin	Lispro	0.1 - 1 Unit/Kg	1-2
7	msum	Aspart	0.05 - 1Unit/Kg	1-2

TABLE VIII TYPE, DOSAGE, AND FREQUENCY DRUGS[18][4]

I. The Domain of Medicine Dosage

Determination of the dose using the parameters in Figureure 4 (a). Each parameter becomes an input variable,

divided by 2 (two) in linguistic and domain variables. The output from the environment is a dose calculated using Tsukamoto's FIS to calculate a more appropriate dosage

TABLE IX DOMAIN PARAMETERS FOR DETERMINES DRUGS DOSAGE									
No	Variable	Output (Dosage)							
1	HbA1c	Normal Abnormal	0-9 6.5-12						
2	Age	Young Old	0-65 60-100						
3	BMI	Low High	0-27 24-30	[0-600]					
4	Renal	Normal Abnormal	0-1.5 1.2-3.0	High					
5	Liver	Normal Abnormal	0-100 40-100	[500-1000]					
6	Hypoglycemia	No Yes	0-70 50-120						

TABLE X THE DOSAGE DOMAIN OF THE DRUG IS BIGUANIDE

Tupo of drags	Dmice	Decese (mg/dl)	Domain			
1 ype of drugs	Diugs	Dosage (Ing/ui)	Low	High		
Biguanide	Metformin	500 - 1000	0-600	500-1000		

Based on Table 9. The next step is to make a curve for each parameter presented in Fig. 5-7, and the output curves for drug dosages are shown in Fig. 8

Fig. 8 Curve membership function for dosage

Each parameter's membership value is then calculated based on the membership curve and function, as shown in Table 11 -16.

TABLE XI								
MEMBERSHIP VALUES FOR HBA1C								
Demonster	Linguistic Variables							
Parameter	Data	Normal	Abnormal					
HbA1c	6.9	0.84	0.16					

TABLE XII MBERSHIP VALUES FOR A G

MEMBERSHIF VALUES FOR AGE								
Perometer	Data	Linguistic Variables						
Parameter	Data	Normal	Abnormal					
Age	62	0.8	0.2					

TABLE XIII MEMBERSHIP VALUES FOR BMI								
Perometer	Data	Linguistic	Variables					
Farameter	Data	Normal	Abnormal					

BMI 24 0

TABLE XIV MEMBERSHIP VALUES FOR RENA

MEMBERSHIE VALUESTOR REIAL								
Denomentar	Data	Linguistic Variables						
Parameter	Data	Normal	Abnormal					
Renal	2.3	0	1					

MEMBERSHIP VALUES FOR LIVER								
Doromotor	Data	Linguistic	Variables					
Farameter	Data	Normal	Abnormal					
Liver	54	0.76	0.23					

TABLE XVI

	MEMBERSHIP VALUES FOR HYPOGLYCEMIA									
	Doromator	Data	Linguistic Variables							
	Parameter	Data	Normal	Abnormal						
	Hypoglycemia	60	0.50	0.50						

J. Fuzzy Implication Rules for Dosage

Monotonous fuzzy rules are used as a basis for fuzzy implication techniques. The number of practices used is calculated based on the number of criteria and sub-criteria [28]. The parameters used are 6 (six) as HbA1c, Age, BMI, Renal, Liver, Hypoglycemia, and sub-criteria of each criterion are 2 (two), so the number of rules use is $2^6 = 64$ rules. Examples of the use of practices as follows :

"[R13]If HbA1c= Normal and Age=Young and BMI=High and Renal=Abnormal and Liver=Normal and Hypoglicemia=No Then Low dosage;"

"[R29]If HbA1c= Normal and Age=Old and BMI=High and Renal=Abnormal and Liver=Normal and Hypoglicemia=No Then Low dosage;"

"[R30]If HbA1c= Abnormal and Age=Young and BMI=Low and Renal=Normal and Liver=Normal and Hypoglicemia=Yes Then High dosage;"

"[R45]If HbA1c= Abnormal and Age=Young and BMI=High and Renal=Abnormal and Liver=Normal and Hypoglicemia=No Then High dosage;"

"[R61] If HbA1c= Abnormal and Age=Old and BMI=High and Renal=Abnormal and Liver=Normal and Hypoglicemia=No Then Low dosage;"

"[R64] If HbA1c= Abnormal and Age=Old and BMI=High and Renal=Abormal and Liver=Abnormal and Hypoglicemia=Yes Then Low dosage;"

Then value z calculation will be performed to look for output using FIS Tsukamoto from each rule given explicitly (crisp) based on α -predicate (fire strength). In this calculation, not all α and $z_{1.64}$ rules are displayed. The final result is obtained using a weighted average. Examples of the use of practices as follows:

 α -predicat₁₃ = μ HbA1c Normal $\Omega \mu$ Age Young $\Omega \mu$ BMI High $\Omega \mu$ Renal Abormal $\Omega \mu$ Liver Normal $\Omega \mu$ Hypoglycemia No Then Low dosage;

= Min (0.84; 0.8; 1; 1; 0.76; 0.5) = 0.5 = High - (α_{13} * (High-Low)) = 3000 - (0.5 * (3000-500)) = 1750

 α -predicat₂₉ = μ HbA1c Normal $\Omega \mu$ Age Old $\Omega \mu$ BMI High $\Omega \mu$ Renal Abormal $\Omega \mu$ Liver Normal $\Omega \mu$ Hypoglycemia No Then Low dosage;

 Z_{13}

 Z_{29}

= 0.2 = High - (α_{29} * (High-Low))

= 3000 - (0.2 * (3000 - 500))

= 2500

 α -predicat₃₀ = μ HbA1c Normal $\Omega \mu$ Age Old $\Omega \mu$ BMI High $\Omega \mu$ Renal Abormal $\Omega \mu$ Liver Normal $\Omega \mu$ Hypoglycemia Yes Then Low dosage;

= Min (0.84; 0.2; 1; 1; 0.76; 0.5)

= Min (0.84; 0.2; 1; 1; 0.76; 0.5)

= 0.2

= High - (α_{30} * (High-Low)) Z_{30} = 3000 - (0.2 * (3000 - 500))= 2500 α -predicat₄₅ = μ HbA1c Abormal $\Omega \mu$ Age Young $\Omega \mu$ BMI High $\Omega \mu$ Renal Abormal $\Omega \mu$ Liver Normal $\Omega \mu$ Hypoglycemia No Then High dosage; = Min (0.16; 0.8; 1; 1; 0.76; 0.5) = 0.16 Z_{45} $= \alpha_{45} * (High-Low) + Low$ = 0.16 * (3000-500) + 500= 900= μ HbA1c Abnormal $\Omega \mu$ Age Old $\Omega \mu$ BMI High $\Omega \mu$ Renal Abnormal $\Omega \mu$ Liver Normal $\Omega \mu$ Hypoglycemia α-predicat₆₁ No Then Low dosage; = Min (0.16; 0.2; 1; 1; 0.76; 0.5)

= 0.16

 Z_{61}

= High - $(\alpha_{61} * (High-Low))$ = 3000 - (0.16 * (3000-500))

= 2600

 α -predicat₆₄ = μ HbA1c Abnormal $\Omega \mu$ Age Old $\Omega \mu$ BMI High $\Omega \mu$ Renal Abnormal $\Omega \mu$ Liver Abnormal $\Omega \mu$ Hypoglycemia Yes Then Low dosage;

= Min (0.16; 0.2; 1; 1; 0.23; 0.5)

Z₆₄

= 0.16 = High - (α_{64} * (High-Low))

= 3000 - (0.16 * (3000-500))

= 2600

TABI	LE XVII

MEMBERSHIP VALUE FOR ALL A1-64 AND Z1-64 FROM PARAMETERS										
ID	Ub A1c	Age	BMI	Renal	Liver	Hypo Min		7		
	поли					glycemia	(α1-64)	L1-64		
1	0.84	0.8	0	0	0.76	0.5	0	3000		
2	0.84	0.8	0	0	0.76	0.5	0	3000		
3	0.84	0.8	0	0	0.23	0.5	0	3000		
4	0.84	0.8	0	0	0.23	0.5	0	3000		
5	0.84	0.8	0	1	0.76	0.5	0	3000		
6	0.84	0.8	0	1	0.76	0.5	0	3000		
7	0.84	0.8	0	1	0.23	0.5	0	3000		
8	0.84	0.8	0	1	0.23	0.5	0	3000		
9	0.84	0.8	1	0	0.76	0.5	0	3000		
10	0.84	0.8	1	0	0.76	0.5	0	3000		
11	0.84	0.8	1	0	0.23	0.5	0	3000		
12	0.84	0.8	1	0	0.23	0.5	0	3000		
13	0.84	0.8	1	1	0.76	0.5	0.5	1750		
14	0.84	0.8	1	1	0.76	0.5	0.5	1750		
15	0.84	0.8	1	1	0.23	0.5	0.23	2416		
16	0.84	0.8	1	1	0.23	0.5	0.23	2416		
17	0.84	0.2	0	0	0.76	0.5	0	3000		
18	0.84	0.2	0	0	0.76	0.5	0	3000		
19	0.84	0.2	0	0	0.23	0.5	0	3000		
20	0.84	0.2	0	0	0.23	0.5	0	3000		
21	0.84	0.2	0	1	0.76	0.5	0	3000		
22	0.84	0.2	0	1	0.76	0.5	0	3000		
23	0.84	0.2	0	1	0.23	0.5	0	3000		
24	0.84	0.2	0	1	0.23	0.5	0	3000		
25	0.84	0.2	1	0	0.76	0.5	0	3000		
26	0.84	0.2	1	0	0.76	0.5	0	3000		
27	0.84	0.2	1	0	0.23	0.5	0	3000		
28	0.84	0.2	1	0	0.23	0.5	0	3000		
29	0.84	0.2	1	1	0.76	0.5	0.2	2500		
30	0.84	0.2	1	1	0.76	0.5	0.2	2500		
31	0.84	0.2	1	1	0.23	0.5	0.2	2500		
32	0.84	0.2	1	1	0.23	0.5	0.2	2500		
33	0.16	0.8	0	0	0.76	0.5	0	500		
34	0.16	0.8	0	0	0.76	0.5	0	500		
35	0.16	0.8	0	0	0.23	0.5	0	3000		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
---	----	------	-----	---	---	------	-----	------	------	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36	0.16	0.8	0	0	0.23	0.5	0	3000	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37	0.16	0.8	0	1	0.76	0.5	0	3000	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	38	0.16	0.8	0	1	0.76	0.5	0	3000	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	39	0.16	0.8	0	1	0.23	0.5	0	3000	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	0.16	0.8	0	1	0.23	0.5	0	3000	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	41	0.16	0.8	1	0	0.76	0.5	0	500	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	42	0.16	0.8	1	0	0.76	0.5	0	500	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	43	0.16	0.8	1	0	0.23	0.5	0	500	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	44	0.16	0.8	1	0	0.23	0.5	0	500	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	45	0.16	0.8	1	1	0.76	0.5	0.16	900	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	46	0.16	0.8	1	1	0.76	0.5	0.16	900	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	47	0.16	0.8	1	1	0.23	0.5	0.16	2600	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	48	0.16	0.8	1	1	0.23	0.5	0.16	2600	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	49	0.16	0.2	0	0	0.76	0.5	0	3000	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	0.16	0.2	0	0	0.76	0.5	0	3000	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	51	0.16	0.2	0	0	0.23	0.5	0	3000	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	52	0.16	0.2	0	0	0.23	0.5	0	3000	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	53	0.16	0.2	0	1	0.76	0.5	0	3000	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	54	0.16	0.2	0	1	0.76	0.5	0	3000	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	55	0.16	0.2	0	1	0.23	0.5	0	3000	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	56	0.16	0.2	0	1	0.23	0.5	0	3000	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	57	0.16	0.2	1	0	0.76	0.5	0	500	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	58	0.16	0.2	1	0	0.76	0.5	0	500	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	59	0.16	0.2	1	0	0.23	0.5	0	3000	
61 0.16 0.2 1 1 0.76 0.5 0.16 260 62 0.16 0.2 1 1 0.76 0.5 0.16 260 63 0.16 0.2 1 1 0.23 0.5 0.16 260 64 0.16 0.2 1 1 0.23 0.5 0.16 260	60	0.16	0.2	1	0	0.23	0.5	0	3000	
62 0.16 0.2 1 1 0.76 0.5 0.16 260 63 0.16 0.2 1 1 0.23 0.5 0.16 260 64 0.16 0.2 1 1 0.23 0.5 0.16 260	61	0.16	0.2	1	1	0.76	0.5	0.16	2600	
63 0.16 0.2 1 1 0.23 0.5 0.16 260 64 0.16 0.2 1 1 0.23 0.5 0.16 260	62	0.16	0.2	1	1	0.76	0.5	0.16	2600	
64 0.16 0.2 1 1 0.23 0.5 0.16 260	63	0.16	0.2	1	1	0.23	0.5	0.16	2600	
	64	0.16	0.2	1	1	0.23	0.5	0.16	2600	

adding the rules to regulations 64 to get the weighted average values (Weight Average)

K. Determining Dosage After a combination of forming rules, the next step is doing a calculation to get the value of defuzzification by

$$z \text{ (Dosage)} = \frac{(a1 * z1) + (a2 * z2) + (a3 * z3) + (a4 * z4) + \dots (a64 * z64)}{a1 + a2 + a3 + a4 \dots a64}$$

z (Dosage) = 2160 mg/dl

Based on the name of the drug Metformin with the lowest dose of 500 ml/gl and the highest dosage of 3000 ml/dl in Table 8, based on the results of the system recommendations

for the correct dosage given by patients as many as 2160 mg/dl

		DIFFER	ENCES I	N RECOM	IMENDED	DOSAGE	S BETWEEN DOCTORS AND TH	IE SYSTEM	
	Input var	iable						Output variab	le
								The daily	Daily dose
Patien						Нуро	Type and drugs antidiabetic	dose	obtained
t	HbA1c	Age	BMI	Renal	Liver	glyce	Type and drugs antidrabetic	recommend	from the
						mia		ed by the	system
								physician	
1	6.5	39	25	0.7	78	6.5	Insulin/Lispro	1 Unit/mL	6 Unit/mL
2	6.9	62	24	2.3	54	60	Biguanide/Metformin	500 mg/dl	2160 mg/dl
3	8.3	60	20	0.8	33	55	Biguanide/Metformin	500 ml/dl	1703 mg/dl
4	6.65	40	30	0.8	98	65	Thiazolidinedione/ Pioglitazone	15 mg/dl	28 mg/dl
5	6.8	37	27	2.1	100	66	Biguanide/Metformin	500 mg/dl	1571 mg/dl
6	11	44	29	0.6	140	70	Biguanide/Buformin	50 mg/dl	50 mg/dl
7	7.9	50	27	3.8	130	68	Biguanide/Buformin	50 mg/dl	78 mg/dl
8	11.6	62	20	2.7	130	0	Biguanide/Metformin	500 mg/dl	1300 mg/d1
9	9.8	37	27	3.8	80	40	Insulin/Aspart	1 Unit/mL	5 Unit/mL
10	6.8	65	20	0.6	0	55	Alfa-Glucosidase/ Miglitol	25 mg/dl	56 mg/dl

TABLE XVIII

Fig. 7 shows the system recommendations can provide daily dosage according to the patient's severity, while the doctor's recommended dosage begins using a low dosage [29]. Giving too low a dosage can result in suboptimal results [17], and recovery is prolonged for up to 1 year. However, for patients receiving the system's recommended daily dose, the duration of recovery is shorter to ≤ 3 months [30]

L. Determine Drugs Frequency

The low frequency of use will result in a healing process and have an extended usage interval frequency of drug use that can cause side effects that can worsen the patient's condition. The dose should consider the HbA1c level <8% to determine the drug dosage and frequency [18]; we need proper consideration in determining the dosage and frequency. The frequency of administration of antidiabetic drugs using IF-Then about HbA1c levels shown in Table 19

TABLE VIX

HbA1c	Frequency	Value					
>9	Frequency high	3					
>7.5	Frequency middle	2					
>6.5	Frequency low	1					
Algorithm							
Input : HbA1c;							
Output : Frequency;							

M. Expert System Application

This application uses Fuzzy-Profile Matching, which was built using the Pascal programming language with the Delphi IDE and Ms. Access database. Fuzzy logic calculates the value of the match between the patient's condition with the type of drug and Profile Matching as an inference to display the total amount of each kind of medication. The dose was calculated using the FIS Tsukamoto for inputting low dosage, and high dosage calculated the weighted average value. Determination of frequency using the IF-Then function. Doctors or medics will use this application by inputting several parameters, and the system will display the match values of each antidiabetic drug. Also, the system can communicate as well as the frequency of administration of the appropriate medication. The application interface can be seen in Fig. 8

Fig. 8 The developed interface system recommendations type of drugs, drugs, dosage, and frequency

N. Comparison with Existing System

Table 20 shows the differences between several studies of antidiabetic drug recommendations with this study. The difference between this study and previous research is that this study uses more complex parameters to recommend the type of drug and its name. Also, being able to calculate the dosage and frequency based on parameters so that the dose and frequency are more precise and consider the price and efficacy of the drug

	COMPA	RISON WITH EX	TABLE X	KX MS RECOMMEN	DATION DRUGS		
		Authors					
ID	Indices	Rung Chin Chen <i>et al.</i> [12]	Shyi-Ming Chen et al. [13]	Rung Ching Chen <i>et al.</i> [14]	M. Eghbali et al. [31]	Switi et al. [32]	This research
1	Years	2012	2013	2017	2018	2019	2020
2	Method	SWRL/ JESS	Fuzzy	Fuzzy TOPSIS	Fuzzy Multimoora	GA	Fuzzy – PM
3	Number of Parameters	6	6	8	5	7	17
4	Number of class medicine	6	6	7	7	2	9
5	Class of medicines	Yes	Yes	Yes	Yes	Yes	Yes
6	Medicine	No	No	No	No	No	Yes
7	Recommend levels	No	Yes	Yes	Yes	Yes	Yes
8	Dosage	No	No	No	No	No	Yes
9	Frequency dosage	No	No	No	No	No	Yes
10	Cost	No	No	Yes	No	No	Yes

III. RESULTS AND DISCUSSION

A. Recommendation Doctor with System The data used were 20 test data taken from patients' medical record data at the Bumi Waras Hospital in Bandar Lampung - Lampung, Indonesia, in 2019. Based on the type of medical record data, then a table was made in the database used to store the data shown in Table 20

TABLE XX DATA MEDICAL RECORD PATIENT

1	Patient	HbAlc	Age	BMI	Renal	Liver	Heart	BP	Нуро	CellBetha	CellAlpa	FFA	Muscle	Filtrasi	Pregnan	Infection	Eficacy	Price
	1	6.9	62	24	2.3	54	98	138	60	67	19	45	2.6	33	No	Yes	High	Low
	2	9	40	22	0.6	18	100	145	70	45	22	28	3.2	26	No	No	High	Lou
	3	8.3	60	20	0.8	33	90	110	55	50	17	45	1.7	40	No	No	High	Lou
	4	10	57	24.5	1.8	80	90	105	48	75	25	57	2.1	45	No	Yes	High	Low
	5	6.8	37	27	2.1	100	120	120	66	60	30	46	1.1	56	Yes	No	High	Low
	6	11	44	29	0.6	140	130	140	70	57	18	50	0.87	37	No	No	High	Lou
	7	6.5	39	25	0.7	78	95	130	65	80	35	45	2.5	28	Yes	Yes	High	Lou
	8	7.9	50	27	3.8	130	97	100	68	67	28	32	1.9	32	No	No	High	Low
	9	7.2	45	21	1.5	80	105	135	40	55	17	58	0.6	55	No	Yes	High	Lon
	10	11.5	62	20	2.7	130	100	117	0	46	20	47	2.1	46	No	No	High	Lou
	11	9	68	24.8	2.1	78	90	125	48	54	22	28	1	50	No	No	High	Low
	12	7.85	55	23	0.6	100	98	150	55	70	27	35	3.7	29	No	Yes	High	Low
	13	6.65	40	30	0.8	98	97	137	65	52	18	55	2.9	31	Yes	No	High	ron
	14	9.8	37	27	3.8	80	130	145	40	78	32	60	1.4	27	Yes	Yes	High	Lou
	15	6.75	41	30	2.1	18	125	157	60	56	26	45	0.91	36	No	Yes	High	Low
	16	7.85	57	26	2.6	140	110	142	65	48	21	58	0.85	55	No	No	High	Low
	17	10	60	22	0.7	78	89	100	46	75	17	50	2.6	40	No	No	High	Lou
	18	7.78	52	21	3.9	100	94	140	68	82	28	35	3	28	No	No	High	Lou
	19	6.8	65	20	0.6	0	105	120	55	65	23	27	0.76	30	No	Yes	High	Low
ব	20	6.5	43	22.5	1.8	130	95	127	48	78	22	34	2.3	45	No	No	High	Lou

Medical record data were calculated using the ordinal scale 1 and 0, as shown in Figure 9. in mapping the suitability of the patient's condition with antidiabetic drugs. The calculation uses a database query by creating a table; then, the selection is based on each patient's condition stored in the view. Data in the next statement is calculated using a query formula to get the total. The results of the query calculation in Figure 10

Figure 9. Weight comparison curve using Ordinal scale (a) with Fuzzy (b)

Fig. 10 Query view untuk seleksi parameter dan perhitungan total nilai obat

TABLE XX1 TOTAL DRUG VALUES CALCULATED USING THE ORDINAL SCALE

								Paramo	ter Patier	15				Type of drugs anti-daibetes											
HbA1c	Age	BMI	Renal	Liver	Heart	Blood Pressure	Hy pogli cemia	Cell of Beta	Cell of Alpha	FFA	Musice	Filtrasi Glomerulus	Pregnan / Lactating	Infection	Eficacy	Price	Sulfon ilure na	Glinide	Biguninide	Thizolidine	Alpha Glucose	GLP-1	SGLT-2	DPP-4	Insulin
6.9	62	24	2.3	54	98	138	60	67	19	45	2.6	33	No	Yes	High	Low	0.354	0.4375	0.770833	0.65625	0.520833	0.510417	0.427083	0.479167	0.520833
9	40	22	0.6	18	100	145	70	45	22	28	3.2	26	No	No	High	Low	0.802083	0.572917	0.541667	0.541667	0.375	0.354167	0.260417	0.48.9583	0.4375
8.3	60	20	0.8	33	- 90	110	55	50	17	45	1.7	40	No	No	High	Low	0.552083	0.46875	0.6875	0.520833	0.46875	0.375	0.34375	0.34375	0.4375
10	57	24.5	1.8	80	- 90	105	48	75	2.5	57	2.1	45	No	Yes	High	Low	0.406	0.3229	0.625	0.520833	0.541667	0.541667	0.395833	0.34375	0.65625
6.8	37	27	2.1	100	120	120	66	60	30	46	1.1	56	Yes	No	High	Low	0.375	0.458333	0.65625	0.510417	0.770833	0.65625	0.760417	0.458333	0.458333
11	44	29	0.6	140	130	140	70	57	18	50	0.87	37	No	No	High	Low	0.542	0.3438	0.6875	0.489583	0.708333	0.427083	0.510417	0.229167	0.458333
6.5	39	25	0.7	78	95	130	65	80	35	45	2.5	28	Yes	Yes	High	Low	0.375	0.375	0.489583	0.760417	0.739583	0.458333	0.395833	0.427083	0.791667
7.9	50	27	3.8	130	97	100	68	67	28	32	1.9	32	No	No	High	Low	0.40625	0.322917	0.854167	0.458333	0.635417	0.520833	0.510417	0.322917	0.458333
7.2	45	21	1.5	80	105	135	40	55	17	58	0.6	55	No	Yes	High	Low	0.489583	0.375	0.572917	0.5	0.625	0.479167	0.447917	0.28125	0.541667
11.5	62	20	2.7	130	100	117	0	46	20	47	2.1	46	No	No	High	Low	0.520833	0.604167	0.458333	0.239583	0.322917	0.541667	0.510417	0.34375	0.4375
9	68	24.8	2.1	78	- 90	125	48	54	2.2	28	1	50	No	No	High	Low	0.40625	0.489583	0.65625	0.40625	0.375	0.458333	0.5313	0.260417	0.541667
7.85	55	23	0.6	100	98	150	55	70	27	35	3.7	29	No	Yes	High	Low	0.552083	0.322917	0.572917	0.625	0.65625	0.4375	0.34375	0.40625	0.770833
6.65	40	30	0.8	98	97	137	65	52	18	55	2.9	31	Yes	No	High	Low	0.375	0.375	0.6875	0.65625	0.770833	0.427083	0.510417	0.229167	0.625
9.8	37	27	3.8	80	130	145	40	78	3.2	60	1.4	27	Yes	Yes	High	Low	0.489583	0.510417	0.375	0.625	0.625	0.604167	0.541667	0.572917	0.739583
6.75	41	30	2.1	18	125	157	60	56	26	45	0.91	36	No	Yes	High	Low	0.458333	0.3125	0.770833	0.59375	0.625	0.572917	0.427083	0.541667	0.375
7.85	57	26	2.6	140	110	142	65	48	2.1	58	0.85	55	No	No	High	Low	0.541667	0.395833	0.65625	0.322917	0.541667	0.739583	0.645833	0.541667	0.260417
10	60	2.2	0.7	78	89	100	46	75	17	50	2.6	40	No	No	High	Low	0.520833	0.4375	0.572917	0.4375	0.489583	0.34375	0.427083	0.145833	0.6875
7.78	52	21	3.9	100	94	140	68	82	28	35	3	28	No	No	High	Low	0.520833	0.40625	0.739583	0.541667	0.48 9583	0.40625	0.479167	0.375	0.572917
6.8	65	20	0.6	0	105	120	55	65	23	27	0.76	30	No	Yes	High	Low	0.458333	0.458333	0.489583	0.572917	0.541667	0.427083	0.364583	0.479167	0.458333
6.5	43	22.5	1.8	130	95	127	48	78	22	34	2.3	45	No	No	High	Low	0.489583	0.40625	0.739583	0.458333	0.489583	0.375	0.395833	0.177083	0.572917

Calculations using an ordinal scale have weaknesses because they do not produce flexible values to affect the quality of drug recommendations [16]. For example, antidiabetic Sulfonylurea is used for ≤ 60 years. If calculated using an ordinal scale, patients who are 61 years old cannot be given the type of Sulfonilurena drug, even though up to 65 years of age can still be given the medication. Therefore we need a more flexible calculation using Fuzzy logic [16]

TABLE XXII DATA COMPARISON OF RECOMMENDED ORDINAL, FUZZY AND DATASET SCALE DRUGS

ш	Up A La		DAT	Barral	Linus	Heart	Blood	Hypoglic	Cellof	Cell of	EE A	Marilan	Filtrasi	Pregnan /	Information	EGamm	Deire	Medicine 1				Medicine 2	
110	HOA IC	Age	BMI	Kenai	Liver	nean	Pressure	emia	Beta	Alpha	FFA	MUNICE	Gomerulus	Lactating	intection	incacy	FIKC	Ordinal	Fuzzy	Dat aset	Ordinal	Fuzzy	Dat aset
1	6.9	62	24	2.3	54	98	138	60	67	19	45	2.6	33	No	Yes	High	Low	Biguanide	Biguanide	Biguanide	Thiazolidine	Alpha-Glucose	Alpha-Gucose
2	9	40	22	0.6	18	100	145	70	45	22	28	3.2	26	No	No	High	Low	Sulfonilurena	Sulfonilurena	Sulfonilurena	Glinide	Glinide	Glinide
3	8.3	60	20	0.8	33	90	110	55	50	17	45	1.7	40	No	No	High	Low	Biguanide	Biguanide	Biguanide	Alpha-Ghcose	Alpha-Glucose	Alpha-Gucose
4	10	57	24.5	1.8	80	90	105	48	75	25	57	2.1	45	No	Yes	High	Low	Insulin	Insulin	Biguanide	Biguanide	Biguanide	Insulin
5	6.8	37	27	2.1	100	120	120	66	60	30	46	1.1	56	Yes	No	High	Low	Alpha-Ghcose	Biguanide	Biguanicle	SGLT-2	Alpha-Glucose	Alpha-Gucose
6	11	44	29	0.6	140	130	140	70	57	18	50	0.87	37	No	No	High	Low	Alpha-Ghcose	Biguanide	Biguanide	Biguanide	Alpha-Glucose	Alpha-Gucose
7	6.5	39	25	0.7	78	95	130	65	80	35	45	2.5	28	Yes	Yes	High	Low	Insulin	Insulin	Insulin	Alpha-Ghcose	Alpha-Glucose	Alpha-Gucose
8	7.9	50	27	3.8	130	97	100	68	67	28	32	1.9	32	No	No	High	Low	Biguanide	Biguanide	Biguanide	Alpha-Glucose	Insulin	Insulin
9	7.2	45	21	1.5	80	105	135	40	55	17	58	0.6	55	No	Yes	High	Low	Alpha-Ghcose	Insulin	Biguanide	Biguanide	Biguanide	Insulin
10	11.6	62	20	2.7	130	100	117	0	46	20	47	2.1	46	No	No	High	Low	Glinide	Biguanide	Biguanide	GLP-1	GLP-1	GLP-1
11	9	68	24.8	2.1	78	90	125	48	54	22	28	1	50	No	No	High	Low	Biguanide	Biguanide	Biguanide	Insulin	Insulin	Insulin
12	7.85	55	23	0.6	100	98	150	55	70	27	35	3.7	29	No	Yes	High	Low	Insulin	Insulin	Insulin	Alpha-Glucose	Alpha-Glucose	Alpha-Gucose
13	6.65	40	30	0.8	98	97	137	65	52	18	55	2.9	31	Yes	No	High	Low	Alpha-Glucose	Thiazolidine	T hiazolidine	Biguanide	Alpha-Glucose	Alpha-Gucose
14	9.8	37	27	3.8	80	130	145	40	78	32	60	1.4	27	Yes	Yes	High	Low	Insulin	Insulin	Insulin	Alpha-Glucose	Thiazolidine	T hiazolidine
15	6.75	41	30	2.1	18	125	157	60	56	26	45	0.91	36	No	Yes	High	Low	Biguanide	Biguanide	Biguanide	Alpha-Ghcose	Alpha-Glucose	Alpha-Gucose
16	7.85	57	26	2.6	140	110	142	65	48	21	58	0.85	55	No	No	High	Low	GLP-1	Biguanide	Biguanide	SGLT-2	GLP-1	GLP-1
17	10	60	22	0.7	78	89	100	46	75	17	50	2.6	40	No	No	High	Low	Insulin	Biguanide	Biguanide	Biguanide	Insulin	Insulin
18	7.78	52	21	3.9	100	94	140	68	82	28	35	3	28	No	No	High	Low	Biguanide	Biguanide	Biguanide	Insulin	Insulin	Insulin
-19	6.8	65	20	0.6	0	105	120	55	65	23	27	0.76	30	No	Yes	High	Low	Thiazolidine	Alpha-Glacose	Alpha-Gucose	Alpha-Ghcose	Thiazolidine	T hiazolidine
20	6.5	43	22.5	1.8	130	95	127	48	78	22	34	2.3	45	No	No	High	Low	Biguanide	Biguanide	Biguanide	Insulin	Insulin	Insulin

Fig. 12 Comparison graph of the number of second-line drug recommendations

Compared with Ordinal scale calculations, the application of fuzzy logic produces drug recommendations that approach the dataset; this is because fuzzy logic can provide flexible values to provide better anti-diabetic drug recommendations. Based on the number of recommended first-line antidiabetic drugs, Biguanide (Metformin), while for the second-line Insulin. This is according to management guidelines for type 2 Diabetes Mellitus [18]

B. Evaluation of drugs administration

In Antidiabetic drug recommendations, the accuracy of the system is crucial [33]. The course will display all the results, and the doctor will choose the best based on expertise. Evaluate the suitability of drugs recommendations based on the system, and the doctor, True Positive (TP) is used, which means the doctor approves the recommended drug. The dataset (DS) is the total amount of data, the formula shown in Table 23.

THE ESTIMA	TABLE XXIII 13 TION OF ANTIDIABETIC DRUGS SYSTEM	
Parameter	Definition	
True positive rate (TP)	The system recommends, and the doctor agrees	
Dataset (DS)	The total amount of record	
$Accuracy = \frac{TP}{DS}$		(5)
Tatal number of re	commend drugs ~ 1000	(6)

 $Accuracy = \frac{\text{fatal number of recommend drugs}}{\text{Total Dataset}} x100\%$

The test results are calculated using a confusion matrix table. The first stage of testing compares drug recommendations using the Ordinal scale, and the second stage will be carried out to compare drug recommendations using fuzzy logic. The results of drug recommendations using the Ordinal scale can be seen in Table 24

 TABLE XXIV

 CONFUSION MATRIX RECOMMENDATION DRUG WITH SCALE ORDINAL

					Pred	icted Lab	el			
	Type of drugs	Sulfon ylurea rena	Glinide	Biguani de	Thiaz olidin e	Alpha Gluco se	GLP-1	SGLT -2	DPP-4	Insuli n
	Sulfonylurea	1	0	0	0	0	0	0	0	0
	Glinide	0	0	0	0	0	0	0	0	0
)el	Biguanide	0	1	7	0	3	1	0	0	2
а	Thiazolidinedione	0	0	0	0	1	0	0	0	0
, le	Alpha Glucose	0	0	0	1	0	0	0	0	0
Ę.	GLP-1	0	0	0	0	0	0	0	0	0
Ā	SGLT-2	0	0	0	0	0	0	0	0	0
	DPP-4	0	0	0	0	0	0	0	0	0
	Insulin	0	0	0	0	0	0	0	0	3

The test results using the Ordinal scale; there are some differences in the recommendations for the types of drugs Glinide, Biguanide, Thiazolidine, Alpha-Glucose, and Insulin. The dataset (expert) in the medicine Biguinide recommends as many as 14, while calculations using the Ordinal scale only recommend as many as 7(seven) drugs. Furthermore, the results of recommendations using Fuzzy logic can be seen in Table 25.

TABLE XXV CONFUSION MATRIX RECOMMENDATION DRUG WITH FUZZY

					Pre	dicted La	bel			
	Type of drugs	Sulfony lurea	Glinid e	Bigua nide	Thiaz olidin e	Alpha Gluco se	GLP-1	SGLT -2	DPP-4	Insuli n
	Sulfonylurea	1	0	0	0	0	0	0	0	0
	Glinide	0	0	0	0	0	0	0	0	0
-	Biguanide	0	0	12	0	0	0	0	0	2
ğ	Thiazolidinedio	0	0	0	1	0	0	0	0	0
Ë	ne									
ua	Alpha Glucose	0	0	0	0	1	0	0	0	0
ct.	GLP-1	0	0	0	0	0	0	0	0	0
•	SGLT-2	0	0	0	0	0	0	0	0	0
	DPP-4	0	0	0	0	0	0	0	0	0
	Insulin	0	0	0	0	0	0	0	0	3

The recommendation to use Fuzzy does not have much difference with the Doctor dataset. The difference lies in the number of Biguanide recommendations that the dataset recommends as many as 14, but the system only recommends

12. The results of the accuracy of the calculation recommendations with Confusion matrix tables 23 and 24 are shown in Table 26

TABLE XXVI	
COMPARISON OF ACCURACY ORDINAL SCALE AND FUZZY	

ID	Scale	Accuracy with first medicine	Accuracy with second medicine	Average
1	Ordinal	55%	40%	47.5%
2	Fuzzy	90%	90	90%

Based on the accuracy value calculation, Fuzzy logic's application has better accuracy, with an average difference of 43%. The application of fuzzy logic in recommending reliable

drugs with fast processes and lower costs [26]. The results of a comparison of accuracy values in recommending first and second-line drugs are shown in Fig. 12

Fig. 13 Comparison graph of Ordinal and Fuzzy scale accuracy

IV. CONCLUSION

Based on the description, explanation, and testing that have been done, we get a few conclusions. This study applied the suitability of antidiabetic drugs based on the patient's health condition using the Profile Matching and Fuzzy Logic methods. Based on the evaluations using confusion testing, Fuzzy Logic can recommend antidiabetic drugs that are better than using the Ordinal scale. In addition to the recommendation of the type of medicine, the system can also recommend the dosage and frequency of using Tsukamoto's FIS so that it is more precise and reduces the errors of medical staff in recommending drugs and can have a positive impact on patients in terms of time, the healing process and lower costs. This study provides knowledge that antidiabetic drug determination requires as many as 17 parameters, while other courses only use 4-8 parameters. This study also describes the amount of drug that can be produced by drug companies. Usually, companies only make low and high dosage. This research shows that creating various dosages of the drug is more efficient for patients. However, this research still needs to be reviewed and continued considering that it still has some weaknesses and shortcomings from the dataset to the number of parameters.

ACKNOWLEDGMENTS

Thank you to the University of Teknokrat Indonesia for providing support and funding. We say thank Bumi Waras Hospital for assisting in collecting patient medical record data

REFERENCES

- WHO, "Global Report On Diabetes," France, 2016.
 ADA, "Classi fi cation and Diagnosis of Diabetes : Standards of Medical Care in Diabetes d 2020," *Care.diabetesjournals.org*, vol. 43, no. January, pp. 14–31, 2020.
- [3] IDF, "International Diabetes Federation Type 2 diabetes," *International Diabetes Federation*, 2019.
 [Online]. Available: https://www.idf.org/aboutdiabetes/type-2-
- diabetes.html. [Accessed: 03-Apr-2020].
 [4] PERKENI, "Pedoman Pengelolaan dan Pencegahan Diabates Melitus Tipe 2 Dewasa," in *Pedoman Pengelolaan dan Pencegahan Diabates Melitus Tipe* 2 Dewasa di Indonesia, Pertama De., D. Lindarto,
- Ed. Jakarta: PB PERKENI, 2019, pp. 1–132.
 [5] A. J. Garber *et al.*, "Consensus statement by the American Association of clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm 2020 executive summary," *Endocr. Pract.*, vol. 26, no. 1, pp. 107–139, 2020.
- [6] N. D. DiPiro *et al.*, "Lower extremity strength is correlated with walking function after incomplete SCI," *Top. Spinal Cord Inj. Rehabil.*, vol. 21, no. 2, pp. 133–139, 2015.
- [7] Y. Handelsman *et al.*, "American Association of Clinical Endocrinologists and American College of Endocrinology - Clinical practice guidelines for developing a diabetes mellitus comprehensive care plan - 2015," *Endocrine Practice*, vol. 21, no. April.

pp. 1-87, 2015.

- [8] Diabetes UK, "Our story Annual report and accounts 2018 Contents," UK, 2018.
- [9] Anonim, "Royal Pharmaceutical Society of Great Britain," *Br. Med. Assoc.*, vol. 52, no. 116–117, pp. 1–12, 2006.
- [10] J. Thrasher, "Pharmacologic Management of Type 2 Diabetes Mellitus: Available Therapies," Am. J. Cardiol., vol. 120, no. 1, pp. S4–S16, 2017.
- [11] D. Bina et al., Pharmaceutical care untuk penyakit diabetes mellitus, Second. Jakarta: Bina Kefarmasian dan Alat Kesehatan, 2005.
- [12] R. C. Chen, Y. H. Huang, C. T. Bau, and S. M. Chen, "A recommendation system based on domain ontology and SWRL for antidiabetic drugs selection," *Expert Syst. Appl.*, vol. 39, no. 4, pp. 3995–4006, 2012.
- [13] S. M. Chen, Y. H. Huang, and R. C. Chen, "A recommendation system for antidiabetic drugs selection based on fuzzy reasoning and ontology techniques," *Int. J. Pattern Recognit. Artif. Intell.*, vol. 27, no. 4, 2013.
- [14] R. C. Chen, H. Q. Jiang, C. Y. Huang, and C. T. Bau, "Clinical Decision Support System for Diabetes Based on Ontology Reasoning and TOPSIS Analysis," *J. Healthc. Eng.*, vol. 2017, pp. 9–12, 2017.
- [15] PERKENI, "Pengelolaan dan Pengobatan Diabetes Melitus Tipe 2 Dewasa," in *Pedoman Pengelolaan* dan Pencegahan Diabetes Melitus Tipe 2 di Indonesia, Pertama., vol. 1, D. D. S. A. Soelistijo, Ed. Jakarta: PB PERKENI, 2019, p. 132.
- [16] H. Soetanto, S. Hartati, R. Wardoyo, and S. Wibowo, "Hypertension drug suitability evaluation based on patient condition with improved profile matching," *Indones. J. Electr. Eng. Comput. Sci.*, 2018.
- [17] Kemenkes RI, "Modul Penggunaan Obat Rasional," kemenkes RI, pp. 3–8, 2011.
- [18] American Diabetes Association, "Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2020," *Diabetes care*, vol. 43, no. January. pp. S98–S110, 2020.
- [19] Diabetes Federation International, *IDF Diabetes* Atlas Ninth edition 2019. 2019.
- [20] F. R. Guilherme, C. A. Molena-Fernandes, V. R. Guilherme, M. T. M. Fávero, E. J. B. dos Reis, and W. Rinaldi, "Body mass index, waist circumference, and arterial hypertension in students," *Rev. Bras. Enferm.*, vol. 68, no. 2, pp. 190–194, 2015.
- [21] P. Pendidikan, D. Spesialis, P. Klinik, R. Sakit, and H. Sadikin, "Pemeriksaan Fungsi Ginjal," *CKD-237*, vol. 43, no. 2, pp. 148–154, 2016.

- [22] S. S. Schwartz, S. Epstein, B. E. Corkey, S. F. A. Grant, J. R. Gavin, and R. B. Aguilar, "The time is right for a new classification system for diabetes: Rationale and implications of the β-cell-centric classification schema," *Diabetes Care*, vol. 39, no. 2, pp. 179–186, 2016.
- [23] C. Prontera *et al.*, "Proficiency testing project for brain natriuretic peptide (BNP) and the N-terminal part of the propeptide of BNP (NT-proBNP) immunoassays : the CardioOrmocheck study," vol. 47, no. January 2005, pp. 762–768, 2009.
- [24] D. Care and S. S. Suppl, "9. Pharmacologic approaches to glycemic treatment: Standards of medical care in diabetesd2019," *Diabetes Care*, vol. 42, no. January, pp. S90–S102, 2019.
- [25] J. Dolenšek, M. S. Rupnik, and A. Stožer, "Structural similarities and differences between the human and the mouse pancreas," *Islets*, vol. 7, no. 1, 2015.
- [26] H. Marcovitch, *Black's Medical Dictionary*, 41st ed. London: A & C Black, 2005.
- [27] H. Ari Suhartanto, Kusrini, "Decision Support System Untuk Penilaian Kinerja Guru Dengan Metode Profile Matching," *J. Komput. Terap.*, vol. 2, no. 2, pp. 149–158, 2016.
- [28] H. P. Sri Kusuma Dewi, Aplikasi Logika Fuzzy untuk Pendukung Keputusan, Kedua., vol. Kedua. Yogyakarta: Graha Ilmu, 2010.
- [29] P. Made and S. D. Pathni, "Terapi Diabetes dengan SGLT-2 Inhibitor," vol. 46, no. 6, pp. 452–456, 2019.
- [30] I. Saritas, I. A. Ozkan, and N. Allahverdi, "Determination of the drug dose by fuzzy expert system in treatment of chronic intestine inflammation Determination of the drug dose by fuzzy expert system," *J Intell Manuf Springer*, no. April, p. 9, 2009.
- [31] M. Eghbali-Zarch, R. Tavakkoli-Moghaddam, F. Esfahanian, M. M. Sepehri, and A. Azaron, "Pharmacological therapy selection of type 2 diabetes based on the SWARA and modified MULTIMOORA methods under a fuzzy environment," *Artif. Intell. Med.*, vol. 87, pp. 20–33, 2018.
- [32] M. Al Switi, B. Alshraideh, A. Alshraideh, A. Massad, and M. Alshraideh, "Treatment of diabetes type II using genetic algorithm," *Int. J. online Biomed. Eng.*, vol. 15, no. 11, pp. 53–68, 2019.
- [33] L. Qin and V. Atluri, "Evaluating the validity of data instances against ontology evolution over the Semantic Web," *Inf. Softw. Technol.*, vol. 51, no. 1, pp. 83–97, 2009.

IJASEIT21 - Plagialism Check

ORIGIN	ALITY REPORT				
6 SIMIL	% ARITY INDEX	3% INTERNET SOURCES	5% PUBLICATIONS	1% STUDENT I	PAPERS
PRIMA	RY SOURCES				
1	A Wanto "Impleme determin patients" Science Publication	ro, A Syarif, K Mi entation of fuzzy- ing drug suitabilit , IOP Conference and Engineering	uludi, K Nisa. profile matchii ty for hyperten e Series: Mate , 2020	ng in Isive Prials	1%
2	Hari Soe Samekto Suitability Condition Indonesia Compute Publication	tanto, Sri Hartati, Wibowo. "Hyper y Evaluation Bas n with Improved F an Journal of Ele er Science, 2018	, Retyanto Wa tension Drug ed On Patient Profile Matchir ctrical Engine	rdoyo, ng", ering and	1%
3	Submitte Malaysia Student Paper	d to University T	un Hussein O	าท	< 1 %
4	pastebin	.com			<1%
5	"Fuzzy T	sukamoto for De	terminen Line	n	<1%

Priority", International Journal of Engineering

and Advanced Technology, 2019

Publication

6	dagensdiabetes.se	<1%
7	jurnal.ubd.ac.id Internet Source	<1%
8	Helmi Kurniawan, Ashari P Swondo, Eka Purnama Sari, Khairul Ummi, Muhammad Rusdi Tanjung, Yusfrizal. "Analysis and Comparative Between Profile Matching and SAW Method in Decision Support", 2020 8th International Conference on Cyber and IT Service Management (CITSM), 2020 Publication	<1%
9	repositorio-aberto.up.pt Internet Source	<1%
10	"Soft Computing in Data Science", Springer Science and Business Media LLC, 2019 Publication	<1%
11	en.wikipedia.org	<1%
12	repository.ub.ac.id	<1%
13	Chen, R.C "A recommendation system based on domain ontology and SWRL for anti-diabetic	<1%

drugs selection", Expert Systems With Applications, 201203

Publication

14	documentop.com Internet Source	<1%
15	medicmagic.net Internet Source	<1%
16	my.clevelandclinic.org	<1%
17	Rusliyawati, Kurnia Muludi, Admi Syarif, Agus Wantoro. "Implementation of Fuzzy-based Model for Prediction of Prostate Cancer", Journal of Physics: Conference Series, 2021 Publication	<1%
18	Rani Irma Handayani, Triningsih Triningsih, Melia Putri. "Decision Support System for Achieving Scholarship Selection by Using Profile Matching Method", SinkrOn, 2020 Publication	<1%
19	www.clinicaltrials.gov	<1%
20	acikerisim.omu.edu.tr Internet Source	<1%
21	E. R. Susanto, A. Syarif, K Muludi, R. R. W. Perdani, A. Wantoro. "Implementation of Fuzzy-	<1%

based Model for Prediction of Thalassemia Diseases", Journal of Physics: Conference Series, 2021

Publication

A W Harahap, M S Nasution. "Comparison
quality of life patients treated with insulin and
oral hypoglycemic drugs", IOP Conference
Series: Earth and Environmental Science, 2018
Publication

Ismail Saritas, Ilker A. Ozkan, Novruz Allahverdi, Mustafa Argindogan. "Determination of the drug dose by fuzzy expert system in treatment of chronic intestine inflammation", Journal of Intelligent Manufacturing, 2009 Publication

22

23

tailieu.vn

Internet Source

ejournal.nusamandiri.ac.id 25 Internet Source

A-nanya Promkot, Somjit Arch-int, Ngamnij 26 Arch-int. "The Personalized Traditional Medicine Recommendation System Using Ontology and Rule Inference Approach", 2019 IEEE 4th International Conference on Computer and Communication Systems (ICCCS), 2019 Publication

Aaron I. Vinik, Carolina Casellini, Serina

<1% <1%

<1%

<1%

<1%

27	Neumann. "Chapter 10-3 Diabetes and the Nervous System", Springer Science and Business Media LLC, 2019 Publication	<1%
28	SHYI-MING CHEN, YUN-HOU HUANG, RUNG- CHING CHEN. "A RECOMMENDATION SYSTEM FOR ANTI-DIABETIC DRUGS SELECTION BASED ON FUZZY REASONING AND ONTOLOGY TECHNIQUES", International Journal of Pattern Recognition and Artificial Intelligence, 2013 Publication	<1%
29	Helmi Kurniawan, Lili Tanti, Fujiati, Fhery Agustin, Iwan Fitrianto Rahmad. "Decision Support System for Quran Teacher Selection Using Profile Matching Method on TPQ Anbata", Journal of Physics: Conference Series, 2019 Publication	<1%
30	ejurnal.teknokrat.ac.id	<1%
31	Nora Shoaip, Shaker El-Sappagh, Sherif Barakat, Mohammed Elmogy. "Ontology enhanced fuzzy clinical decision support system", Elsevier BV, 2019 Publication	< 1 %
	Ciusanna Cannalina, Christian Lanarini, Laura	

32 Giuseppe Coppolino, Christian Leporini, Laura Rivoli, Francesco Ursini et al. "Exploring the

<1%

effects of DPP-4 inhibitors on the kidney from the bench to clinical trials", Pharmacological Research, 2018

Publication

Exclude quotes	Off	Exclude matches	Off
Exclude bibliography	On		

IJASEIT21 - Plagialism Check

GRADEMARK REPORT	
FINAL GRADE	GENERAL COMMENTS
/0	Instructor
PAGE 1	
PAGE 2	
PAGE 3	
PAGE 4	
PAGE 5	
PAGE 6	
PAGE 7	
PAGE 8	
PAGE 9	
PAGE 10	
PAGE 11	
PAGE 12	
PAGE 13	
PAGE 14	
PAGE 15	
PAGE 16	
PAGE 17	
PAGE 18	
PAGE 19	

8 LAMPIRAN ACCEPTANCE LETTER

International Journal on Advanced Science, Engineering and Information Technology

HOME ABOUT USER HOME SEARCH CURRENT ARCHIVES ANNOUNCEMENTS

Home > User > Author > Submissions > #12277 > **Summary**

#12277 Summary

SUMMARY REVIEW EDITING

Submission

Authors	Agus Wantoro
Title	Fuzzy-Based Application Model and Profile Matching for Recommendation Suitability of Type 2 Diabetic
Original file	<u>12277-26024-1-SM.DOCX</u> 2020-06-20
Supp. files	12277-26025-1-SP.ZIP 2020-06-20 ADD A SUPPLEMENTARY FILE
Submitter	agus Agus Wantoro 🖾
Date submitted	June 20, 2020 - 04:37 PM
Section	Articles
Editor	Rahmat Hidayat 🖾

Status

Status	In Editing
Initiated	2020-12-01
Last modified	2021-01-05

Submission Metadata

EDIT METADATA

Authors

Name	Agus Wantoro 🖾	
URL	https://scholar.google.com/citations?user=MaJqcIAAAAAJ&hl=en&oi=ao	
Affiliation	University Teknokrat Indonesia	
Country	Indonesia	
Bio Statement	Department Engineering and Computer Sciences	
Principal contact for editorial correspondence.		

Title and Abstract

Title

Fuzzy-Based Application Model and Profile Matching for Recommendation Suitability of Type 2 Diabetic

Abstract Diabetic Mellitus (DM) is a group of metabolic diseases with the characteristics of the tries of the main symptoms, namely polyphagia (lots to eat), polydipsia (lots to drink), and polyuria (lots of urination). The primary marker is derived from blood laboratory results where hyperglycemia occurs, where blood glucose levels are above the standard threshold. Type 2 diabetes is the most cases due to impaired insulin receptor sensitivity due to unhealthy lifestyles, mainly found in obese individuals. DM therapy can be done 2 (two) ways, namely by improving lifestyle and drug administration. Problems and risks in recommending drugs become famous in the process of healing patients with type 2 DM because it is likely to consume drugs for life. This circumstance supports this research to develop a model and application that can help medical staff in recommending the right prescription, right dose, and the right frequency. Evaluation results by comparing the recommendations of doctors and the system using a confusion matrix table obtained an accuracy value of 90%. The existence of this system is expected to reduce the risk of medical personnel mistakes in recommending drugs, and can have a positive impact on patients in terms of time, the healing process, and lower costs. This research using a different from previous research and provides

knowledge about different ways of building a drug recommendation system that is suitable for the patient's condition, and also the research shows that the determination of anti-diabetes drugs requires many parameters, while other studies only use 4-8 parameters. In also, this study provides an overview of the number of drugs that can be produced by drug companies. Generally, companies only produce low and high doses. This research shows that producing several doses of a drug can be more effective in the accuracy of therapy for patients

Indexing

KeywordsModel; Diabetic type 2; Fuzzy Tsukamoto; Profile Matching; Drugs; Dosage; FrequencyLanguageen

Supporting Agencies

Agencies

University Teknokrat Indonesia, Bumiwaras Hospital

References

References

 [1] WHO, "Global Report On Diabetes," France, 2016.
 [2] ADA, "Classi fi cation and Diagnosis of Diabetes : Standards of Medical Care in Diabetes d 2020," Care.diabetesjournals.org, vol. 43, no. January, pp. 14-31, 2020. [3] IDF, "International Diabetes Federation - Type 2 diabetes," International Diabetes Federation, 2019. [Online]. Available: https://www.idf.org/aboutdiabetes/type-2-diabetes.html. [Accessed: 03-Apr-2020]. [4] PERKENI, "Pedoman Pengelolaan dan Pencegahan Diabates Melitus Tipe 2 Dewasa," in Pedoman Pengelolaan dan Pencegahan Diabates Melitus Tipe 2 Dewasa di Indonesia, Pertama De., D. Lindarto, Ed. Jakarta: PB PERKENI, 2019, pp. 1-132. [5] A. J. Garber et al., "Consensus statement by the American Association of clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm - 2020 executive summary," Endocr. Pract., vol. 26, no. 1, pp. 107-139, 2020. [6] N. D. DiPiro et al., "Lower extremity strength is correlated with walking function after incomplete SCI," Top. Spinal Cord Inj. Rehabil., vol. 21, no. 2, pp. 133-139, 2015. [7] Y. Handelsman et al., "American Association of Clinical Endocrinologists and American College of Endocrinology - Clinical practice guidelines for developing a diabetes mellitus comprehensive care plan - 2015," Endocrine Practice, vol. 21, no. April. pp. 1-87, 2015. [8] Diabetes UK, "Our story Annual report and accounts 2018 Contents," UK, 2018. [9] Anonim, "Royal Pharmaceutical Society of Great Britain," Br. Med. Assoc., vol. 52, no. 116-117, pp. 1-12, 2006. [10] J. Thrasher, "Pharmacologic Management of Type 2 Diabetes Mellitus: Available Therapies," Am. J. Cardiol., vol. 120, no. 1, pp. S4–S16, 2017. [11] D. Bina et al., Pharmaceutical care untuk penyakit diabetes mellitus, Second. Jakarta: Bina Kefarmasian dan Alat Kesehatan, 2005. [12] R. C. Chen, Y. H. Huang, C. T. Bau, and S. M. Chen, "A recommendation system based on domain ontology and SWRL for anti-diabetic drugs selection," Expert Syst. Appl., vol. 39, no. 4, pp. 3995-4006, 2012. [13] S. M. Chen, Y. H. Huang, and R. C. Chen, "A recommendation system for anti-diabetic drugs selection based on fuzzy reasoning and ontology techniques," Int. J. Pattern Recognit. Artif. Intell., vol. 27, no. 4, 2013. [14] R. C. Chen, H. Q. Jiang, C. Y. Huang, and C. T. Bau, "Clinical Decision Support System for Diabetes Based on Ontology Reasoning and TOPSIS Analysis," J. Healthc. Eng., vol. 2017, pp. 9-12, 2017. [15] PERKENI, "Pengelolaan dan Pengobatan Diabetes Melitus Tipe 2 Dewasa," in Pedoman Pengelolaan dan Pencegahan Diabetes Melitus Tipe 2 di Indonesia, Pertama., vol. 1, D. D. S. A. Soelistijo, Ed. Jakarta: PB PERKENI, 2019, p. 132. [16] Kemenkes RI, "Modul Penggunaan Obat Rasional," kemenkes RI, pp. 3-8, 2011.
 [17] H. Soetanto, S. Hartati, R. Wardoyo, and S. Wibowo, "Hypertension drug suitability evaluation based on patient condition with improved profile matching," Indones. J. Electr. Eng. Comput. Sci., 2018. [18] American Diabetes Association, "Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2020," Diabetes care, vol. 43, no. January. pp. S98-S110, 2020. [19] Diabetes Federation International, IDF Diabetes Atlas Ninth edition 2019. 2019. [20] F. R. Guilherme, C. A. Molena-Fernandes, V. R. Guilherme, M. T. M. Fávero, E. J. B. dos Reis, and W. Rinaldi, "Body mass index, waist circumference, and arterial hypertension in students," Rev. Bras. Enferm., vol. 68, no. 2, pp. 190-194, 2015. [21] P. Pendidikan, D. Spesialis, P. Klinik, R. Sakit, and H. Sadikin, "Pemeriksaan Fungsi Ginjal," CKD-237, vol. 43, no. 2, pp. 148-154, 2016. [22] S. S. Schwartz, S. Epstein, B. E. Corkey, S. F. A. Grant, J. R. Gavin, and R. B. Aguilar, "The time is right for a new classification system for diabetes: Rationale and implications of the β-cell-centric classification schema," Diabetes Care, vol. 39, no. 2, pp. 179-186, 2016. [23] C. Prontera et al., "Proficiency testing project for brain natriuretic peptide (BNP) and the N-terminal part of the propeptide of BNP (NT-proBNP) immunoassays : the CardioOrmocheck study," vol. 47, no. January 2005, pp. 762-768, 2009. [24] D. Care and S. S. Suppl, "9. Pharmacologic approaches to glycemic treatment: Standards of medical care in diabetesd2019," Diabetes Care, vol. 42, no. January, pp. S90-S102, 2019. [25] J. Dolenšek, M. S. Rupnik, and A. Stožer, "Structural similarities and differences between the human and the mouse pancreas," Islets, vol. 7, no. 1, 2015. [26] H. Marcovitch, Black's Medical Dictionary, 41st ed. London: A & C Black, 2005. [27] H. Ari Suhartanto, Kusrini, "Decision Support System Untuk Penilaian Kinerja Guru

Editor/Author Correspondence

Editor Subject: [IJASEIT] Revision Required

DELETE

2020-10-18 agus Agus Wantoro:

07:18 A M

We have reached a decision regarding your submission to International Journal on Advanced Science, Engineering and Information Technology, "Fuzzy-Based Application Model and Profile Matching for Recommendation Suitability of Type 2 Diabetic".

Our decision is to: Revision Required

Please submit your revision in 10 days. More than 10 days of paper will be rejected from the system. Re-upload your revision into journal system NOT via email.

Editor

Reviewer C:

Dear Authors,

Thank you for submitting your valuable research findings. However, we still need you to improve the quality of the manuscript according to the reviewer's comments :

Please find an attached file in journal system

We are looking forward to the revision. Good luck!

Kind regards

International Journal on Advanced Science, Engineering and Information Technology http://insightsociety.org/ijaseit/index.php/ijaseit

Close

International Journal on Advanced Science, Engineering and Information Technology

HOMEABOUTUSER HOMESEARCHCURRENTARCHIVESANNOUNCEMENTSHome > User > Author > Submissions > #12277 > Review

#12277 Review

SUMMARY **REVIEW** EDITING

Submission

Authors	Agus Wantoro 🖾
Title	Fuzzy-Based Application Model and Profile Matching for Recommendation Suitability of Type 2 Diabetic
Section	Articles
Editor	Rahmat Hidayat 🖾

PeerReview

Round 1

Review Version	<u>12277-26026-1-RV.DOCX</u> 2020-06-20
Initiated	2020-09-17
Last modified	2020-09-18
Uploaded file	Reviewer B <u>12277-28359-1-RV.DOCX</u> 2020-09-18
Editor Version	None
Author Version	<u>12277-29027-1-ED.DOCX</u> 2020-10-21
	<u>12277-29027-2-ED.PDF</u> 2020-11-18
	<u>12277-29027-3-ED.DOCX</u> 2020-11-18
	<u>12277-29027-4-ED.DOCX</u> 2020-11-18
	<u>12277-29027-5-ED.DOCX</u> 2020-11-18

Round 2

Review Version	<u>12277-26026-2-RV.DOCX</u> 2020-11-27
Initiated	2020-11-27
Last modified	2020-11-30
Uploaded file	Reviewer A <u>12277-29765-1-RV.DOCX</u> 2020-11-30

Editor Decision

Decision	Accept Submission 2020-12-01	
Notify Editor	🖾 🛛 Editor/Author Email Record 🤜 2	2020-10-18
Editor Version	None	
Author Version	<u>12277-29027-7-ED.PDF</u> 2020-12-07	DELETE
	<u>12277-29027-8-ED.DOCX</u> 2020-12-07	DELETE
	<u>12277-29027-9-ED.DOCX</u> 2021-01-05	DELETE
Upload Author Version	Choose File No file chosen	Upload

Published by INSIGHT - Indonesian Society for Knowledge and Human Development

International Journal on Advanced Science, Engineering and Information Technology

HOME ABOUT USER HOME SEARCH CURRENT ARCHIVES ANNOUNCEMENTS

Home > User > Author > Submissions > #12277 > **Review**

#12277 Review

SUMMARY REVIEW EDITING

Submission

Authors	Agus Wantoro 🖾
Title	Fuzzy-Based Application Model and Profile Matching for Recommendation Suitability of Type 2 Diabetic
Section	Articles
Editor	Rahmat Hidayat 🖾

PeerReview

Round 1

Review Version	<u>12277-26026-1-RV.DOCX</u> 2020-06-20
Initiated	2020-09-17
Last modified	2020-09-18
Uploaded file	Reviewer B <u>12277-28359-1-RV.DOCX</u> 2020-09-18
Editor Version	None
Author Version	<u>12277-29027-1-ED.DOCX</u> 2020-10-21
	<u>12277-29027-2-ED.PDF</u> 2020-11-18
	<u>12277-29027-3-ED.DOCX</u> 2020-11-18
	<u>12277-29027-4-ED.DOCX</u> 2020-11-18
	12277-29027-5-ED DOCX 2020-11-18

Round 2

Review Version	<u>12277-26026-2-RV.DOCX</u> 2020-11-27	
Initiated	2020-11-27	
Last modified	2020-11-30	
Uploaded file	Reviewer A 12277-29765-1-RV.DOCX	2020-11-30

Editor Decision

Decision	Accept Submission 2020-12-01	
Notify Editor	🖾 🛛 Editor/Author Email Record 🔜 20)20-10-18
Editor Version	None	
Author Version	<u>12277-29027-6-ED.DOCX</u> 2020-12-07 12277-29027-7-ED.PDF 2020-12-07 D	<u>DELETE</u> DELETE
	12277-29027-8-ED.DOCX 2020-12-07	DELETE
Upload Author Version	Choose File No file chosen	Upload

9 LAMPIRAN TAGIHAN PEMBAYARAN PUBLIKASI ARTIKEL

JOURNAL PROCESSING FEE – 12277

Rahmat Hidayat <mr.rahmat@gmail.com>

12 Des 2020 21.58 (2 hari yang lalu)

Dear Authors,

RE: JOURNAL PROCESSING FEE

We are happy to inform you that since Volume 5 (2015) *International Journal on Advanced Science, Engineering, Information and Technology* (IJASEIT) has been indexed in **Scopus**. The Scientific committees of IJASEIT agree that your manuscript is **ACCEPTED** to be published in **IJASEIT**.

Tittle	Fuzzy-Based Application Model and Profile Matching for Recommendation Suitability of Type 2 Diabetic
Authors	Agus Wantoro

Journal Processing Fee: USD \$ 255 + Proofread Paper USD \$ 100 + Bank Processing Fee : USD \$ 25, Total USD **\$ 380**

Please complete the payment of journal processing fee through wire transfer to:

Account Name	: Rahmat Hidayat
BANK Name	: Bank Negara Indonesia (BNI)
Account No	: 00597 62722

or

Only USD \$ 15 Bank Processing Fee, please make a payment using PAYPAL to (<u>mr.rahmat@gmail.com</u>), Total USD \$ 370

Please reply with copy of Bank transfer to this email or via WhatApps to +62821 71 822448

Best Regards, Rahmat Hidayat Editor in Chief

International Journal on Advanced Science, Engineering and Information Technology (IJASEIT) ISSN: 2088-5334 / e-ISSN: 2460-6952 / DOI: 10.18517

2017 SCImago Journal Rank (SJR): 0.242 2018 SCImago Journal Rank (SJR): 0.230 2019 SCImago Journal Rank (SJR): 0.274

