PAPER • OPEN ACCESS

The Locating-Chromatic Number of Certain Barbell Origami Graphs

To cite this article: A Irawan et al 2021 J. Phys.: Conf. Ser. **1751** 012017

View the [article online](https://doi.org/10.1088/1742-6596/1751/1/012017) for updates and enhancements.

IOP ebooks™

Bringing together innovative digital publishing with leading authors from the global scientific community.

Start exploring the collection-download the first chapter of every title for free.

This content was downloaded from IP address 114.125.233.194 on 28/01/2021 at 04:12

The Locating-Chromatic Number of Certain Barbell Origami Graphs

A Irawan1,2 **, Asmiati** 3* **, S Suharsono** ³ **, K Muludi** ⁴

¹ Doctoral Student, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Jl. Sumantri Brojonegoro no 1, Bandar Lampung, Indonesia

² Information System, STMIK Pringsewu, Jl. Wisma Rini No.09, Pringsewu, Lampung, Indonesia

³ Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Jl. Sumantri Brojonegoro no 1, Bandar Lampung, Indonesia

⁴Department of Computer Science, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Jl. Sumantri Brojonegoro no 1, Bandar Lampung, Indonesia

Corresponding author3*: asmiati.1976@fmipa.unila.ac.id

Abstract. The locating-chromatic number of a graph combined two graph concept, coloring vertices and partition dim[ension of a graph. The locating-ch](mailto:asmiati.1976@fmipa.unila.ac.id)romatic number, denoted by $\chi_L(G)$, is the smallest k such that G has a locating k -coloring. In this paper, we discuss the locatingchromatic number for certain barbell Origami graphs.

Keyword: coloring, locating-chromatic number, barbell origami graphs

1. Introduction

Chartrand et *al* firstly found the locating-chromatic number of a graph in 2002[1], with derived two graph concept, coloring vertices and partition dimension of a graph. Let $G = (V, E)$ be a connected graph and *c* be a proper *k*-coloring of *G* with color 1,2, ..., *k*. Let $\Pi = \{C_1, C_2, ..., C_k\}$ be a partition of $V(G)$ which is induced by coloring *c*. The color code $c_{\Pi}(v)$ of *v* is the ordered *k*-tuple $(d(v, C_1), d(v, C_2), ..., d(v, C_k))$ where $d(v, C_i) = \min \{d(v, x) | x \in C_i\}$ for any *i*. If all distinct vertices of G have distinct color codes, then c is called k -locating coloring of G . The locating-chromatic number, denoted by $\chi_L(G)$, is the smallest *k* such that G has a locating *k*-coloring. Nex in 2003, Chartrand et *al.* [2] succeed in constructing tree graphs with locating-chromatic numbers ranging from 3 to *n*, except $(n - 1)$.

Several researcher have studied about the locating-chromatic number of a graph. Asmiati et *al* [3] found locating-chromatic number of amalgamation of star. The locating-chromatic numbers of the join graph determinded by Behtoei and Omoomi [4]. Furthermore, Behtoei and Anbarloei [5] found the locating chromatic number of Cartesian product of graphs. Next, Asmiati [6] determined the locating chromatic number of Non-Homogeneous Almagamation of Stars. Futher Asmiati [7] have found locating-chromatic number for non-homogeneous caterpillars and firecrackers graphs.

Some researchers have determined the locating-chromatic number for certain operation. Specially for generalized Petersen graphs 2019, Irawan et *al* [8] found the locating-chromatic number certain

Content from this work may be used under the terms of theCreative Commons Attribution 3.0 licence. Any further distribution \bigcirc of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1

Journal of Physics: Conference Series **1751** (2021) 012017

operation generalized Petersen graphs $P(4,2)$, next the locating-chromatic number for new kind generalized Petersen graphs $sP(n, 1)[9]$. Asmiati et *al* [10] determined locating-chromatic number for certain barbell graphs $B_{P(n,1)}$. In this paper, we discuss the locating-chromatic number of certain barbell Origami graphs $B_{\boldsymbol{0}_n}$.

The following definition of a Origami graph is taken from [11]. Let $n \in \mathbb{N}$ with $n \ge 3$. An Origami graph O_n on $3n$ vertices is a graph with $V(O_n) = \{u_i, v_i, w_i | 1 \le i \le n\}$ and $(O_n) =$ $\{u_i w_i, u_i v_i, v_i w_i, u_i u_{i+1}, w_i u_{i+1}\}\ 1 \leq i \leq n\}.$ The barbell graph is constructed by connecting two arbitrary connected graphs G and H by a bridge. Now, we define certain barbell Origami graphs B_{O_n} . Let B_{O_n} $n \in \mathbb{N}$ with $n \ge 3$, be the barbell graph where G and H are two copies of Origami graph O_n with $V(\bm{B}_{0_n}) = \{u_i, u_{n+i}, v_i, v_{n+i}, w_i, w_{n+i}|1 \le i \le n\}$ and $E(\bm{B}_{0_n}) = \{u_iw_i, u_iv_i, v_iw_i, u_iu_{i+1}, u_iw_i, u_iw_i\}$ $w_i u_{i+1} | 1 \le i \le n$ \cup $\{u_{n+i} w_{n+i}, u_{n+i} v_{n+i}, v_{n+i} w_{n+i}, u_{n+i} u_{n+i+1}, w_{n+i} u_{n+i+1} | 1 \le i \le n\}$ ${u_n u_{n+1}}.$

The following theorems is basic to determine the locating chromatic number of a graph. The set of neighbours of a vertex s in G , denoted by $N(s)$.

Theorem 1.1.Chartrand et *al.*[1] *Let c be a locating coloring in a connected graph . If k and l are distinct vertices of G such that* $d(k,w)=d(l,w)$ *for all* $w \in V(G) - \{k, l\}$ *, then* $c(k) \neq c(l)$ *. In particular, if k and l are non-adjacent vertices of Gsuch that* $N(k) \neq N(l)$ *, then* $c(k) \neq c(l)$ *.*

Theorem 1.2. Chartrand et al.[1] *The locating chromatic number of a cycle* C_n *, is 3 for odd n and 4 for even n.*

2. Result and Discusion

In this section we will discuss the locating chromatic number of certain barbell Origami graphs $\bm B_{\bm O_{\bm n}}$.

Theorem 2.1 The locating-chromatic number of certain barbell Origami graphs B_{O_n} is 5, with $n \ge 3$.

Proof. Let $n \in \mathbb{N}$ with $n \ge 3$, with $V(B_{0_n}) = \{u_i, u_{n+i}, v_i, v_{n+i}, w_i, w_{n+i} | 1 \le i \le n\}$ and $E(B_{0_n}) = \{u_iw_i, u_iv_i, v_iw_i, u_iu_{i+1}, w_iu_{i+1}|1 \leq i \leq n\}$ \cup $\{u_{n+i}w_{n+i}, u_{n+i}v_{n+i}, v_{n+i}w_{n+i}\}$ $u_{n+i}u_{n+i+1}, w_{n+i}u_{n+i+1} \mid 1 \leq i \leq n$ \cup $\{u_n u_{n+1}\}\$. First, we determine lower bound of $\chi_L(\mathbf{B}_{0_n})$ for $n \geq 3$. Since barbell Origami graphs B_{O_n} for $n \geq 3$ contains two ishomorphic copies of Origami graph O_n , then by Theorem 1.2, we have $\chi_L(\mathbf{B}_{O_n}) \geq 4$ for $n \geq 3$. Next, we will show that 4 colors are not enough. For a contradiction, assume that there exsists a 4-locating coloring *c* on \mathbf{B}_{0_n} for $n \geq 3$. Then $\{c(u_i), c(v_i), c(w_i), c(u_{i+1})\} = \{1, 2, 3, 4\}$. Since \mathbf{B}_{0_n} for $n \geq 3$ contain *n* even cycles, then there is $c(u_i) = c(w_i)$ for $i \neq j$ so that $c_{\Pi}(u_i) = c_{\Pi}(w_j)$ for $i \neq j$ because u_i and w_j are dominant vertices, a contradiction. Therefore, $\chi_L(\boldsymbol{B}_{O_n}) \geq 5$.

Next, we determine the upper bound of $\chi_L(\mathbf{B}_{\mathbf{O}_n}) \leq 5$ for $n \geq 3$. To prove the upper bound, next, we consider the following some cases :

 $Case 1. \chi_L(B_{O_3}) \leq 5$ To show that $\chi_L(\mathbf{B}_{0_3}) \le 5$, consider the 5-coloring *c* on \mathbf{B}_{0_3} as follow. $c(u_i) = \}$ 1 for $i = 1$ 3 for $i = 2$ 4 for $i = 3$ $c(v_i) = i + 2, i = 1,2,3$ $c(w_i) = \}$ 2 for $i = 1$ 1 for $i = 2$ 3 for $i = 3$

Journal of Physics: Conference Series **1751** (2021) 012017

doi:10.1088/1742-6596/1751/1/012017

$$
c(u_{n+i}) = \begin{cases} 2 & \text{for } i = 1 \\ 3 & \text{for } i = 2 \\ 1 & \text{for } i = 3 \end{cases}
$$

\n
$$
c(v_{n+i}) = \begin{cases} 3 & \text{for } i = 1,3 \\ 1 & \text{for } i = 2 \end{cases}
$$

\n
$$
c(w_{n+i}) = \begin{cases} 4 & \text{for } i = 1,3 \\ 2 & \text{for } i = 2 \end{cases}
$$

The coloring *c* will create a partition Π on $V(B_{O_3})$. We shall show that the color codes of all vertices in \mathbf{B}_{0_3} are different. For $c_{\Pi}(u_1) = (0,1,1,2,2)$; $c_{\Pi}(u_2) = (1,1,0,1,2)$; $c_{\Pi}(u_3) = (1,1,1,0,1)$; $c_{\Pi}(u_4) = (1,0,1,12); c_{\Pi}(u_5) = (1,1,0,1,3); c_{\Pi}(u_6) = (0,1,1,1,3); c_{\Pi}(v_1) = (1,1,0,2,3); c_{\Pi}(v_2) =$ $(1,2,1,0,3);$ $c_{\Pi}(v_3) = (2,2,1,1,0);$ $c_{\Pi}(v_4) = (2,1,0,2,3);$ $c_{\Pi}(v_5) = (0,1,1,1,4);$ $c_{\Pi}(v_6) =$ $(1,2,0,1,4);$ $c_{\Pi}(w_1) = (1,0,1,2,3);$ $c_{\Pi}(w_2) = (0,2,1,1,2);$ $c_{\Pi}(w_3) = (1,2,0,1,1);$ $c_{\Pi}(w_4) =$ (2,1,1,0,3); $c_{\Pi}(w_5) = (1,0,1,2,4)$; $c_{\Pi}(w_6) = (1,1,10,3)$. Since the color codes of all vertices in \mathbf{B}_{0_3} are different, thus *c* is a locating-chromatic coloring. So $\chi_L(\mathbf{B}_{O_3}) \leq 5$.

Case 2. $\chi_L(\mathbf{B}_{O_n}) \leq 5$ for $n \geq 4$

To show the upper bound for the locating-chromatic number of barbell Origami graph $\mathbf{B}_{\mathcal{O}_n}$ for $n \geq 4$. Let us different two subcases.

Subcase 2.1(odd *n*)

First, for $\left[\frac{n}{2}\right]$ $\frac{n}{2}$ odd. Let c be a coloring of barbell Origami graph B_{O_n} , we make the partition Π of $V(B_{\mathcal{O}_n})$:

$$
c(u_i) = \begin{cases} 2, & \text{for odd } i, 3 \le i \le \left\lfloor \frac{n}{2} \right\rfloor \\ & \text{for odd } i, \left\lfloor \frac{n}{2} \right\rfloor + 2 \le i \le n \\ 3, & \text{for even } i, 2 \le i \le \left\lfloor \frac{n}{2} \right\rfloor - 1 \\ & \text{for even } i, \left\lfloor \frac{n}{2} \right\rfloor + 2 \le i \le n - 1 \end{cases}
$$
\n
$$
4, & \text{for } i = 1
$$
\n
$$
5, & \text{for } i = \left\lfloor \frac{n}{2} \right\rfloor + 1
$$
\n
$$
1, & \text{for } i = 1
$$
\n
$$
2, & \text{for odd } i, 3 \le i \le \left\lfloor \frac{n}{2} \right\rfloor - 2 \\ & \text{for odd } i, \left\lfloor \frac{n}{2} \right\rfloor + 2 \le i \le n
$$
\n
$$
c(u_{n+i}) = \begin{cases} 3, & \text{for even } i, 2 \le i \le \left\lfloor \frac{n}{2} \right\rfloor - 1 \\ 5, & \text{for } i = \left\lfloor \frac{n}{2} \right\rfloor \\ 7, & \text{for } i = \left\lfloor \frac{n}{2} \right\rfloor \end{cases}
$$
\n
$$
c(v_i) = \begin{cases} 2, & \text{for even } i, 2 \le i \le n - 1 \\ 3, & \text{for odd } i, 1 \le i \le n \end{cases}
$$
\n
$$
c(v_{n+i}) = \begin{cases} 2, & \text{for even } i, 2 \le i \le n - 1 \\ 3, & \text{for odd } i, 1 \le i \le n \end{cases}
$$
\n
$$
c(w_{n+i}) = 4, & 1 \le i \le n
$$
\n
$$
c(w_{n+i}) = 4, & 1 \le i \le n
$$

Therefore the color codes of all the vertices of $V(\boldsymbol{B}_{\scriptscriptstyle O_n})$ are :

doi:10.1088/1742-6596/1751/1/012017

1. for 1st, 2nd and 3rd component,
$$
i = 1
$$

\nfor 1st and 2nd component, i even, $2 \le i \le n - 1, n \ge 5$
\n1. For 4th component, i even, $2 \le i \le n, n \ge 5$
\n1. For 4th component, i even, $2 \le i \le \lfloor \frac{n}{2} \rfloor, n \ge 5$
\n $n - i + 1$, for 4th component, i odd, $\lceil \frac{n}{2} \rceil + 2 \le i \le n, n \ge 5$
\n $n - i + 1$, for 4th component, i odd, $\lceil \frac{n}{2} \rceil + 2 \le i \le n, n \ge 5$
\n $i - 2$, for 4th component, $i = 1$
\n $\lceil \frac{n}{2} \rceil - 2$, for 5th component, i odd, $2 \le i \le \lceil \frac{n}{2} \rceil, n \ge 5$
\n $i - \lceil \frac{n}{2} \rceil - 1$, for 5th component, i odd, $\lceil \frac{n}{2} \rceil + 2 \le i \le n, n \ge 5$
\n $i - \lceil \frac{n}{2} \rceil - 1$, for 5th component, i odd, $\lceil \frac{n}{2} \rceil + 2 \le i \le n, n \ge 5$
\n 0 , otherwise
\n1. for 2nd and 4th component, $2 \le i \le n - 1, n \ge 5$
\nfor 3rd and 4th component, $3 \le i \le n, n \ge 5$
\n 2 , for 2nd component, $i = \lceil \frac{n}{2} \rceil$
\n $i - 1$, for 1st component, $2 \le i \le \lceil \frac{n}{2} \rceil - 1, n \ge 5$
\n 2 , for 2nd component, $i = 1$
\n $\lceil \frac{n}{2} \rceil - i$, for 5th component, $i = 1$
\n $\lceil \frac{n}{2} \rceil - i$, for 5th

doi:10.1088/1742-6596/1751/1/012017

$$
c_{\Pi}(v_{n+i}) = \begin{cases} i, & \text{for } 1^{st} \text{ component}, 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor, n \geq 5 \\ n - i + 2, & \text{for } 1^{st} \text{ component}, i \text{ odd}, 1 \leq i \leq n, n \geq 5 \\ 0, & \text{for } 3^{rd} \text{ component}, i \text{ even}, 2 \leq i \leq n - 1 \\ \left\lfloor \frac{n}{2} \right\rfloor - i + 1, & \text{for } 5^{th} \text{ component}, 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor - 1, n \geq 5 \\ i - \left\lfloor \frac{n}{2} \right\rfloor + 1, & \text{for } 5^{th} \text{ component}, 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor - 1, n \geq 5 \\ 1, & \text{otherwise} \\ 0, & \text{for } 1^{st} \text{ component}, 1 \leq i \leq n \\ 2, & \text{for } 2^{nd} \text{ component}, i = 1 \\ i, & \text{for } 4^{th} \text{ component}, 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor, n \geq 5 \\ c_{\Pi}(w_i) = \begin{cases} n - i + 2, & \text{for } 4^{th} \text{ component}, 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor, n \geq 5 \\ n - i + 2, & \text{for } 4^{th} \text{ component}, 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor, n \geq 5 \\ \left\lfloor \frac{n}{2} \right\rfloor - i + 1, & \text{for } 5^{th} \text{ component}, 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor, n \geq 5 \\ 1, & \text{otherwise} \\ 2, & \text{for } 5^{th} \text{ component}, 1 \leq i \leq n \\ 2, & \text{for } 2^{nd} \text{ component}, i = 1 \\ i, & \text{for } 1^{st} \text{ component}, 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor, n \geq 5 \\ c_{\Pi}(w_{n+i}) = \begin{cases} n - i + 1, & \text{for } 1
$$

Next, for $\left[\frac{n}{2}\right]$ $\frac{n}{2}$ even. Let c be a coloring of barbell Origami graph B_{O_n} , we make the partition Π of $V(B_{O_n})$:

$$
c(u_i) = \begin{cases} 2, & \text{for odd } i, 3 \le i \le \left\lfloor \frac{n}{2} \right\rfloor - 1 \\ & \text{for odd } i, \left\lfloor \frac{n}{2} \right\rfloor + 1 \le i \le n \\ 3, & \text{for even } i, 2 \le i \le \left\lfloor \frac{n}{2} \right\rfloor - 2 \\ & \text{for even } i, \left\lfloor \frac{n}{2} \right\rfloor + 2 \le i \le n - 1 \\ 4, & \text{for } i = 1 \\ 5, & \text{for } i = \left\lfloor \frac{n}{2} \right\rfloor \end{cases}
$$

1751 (2021) 012017 doi:10.1088/1742-6596/1751/1/012017

$$
c(u_{n+i}) = \begin{cases} 1, & \text{for } i = 1 \\ 2, & \text{for odd } i, 3 \le i \le \left\lfloor \frac{n}{2} \right\rfloor - 1 \\ & \text{for odd } i, \left\lfloor \frac{n}{2} \right\rfloor + 1 \le i \le n \\ 3, & \text{for even } i, 2 \le i \le \left\lfloor \frac{n}{2} \right\rfloor - 1 \\ & \text{for even } i, \left\lfloor \frac{n}{2} \right\rfloor + 2 \le i \le n - 1 \\ 5, & \text{for } i = \left\lfloor \frac{n}{2} \right\rfloor \\ c(v_i) = \begin{cases} 2, & \text{for even } i, 2 \le i \le n - 1 \\ 3, & \text{for odd } i, 1 \le i \le n \end{cases} \\ c(v_{n+i}) = \begin{cases} 2, & \text{for even } i, 2 \le i \le n - 1 \\ 3, & \text{for odd } i, 1 \le i \le n \end{cases} \\ c(w_i) = 1, & 1 \le i \le n \\ c(w_{n+i}) = 4, & 1 \le i \le n \end{cases}
$$

Therefore the color codes of all the vertices of $V(\boldsymbol{B}_{O_n})$ are :

1. for
$$
1^{st}
$$
, 2^{nd} and 3^{rd} component, $i = 1$
\nfor 1^{st} and 2^{nd} component, i even, $2 \le i \le n - 1, n \ge 7$
\nfor 1^{st} and 3^{rd} component, i odd, $3 \le i \le n, n \ge 7$
\n2. for 3^{rd} component, $i = \left[\frac{n}{2}\right]$
\n $i - 1$, for 4^{th} component, $2 \le i \le \left[\frac{n}{2}\right], n \ge 7$
\n $n - i + 1$, for 4^{th} component, $\left[\frac{n}{2}\right] + 1 \le i \le n, n \ge 7$
\n $\left[\frac{n}{2}\right] - i$, for 5^{th} component, $1 \le i \le \left[\frac{n}{2}\right] - 1, n \ge 7$
\n $i - \left[\frac{n}{2}\right]$, for 5^{th} component, $\left[\frac{n}{2}\right] + 1 \le i \le n, n \ge 7$
\n0, otherwise
\n1. for 2^{nd} , 3^{rd} and 4^{th} component, i even, $2 \le i \le \left[\frac{n}{2}\right] - 1, n \ge 7$
\nfor 3^{rd} and 4^{th} component, i odd, $3 \le i \le n, n \ge 7$
\n2. for 3^{rd} component, $i = \left[\frac{n}{2}\right]$
\n $i - 1$, for 1^{st} component, $2 \le i \le \left[\frac{n}{2}\right], n \ge 7$
\n $n - i + 1$, for 1^{st} component, $\left[\frac{n}{2}\right] + 1 \le i \le n, n \ge 7$
\n $\left[\frac{n}{2}\right] - i$, for 5^{th} component, $1 \le i \le \left[\frac{n}{2}\right] - 1, n \ge 7$
\n $i - \left[\frac{n}{2}\right$

doi:10.1088/1742-6596/1751/1/012017

$$
c_{\Pi}(v_{i}) = \begin{cases}\ni, & \text{for } 4^{th} \text{ component}, 1 \leq i \leq \lfloor \frac{n}{2} \rfloor, n \geq 7 \\
n-i+2, & \text{for } 4^{th} \text{ component}, i \text{ odd}, 1 \leq i \leq n, n \geq 7 \\
0, & \text{for } 3^{rd} \text{ component}, i \text{ even}, 2 \leq i \leq n-1 \\
\lceil \frac{n}{2} \rceil - i + 1, & \text{for } 5^{th} \text{ component}, 2 \leq i \leq \lfloor \frac{n}{2} \rfloor, n \geq 7 \\
\lceil \frac{n}{2} \rceil - 1 & \text{for } 5^{th} \text{ component}, i = 1 \\
i - \lfloor \frac{n}{2} \rfloor + 1, & \text{for } 5^{th} \text{ component}, i = 1 \\
i - \lfloor \frac{n}{2} \rfloor + 1, & \text{for } 5^{th} \text{ component}, \lfloor \frac{n}{2} \rfloor + 1 \leq i \leq n, n \geq 7 \\
\lceil \frac{n}{2} \rceil - i + 2, & \text{for } 1^{st} \text{ component}, i \leq i \leq \lfloor \frac{n}{2} \rfloor, n \geq 7 \\
0, & \text{for } 3^{rd} \text{ component}, i \text{ odd}, 1 \leq i \leq n, n \geq 7 \\
0, & \text{for } 3^{rd} \text{ component}, i \text{ even}, 2 \leq i \leq n-1 \\
\lceil \frac{n}{2} \rceil - 1 & \text{for } 5^{th} \text{ component}, i \in 1 \\
i - \lceil \frac{n}{2} \rceil + 1, & \text{for } 5^{th} \text{ component}, i = 1 \\
i, & \text{for } 5^{th} \text{ component}, 1 \leq i \leq n, n \geq 7 \\
\lceil \frac{n}{2} \rceil - 1, & \text{for } 5^{th} \text{ component}, 1 \leq i \leq n, n \geq 7 \\
\lceil \frac{n}{2} \rceil - i, & \text{for } 5^{th} \text{ component}, 1 \leq i \leq n, n \geq 7 \\
\lceil \frac{n}{2} \rceil - i, & \text{for } 4^{th} \text{ component}, 1 \leq i \leq \lfloor \frac{n}{2} \rfloor, n \geq 7 \\
$$

1751 (2021) 012017 doi:10.1088/1742-6596/1751/1/012017

Subcase 2.2(even *n*).

First, for $\frac{n}{2}$ odd. Let c be a coloring of certain barbell Origami graph B_{O_n} , We make the partition Π of $V(B_{O_n})$:

$$
c(u_i) = \begin{cases} 2, & \text{for odd } i, 3 \le i \le n - 1 \\ 3, & \text{for even } i, 2 \le i \le n \\ 4, & \text{for } i = 1 \end{cases}
$$
\n
$$
c(u_{n+i}) = \begin{cases} 1, & \text{for } i = 1 \\ 2, & \text{for odd } i, 3 \le i \le n - 1 \\ 3, & \text{for even } i, 2 \le i \le n \end{cases}
$$
\n
$$
c(v_i) = \begin{cases} 2, & \text{for even } i, 2 \le i \le n \\ 3, & \text{for odd } i, 1 \le i \le n - 1 \\ 3, & \text{for odd } i, 1 \le i \le n - 1 \end{cases}
$$
\n
$$
c(w_i) = \begin{cases} 1, & \text{for } 1 \le i \le \frac{n}{2} - 1 \\ & \text{for } i \le \frac{n}{2} + 1 \le i \le n \\ 5, & \text{for } i = \frac{n}{2} \end{cases}
$$
\n
$$
c(w_{n+i}) = \begin{cases} 4, & \text{for } 1 \le i \le \frac{n}{2} - 1 \\ & \text{for } i = \frac{n}{2} + 1 \le i \le n \\ 5, & \text{for } i = \frac{n}{2} \end{cases}
$$

Therefore the color codes of all the vertices of $V(B_{\mathbf{O}_n})$ are :

1, for 1st and 3rd component, *i* odd,
$$
1 \le i \le n - 1, n \ge 6
$$

\nfor 1st and 2nd component, *i* even, $2 \le i \le n, n \ge 6$
\n2, for 3rd component, $i = 1$
\n $i - 1$, for 4th component, $2 \le i \le \frac{n}{2}, n \ge 6$
\n $c_{\Pi}(u_i) = \begin{cases} n - i + 1, & \text{for } 4^{th}$ component, $\frac{n}{2} + 1 \le i \le n, n \ge 6\\ \frac{n}{2}, & \text{for } 5^{th}$ component, $i = 1\\ \frac{n}{2} - i + 1, & \text{for } 5^{th}$ component, $2 \le i \le \frac{n}{2}, n \ge 6\\ i - \frac{n}{2}, & \text{for } 5^{th}$ component, $\frac{n}{2} + 1 \le i \le n, n \ge 6\\ 0, & \text{otherwise} \end{cases}$

$$
1751 (2021) 012017 \quad \text{doi: } 10.1088/1742 - 6596/1751/1/012017
$$

1. for 3rd and 4th component, *i* odd, 1 ≤ *i* ≤ *n* − 1, *n* ≥ 6
\n1. for 2nd and 4th component, *i* even, 2 ≤ *i* ≤ *n*, *n* ≥ 6
\n2. for 2nd component, *i* = 1
\n
$$
i - 1
$$
, for 1st component, 2 ≤ *i* ≤ 2, *n* ≥ 6
\n
$$
c_n(u_{n+i}) = \begin{cases}\n1 & \text{for } 1^{st} \text{ component}, 2 \leq i \leq \frac{n}{2}, n \geq 6 \\
\frac{n}{2} & \text{for } 5^{th} \text{ component}, i = 1 \\
\frac{n}{2} - i + 1, \text{ for } 5^{th} \text{ component}, 2 \leq i \leq \frac{n}{2}, n \geq 6 \\
i - \frac{n}{2}, \text{ for } 5^{th} \text{ component}, \frac{n}{2} + 1 \leq i \leq n, n \geq 6 \\
0, \text{ otherwise}\n\end{cases}
$$
\n1. For 4th component, $\frac{n}{2} + 1 \leq i \leq n, n \geq 6$
\n
$$
c_n(v_i) = \begin{cases}\n1, & \text{for } 3^{rd} \text{ component}, i \leq i \leq \frac{n}{2}, n \geq 6 \\
0, & \text{for } 3^{rd} \text{ component}, i \text{ odd}, 1 \leq i \leq n - 1 \\
\frac{n}{2} - i + 2, & \text{for } 5^{th} \text{ component}, 1 \leq i \leq \frac{n}{2} - 1, n \geq 6 \\
i - \frac{n}{2} + 1, & \text{for } 5^{th} \text{ component}, \frac{n}{2} + 1 \leq i \leq n, n \geq 6 \\
\frac{n}{2} & \text{for } 1^{st} \text{ component}, i = \frac{n}{2} \\
1, \text{ otherwise}\n\end{cases}
$$
\n
$$
c_n(v_{n+i}) = \begin{cases}\ni, & \text{for } 1^{st} \text{ component}, 1 \leq i \leq n, n \geq 6 \\
0, & \text{for } 3^{rd} \text
$$

\n
$$
\text{1751} \left(\frac{2021}{1012017} \right) \quad \text{doi:10.1088/1742-6596/1751/1/012017}
$$
\n

$$
c_{\Pi}(w_i) = \begin{cases}\n0, & \text{for } 1^{st} \text{ component, } 1 \leq i \leq \frac{n}{2} - 1 \\
& \text{for } 1^{st} \text{ component, } i = \frac{n}{2} \\
& i, & \text{for } 4^{th} \text{ component, } 1 \leq i \leq \frac{n}{2}, n \geq 6 \\
& n - i + 1, & \text{for } 4^{th} \text{ component, } 1 \leq i \leq n, n \geq 6 \\
& \frac{n}{2} - i + 1, & \text{for } 5^{th} \text{ component, } 1 \leq i \leq n, n \geq 6 \\
& i - \frac{n}{2}, & \text{for } 5^{th} \text{ component, } 1 \leq i \leq n, n \geq 6 \\
& 1, & \text{otherwise}\n\end{cases}
$$
\n
$$
\begin{cases}\n0, & \text{for } 4^{th} \text{ component, } 1 \leq i \leq n, n \geq 6 \\
1, & \text{otherwise}\n\end{cases}
$$
\n
$$
c_{\Pi}(w_{n+i}) = \begin{cases}\n0, & \text{for } 4^{th} \text{ component, } 1 \leq i \leq \frac{n}{2} - 1 \\
& i, & \text{for } 4^{th} \text{ component, } i = \frac{n}{2} \\
& i, & \text{for } 1^{st} \text{ component, } i \leq i \leq n, n \geq 6 \\
& n - i + 1, & \text{for } 1^{st} \text{ component, } 1 \leq i \leq \frac{n}{2}, n \geq 6 \\
& n - i + 1, & \text{for } 1^{st} \text{ component, } 1 \leq i \leq n, n \geq 6 \\
& \frac{n}{2} - i + 1, & \text{for } 5^{th} \text{ component, } 1 \leq i \leq \frac{n}{2} - 1, n \geq 6 \\
& i - \frac{n}{2}, & \text{for } 5^{th} \text{ component, } \frac{n}{2} + 1 \leq i \leq n, n \geq 6 \\
& 1, & \text{otherwise}\n\end{cases}
$$

Next, for $\frac{n}{2}$ even. Let c be a coloring of barbell Origami graph B_{O_n} , We make the partition Π of $V(B_{O_n})$:

$$
c(u_i) = \begin{cases} 2, & \text{for odd } i, 3 \le i \le n-1 \\ 3, & \text{for even } i, 2 \le i \le n \\ 4, & \text{for } i = 1 \end{cases}
$$
\n
$$
c(u_{n+i}) = \begin{cases} 1, & \text{for } i = 1 \\ 2, & \text{for odd } i, 3 \le i \le n-1 \\ 3, & \text{for even } i, 2 \le i \le n \end{cases}
$$
\n
$$
c(v_i) = \begin{cases} 2, & \text{for even } i, 2 \le i \le n \\ 3, & \text{for odd } i, 1 \le i \le n-1 \end{cases}
$$
\n
$$
c(v_{n+i}) = \begin{cases} 2, & \text{for even } i, 2 \le i \le n \\ 3, & \text{for odd } i, 1 \le i \le n-1 \end{cases}
$$
\n
$$
c(w_i) = \begin{cases} 1, & \text{for } 1 \le i \le \frac{n}{2} \\ & \text{for } i = \frac{n}{2}+1 \\ 5 & \text{for } i = \frac{n}{2}+1 \le i \le n \end{cases}
$$
\n
$$
c(w_{n+i}) = \begin{cases} 4, & \text{for } 1 \le i \le \frac{n}{2} \\ & \text{for } i = \frac{n}{2}+1 \\ 5 & \text{for } i = \frac{n}{2}+1 \end{cases}
$$

1751 (2021) 012017 doi:10.1088/1742-6596/1751/1/012017

Therefore the color codes of all the vertices of $V(B_{\mathbf{0}_n})$ are : $c_{\Pi}(u_i) =$ $\overline{\mathcal{L}}$ $\overline{1}$ \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} $\overline{1}$ $\overline{1}$ \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} $\overline{1}$ 1, for 1st and 3rd component, *i* odd, $1 \le i \le n-1, n \ge 4$ for 1st and 2nd component, *i* even, 2 $\leq i \leq n, n \geq 4$ 2, for 2^{nd} component, $i = 1$ $i-1$, for 4^{th} component, $2 \le i \le$ \boldsymbol{n} $\frac{1}{2}$, $n \geq 4$ $n-i+1$, for 4^{th} component, \boldsymbol{n} $\frac{1}{2} + 1 \le i \le n, n \ge 4$ \boldsymbol{n} $\frac{\pi}{2}$, for 5th component, *i* = 1 \boldsymbol{n} $\frac{n}{2} - i + 2$, for 5th component, $2 \le i \le$ \boldsymbol{n} $\frac{1}{2} + 1, n \geq 4$ $i \boldsymbol{n}$ $\frac{\pi}{2}$ – 1, for 5th component, \boldsymbol{n} $\frac{1}{2} + 1 \le i \le n, n \ge 4$ 0, otherwise $c_{\Pi}(u_{n+i}) =$ $\overline{\mathcal{L}}$ $\overline{1}$ \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} $\overline{1}$ $\overline{1}$ \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} $\begin{cases} 1, & \text{for } 3^{rd} \text{ and } 4^{th} \text{ component, } 1 \leq i \leq n-1, n \geq 4 \\ 0, & \text{otherwise} \end{cases}$ for 2nd and 4th component, *i* even, 2 $\leq i \leq n, n \geq 4$ 2, for 2^{nd} component, $i = 1$ $i-1$, for 1st component, $2 \le i \le \frac{n}{2}$ $\frac{1}{2}$, $n \geq 4$ $n-i+1$, for 1st component, $\frac{n}{2}$ $\frac{1}{2}+1 \leq i \leq n, n \geq 4$ \boldsymbol{n} $\frac{\pi}{2}$, for 5th component, *i* = 1 \boldsymbol{n} $\frac{\pi}{2} - i + 2$, for 5th component, $2 \le i \le$ \boldsymbol{n} $\frac{1}{2} + 1, n \ge 4$ $i \boldsymbol{n}$ $\frac{\pi}{2}$ – 1, for 5th component, \boldsymbol{n} $\frac{1}{2} + 1 \le i \le n, n \ge 4$ 0, otherwise $c_{\Pi}(v_i) =$ $\overline{\mathcal{L}}$ $\overline{1}$ $\overline{1}$ $\overline{1}$ \mathbf{I} $\overline{1}$ $\overline{1}$ $\overline{1}$ \mathbf{I} $\overline{1}$ \mathbf{I} \mathbf{I} \int *i*, for 4th component, 1 $\leq i \leq$ \boldsymbol{n} $\frac{1}{2}$, $n \geq 4$ $n-i+2$, for 4^{th} component, \boldsymbol{n} $\frac{1}{2}+1 \le i \le n, n \ge 4$ 0, for 3^{rd} component, *i* odd, $1 \le i \le n-1$ for 2nd component, *i* even, 2 $\leq i \leq n$ \boldsymbol{n} $\frac{\pi}{2} - i + 3$, for 5th component, 2 $\leq i \leq$ \boldsymbol{n} $\frac{1}{2}$, $n \geq 4$ \boldsymbol{n} $\frac{n}{2}+1$ for 5th component, *i* = 1 − \boldsymbol{n} $\frac{\pi}{2}$, for 5th component, \boldsymbol{n} $\frac{1}{2} + 1 \le i \le n, n \ge 4$ 1, otherwise

IOP Publishing

Journal of Physics: Conference Series

doi:10.1088/1742-6596/1751/1/012017

$$
c_{\Pi}(v_{n+i}) = \begin{cases}\ni, & \text{for } 1^{st} \text{ component, } i \text{ odd, } 1 \leq i \leq \frac{n}{2}, n \geq 4 \\
n-i+2, & \text{for } 1^{st} \text{ component, } i \text{ odd, } 1 \leq i \leq n, n \geq 4 \\
0, & \text{for } 3^{rd} \text{ component, } i \text{ even, } 2 \leq i \leq n-1 \\
\hline\n2 - i + 3, & \text{for } 5^{th} \text{ component, } i \geq i \leq \frac{n}{2}, n \geq 4 \\
\hline\n\frac{n}{2} + 1 & \text{for } 5^{th} \text{ component, } i = 1 \\
i - \frac{n}{2}, & \text{for } 5^{th} \text{ component, } i \text{ odd, } \frac{n}{2} + 1 \leq i \leq n, n \geq 4 \\
1, & \text{otherwise}\n\end{cases}
$$
\n
$$
c_{\Pi}(w_i) = \begin{cases}\n0, & \text{for } 1^{st} \text{ component, } i \leq i \leq \frac{n}{2} - 1 \\
0, & \text{for } 1^{st} \text{ component, } i \leq i \leq \frac{n}{2} - 1 \\
0, & \text{for } 1^{st} \text{ component, } i \leq i \leq n\n\end{cases}
$$
\n
$$
c_{\Pi}(w_i) = \begin{cases}\n0, & \text{for } 1^{st} \text{ component, } i \leq i \leq n, n \geq 4 \\
i, & \text{for } 4^{th} \text{ component, } 1 \leq i \leq \frac{n}{2}, n \geq 4 \\
\hline\nn - i + 1, & \text{for } 4^{th} \text{ component, } 1 \leq i \leq \frac{n}{2} - 1, n \geq 8 \\
i - \frac{n}{2}, & \text{for } 5^{th} \text{ component, } 1 \leq i \leq \frac{n}{2} - 1, n \geq 8 \\
1, & \text{otherwise}\n\end{cases}
$$
\n
$$
c_{\Pi}(w_{n+i}) = \begin{cases}\n0, & \text{for } 4^{th} \text{ component, } 1 \leq i \leq \frac{n}{2} - 1, n \geq 8 \\
0, & \text{otherwise}\n\end{cases}
$$
\n
$$
c_{\Pi}(w_{n
$$

Since all the vertices have different color codes, *c* is a locating coloring of certain barbell Origami graphs \mathbf{B}_{O_n} , so that $\chi_L(\mathbf{B}_{O_n}) = 5$, for $n \geq 3$. This concludes the proof.

Journal of Physics: Conference Series **1751** (2021) 012017

References

- [1] Chartrand G, Erwin D, Henning M, Slater P and Zhang P 2002 The locating-chromatic number of a graph *Bull. Inst. Combin*. Appl. **36** pp 89–101
- [2] Chartrand G, Erwin D, Henning M, Slater P, and Zhang P 2003 Graph of order n with locatingchromatic number n−1 *Discrete Math* **269 1-3** pp 65–79.
- [3] Asmiati, Assiyatun H and Baskoro E T 2011 Locating-Chromatic Number of Almagamation of Stars *ITB J of Sci* **43 1** pp 1 – 8
- [4] Behtoei A and Anbarloei M 2014 The Locating Chromatic Number of The Join of Graphs *Bulletin of The Iranian Mathematical Society* **40 6** pp 1491 – 1504
- [5] Behtoei A and Omoomi B 2016 On the locating chromatic number of cartesian product of graphs *Ars Combinatoria* **126** pp 221-235
- [6] Asmiati 2014 The Locating-Chromatic Number of Non-Homogeneous Almagamation of Stars *Far East Journal of Mathematical Sciences* **93 1** pp 89 – 96
- [7] Asmiati 2016 On The Locating-Chromatic Numbers of Non-Homogeneous Caterpillars and Firecrackers Graphs *Far East Journal of Mathematical Sciences* **100 8** pp 1305 – 1316
- [8] Irawan A, Asmiati, Suharsono S, Muludi K 2019 The Locating-Chromatic Number for Certain Operation of Generalized Petersen Graphs sP(4,2) *Journal of Physics: conference Series* **1338 1** pp 1-6
- [9] Irawan A, Asmiati, Suharsono S, Muludi K and Zakaria L 2020 Certain Operation of Generalized Petersen Graphs Having Locating-Chromatic Number Five, *Advances and Applications Discrete Mtahematics* **24 2** pp 83 – 97
- [10] Asmiati, Yana I K S G and Yulianti L 2018 On The Locating-Chromatic Number of Certain Barbell Graphs *International Journal of Mathematics and Mathematical Sciences* pp 1- 5
- [11] Nabila S and Salman A N M 2015 The Rainbow Conection Number of Origami Graphs and Pizza Graphs *Procedia Computer Science* **74** pp 162 – 167