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Abstract. The locating-chromatic number of a graph combined two graph concept, coloring 
vertices and partition dimension of a graph. The locating-chromatic number, denoted by χ𝐿(𝐺), 
is the smallest k such that 𝐺 has a locating k-coloring. In this paper, we discuss the locating-
chromatic number for certain barbell Origami graphs. 

Keyword: coloring, locating-chromatic number, barbell origami graphs 

1. Introduction 

Chartrand et al firstly found the locating-chromatic number of a graph in 2002[1], with derived two 
graph concept, coloring vertices and partition dimension of a graph. Let 𝐺 = (𝑉, 𝐸) be a connected 
graph and c be a proper k-coloring of 𝐺 with color 1,2, … , 𝑘. Let Π = {𝐶1, 𝐶2, … , 𝐶𝑘} be a partition of 
𝑉(𝐺) which is induced by coloring c. The color code 𝑐Π(𝑣) of v is the ordered k-tuple 
(𝑑(𝑣, 𝐶1), 𝑑(𝑣, 𝐶2),...,𝑑(𝑣, 𝐶𝑘)) where 𝑑(𝑣, 𝐶𝑖) = min {𝑑(𝑣, 𝑥)|𝑥 ∈ 𝐶𝑖} for any 𝑖. If all distinct vertices 
of 𝐺 have distinct color codes, then c is called k-locating coloring of 𝐺. The locating-chromatic 
number, denoted by 𝜒𝐿(𝐺), is the smallest k such that 𝐺 has a locating k-coloring. Nex in 2003, 
Chartrand et al. [2] succeed in constructing tree graphs with locating-chromatic numbers ranging from 
3 to n, except (n – 1). 

Several researcher have studied about the locating-chromatic number of a graph. Asmiati et al [3] 
found locating-chromatic number of amalgamation of star. The locating-chromatic numbers of the join 
graph determinded by Behtoei and Omoomi [4]. Furthermore, Behtoei and Anbarloei [5] found the 
locating chromatic number of Cartesian product of graphs. Next, Asmiati [6] determined the locating 
chromatic number of Non-Homogeneous Almagamation of Stars. Futher Asmiati [7] have found 
locating-chromatic number for non-homogeneous caterpillars and firecrackers graphs. 

Some researchers have determined the locating-chromatic number for certain operation. Specially 
for generalized Petersen graphs 2019, Irawan et al [8] found the locating-chromatic number certain 
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operation generalized Petersen graphs P(4,2), next the locating-chromatic number for new kind 
generalized Petersen graphs 𝑠P(𝑛, 1)[9]. Asmiati et al [10] determined locating-chromatic number for 
certain barbell graphs 𝐵𝑃(𝑛,1). In this paper, we discuss the locating-chromatic number of certain 
barbell Origami graphs 𝑩𝑶𝒏 . 

The following definition of a Origami graph is taken from [11]. Let 𝑛 ∈ ℕ with 𝑛 ≥ 3. An 
Origami graph 𝑂𝑛 on 3n vertices is a graph with 𝑉(𝑂𝑛) = {𝑢𝑖, 𝑣𝑖, 𝑤𝑖|1 ≤ 𝑖 ≤ 𝑛} and (𝑂𝑛) =
{𝑢𝑖𝑤𝑖, 𝑢𝑖𝑣𝑖, 𝑣𝑖𝑤𝑖, 𝑢𝑖𝑢𝑖+1, 𝑤𝑖𝑢𝑖+1| 1 ≤ 𝑖 ≤ 𝑛}. The barbell graph is constructed by connecting two 
arbitrary connected graphs 𝐺 and 𝐻 by a bridge. Now, we define certain barbell Origami graphs 𝑩𝑂𝑛. 
Let 𝑩𝑂𝑛 𝑛 ∈ ℕ with 𝑛 ≥ 3, be the barbell graph where 𝐺 and 𝐻 are two copies of Origami graph 𝑂𝑛 
with 𝑉(𝑩𝑂𝑛) = {𝑢𝑖, 𝑢𝑛+𝑖, 𝑣𝑖, 𝑣𝑛+𝑖, 𝑤𝑖, 𝑤𝑛+𝑖|1 ≤ 𝑖 ≤ 𝑛} and 𝐸(𝑩𝑂𝑛) = {𝑢𝑖𝑤𝑖, 𝑢𝑖𝑣𝑖 , 𝑣𝑖𝑤𝑖, 𝑢𝑖𝑢𝑖+1, 
𝑤𝑖𝑢𝑖+1|1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑢𝑛+𝑖𝑤𝑛+𝑖, 𝑢𝑛+𝑖𝑣𝑛+𝑖, 𝑣𝑛+𝑖𝑤𝑛+𝑖, 𝑢𝑛+𝑖𝑢𝑛+𝑖+1, 𝑤𝑛+𝑖𝑢𝑛+𝑖+1|1 ≤ 𝑖 ≤ 𝑛} ∪
{𝑢𝑛𝑢𝑛+1}. 

The following theorems is basic to determine the locating chromatic number of a graph. The set of 
neighbours of a vertex s in 𝐺, denoted by 𝑁(𝑠). 

 

Theorem 1.1.Chartrand et al.[1] Let c be a locating coloring in a connected graph 𝐺. If k and l 

are distinct vertices of 𝐺 such that d(k,w)=d(l,w) for all 𝑤 ∈ 𝑉(𝐺) − {𝑘, 𝑙}, then 𝑐(𝑘) ≠ 𝑐(𝑙). In 

particular, if k and l are non-adjacent vertices of 𝐺such that 𝑁(𝑘) ≠ 𝑁(𝑙), then 𝑐(𝑘) ≠ 𝑐(𝑙). 
 

Theorem 1.2. Chartrand et al.[1] The locating chromatic number of a cycle 𝐶𝑛, is 3 for odd n and 

4 for even n. 
 

2. Result and Discusion 

In this section we will discuss the locating chromatic number of certain barbell Origami graphs 𝑩𝑶𝒏. 

 

Theorem 2.1 The locating-chromatic number of certain barbell Origami graphs 𝑩𝑶𝒏is 5, with 𝒏 ≥ 𝟑. 

 

Proof. Let 𝑛 ∈ ℕ with 𝑛 ≥ 3, with 𝑉(𝑩𝑂𝑛) = {𝑢𝑖, 𝑢𝑛+𝑖, 𝑣𝑖, 𝑣𝑛+𝑖, 𝑤𝑖, 𝑤𝑛+𝑖|1 ≤ 𝑖 ≤ 𝑛} and 
𝐸(𝑩𝑂𝑛) = {𝑢𝑖𝑤𝑖, 𝑢𝑖𝑣𝑖, 𝑣𝑖𝑤𝑖, 𝑢𝑖𝑢𝑖+1, 𝑤𝑖𝑢𝑖+1|1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑢𝑛+𝑖𝑤𝑛+𝑖, 𝑢𝑛+𝑖𝑣𝑛+𝑖, 𝑣𝑛+𝑖𝑤𝑛+𝑖, 
𝑢𝑛+𝑖𝑢𝑛+𝑖+1, 𝑤𝑛+𝑖𝑢𝑛+𝑖+1| 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑢𝑛𝑢𝑛+1}. First, we determine lower bound of χ𝐿(𝑩𝑂𝑛) for 
𝑛 ≥ 3. Since barbell Origami graphs 𝑩𝑂𝑛 for 𝑛 ≥ 3 contains two ishomorphic copies of Origami 
graph 𝑂𝑛, then by Theorem 1.2, we have χ𝐿(𝑩𝑂𝑛) ≥ 4 for 𝑛 ≥ 3. Next, we will show that 4 colors are 
not enough. For a contradiction, assume that there exsists a 4-locating coloring c on 𝑩𝑂𝑛 for 𝑛 ≥ 3. 
Then {𝑐(𝑢𝑖), 𝑐(𝑣𝑖), 𝑐(𝑤𝑖), 𝑐(𝑢𝑖+1)} = {1, 2, 3, 4}. Since 𝑩𝑂𝑛 for 𝑛 ≥ 3 contain n even cycles, then 
there is 𝑐(𝑢𝑖) = 𝑐(𝑤𝑖) for 𝑖 ≠ 𝑗 so that 𝑐Π(𝑢𝑖) = 𝑐Π(𝑤𝑗) for 𝑖 ≠ 𝑗 because 𝑢𝑖 and 𝑤𝑗 are dominant 
vertices, a contradiction. Therefore, χ𝐿(𝑩𝑂𝑛) ≥ 5. 

Next, we determine the upper bound of χ𝐿(𝑩𝑶𝒏) ≤ 5 for 𝑛 ≥ 3. To prove the upper bound, next, 
we consider the following some cases : 
 

Case 1. χ𝐿(𝑩𝑂3) ≤ 5 
To show that χ𝐿(𝑩𝑂3) ≤ 5, consider the 5-coloring c on 𝑩𝑂3 as follow. 

𝑐(𝑢𝑖)       = {
1 for 𝑖 = 1
3 for 𝑖 = 2
4 for 𝑖 = 3

 

𝑐(𝑣𝑖)       = 𝑖 + 2, 𝑖 = 1,2,3 

𝑐(𝑤𝑖)      = {
2 for 𝑖 = 1
1 for 𝑖 = 2
3 for 𝑖 = 3
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𝑐(𝑢𝑛+𝑖)  = {
2 for 𝑖 = 1
3 for 𝑖 = 2
1 for 𝑖 = 3

  

𝑐(𝑣𝑛+𝑖)  = {
3 for 𝑖 = 1,3
1 for 𝑖 = 2   

 

𝑐(𝑤𝑛+𝑖) = {
4 for 𝑖 = 1,3
2 for 𝑖 = 2   

 
 

The coloring c will create a partition Π on 𝑉 (𝑩𝑂3). We shall show that the color codes of all 
vertices in 𝑩𝑂3 are different. For 𝑐Π(𝑢1) = (0,1,1,2,2); 𝑐Π(𝑢2) = (1,1,0,1,2); 𝑐Π(𝑢3) = (1,1,1,0,1); 
𝑐Π(𝑢4) = (1,0,1,12); 𝑐Π(𝑢5) = (1,1,0,1,3); 𝑐Π(𝑢6) = (0,1,1,1,3) ; 𝑐Π(𝑣1) = (1,1,0,2,3); 𝑐Π(𝑣2) =
(1,2,1,0,3); 𝑐Π(𝑣3) = (2,2,1,1,0); 𝑐Π(𝑣4) = (2,1,0,2,3); 𝑐Π(𝑣5) = (0,1,1,1,4);  𝑐Π(𝑣6) =
(1,2,0,1,4); 𝑐Π(𝑤1) = (1,0,1,2,3); 𝑐Π(𝑤2) = (0,2,1,1,2); 𝑐Π(𝑤3) = (1,2,0,1,1); 𝑐Π(𝑤4) =
(2,1,1,0,3); 𝑐Π(𝑤5) = (1,0,1,2,4); 𝑐Π(𝑤6) = (1,1,10,3). Since the color codes of all vertices in 𝑩𝑂3 
are different, thus c is a locating-chromatic coloring. So χ𝐿(𝑩𝑂3) ≤ 5. 
 
Case 2. χ𝐿(𝑩𝑂𝑛) ≤ 5 for 𝑛 ≥ 4 
To show the upper bound for the locating-chromatic number of barbell Origami graph 𝑩𝑂𝑛 for 𝑛 ≥ 4. 
Let us different two subcases. 
Subcase 2.1(odd n) 
First, for ⌈𝑛

2
⌉ odd. Let c be a coloring of barbell Origami graph 𝑩𝑂𝑛, we make the partition Π of 

𝑉(𝑩𝑂𝑛):  

𝑐(𝑢𝑖)       =

{
 
 
 
 
 

 
 
 
 
 2, for odd 𝑖, 3 ≤ 𝑖 ≤ ⌈

𝑛

2
⌉                  

for odd 𝑖, ⌈
𝑛

2
⌉ + 2 ≤ 𝑖 ≤ 𝑛          

3, for even 𝑖, 2 ≤ 𝑖 ≤ ⌈
𝑛

2
⌉ − 1        

for even 𝑖, ⌈
𝑛

2
⌉ + 2 ≤ 𝑖 ≤ 𝑛 − 1

4, for 𝑖 = 1                                          

5, for 𝑖 = ⌈
𝑛

2
⌉ + 1                              

 

𝑐(𝑢𝑛+𝑖)  =

{
 
 
 
 
 

 
 
 
 
 
1, for 𝑖 = 1                                          

2, for odd 𝑖, 3 ≤ 𝑖 ≤ ⌈
𝑛

2
⌉ − 2           

for odd 𝑖, ⌈
𝑛

2
⌉ + 2 ≤ 𝑖 ≤ 𝑛           

3, for even 𝑖, 2 ≤ 𝑖 ≤ ⌈
𝑛

2
⌉ − 1         

for even 𝑖, ⌈
𝑛

2
⌉ + 1 ≤ 𝑖 ≤ 𝑛 − 1 

5, for 𝑖 = ⌈
𝑛

2
⌉                                       

 

𝑐(𝑣𝑖)       = {
2,  for even 𝑖, 2 ≤ 𝑖 ≤ 𝑛 − 1       
3,  for odd 𝑖, 1 ≤ 𝑖 ≤ 𝑛                 

 

𝑐(𝑣𝑛+𝑖)  = {
2,  for even 𝑖, 2 ≤ 𝑖 ≤ 𝑛 − 1
3,   for odd 𝑖, 1 ≤ 𝑖 ≤ 𝑛          

 

𝑐(𝑤𝑖)      = 1, 1 ≤ 𝑖 ≤ 𝑛   
𝑐(𝑤𝑛+𝑖) = 4, 1 ≤ 𝑖 ≤ 𝑛 
 
Therefore the color codes of all the vertices of 𝑉(𝑩𝑂𝑛) are : 
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𝑐Π(𝑢𝑖) =

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

1, for 1𝑠𝑡, 2𝑛𝑑  and 3𝑟𝑑component, 𝑖 = 1                                                       

for 1𝑠𝑡  and 2𝑛𝑑component, 𝑖 even, 2 ≤ 𝑖 ≤ 𝑛 − 1, 𝑛 ≥ 5                     

for 1𝑠𝑡 and 3𝑟𝑑component, 𝑖 odd, 3 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 5                               

2, for 3𝑟𝑑  component, 𝑖 = ⌈
n

2
⌉ + 1                                                                   

𝑖 − 1, for 4𝑡ℎ component, 𝑖 even, 2 ≤ 𝑖 ≤ ⌈
𝑛

2
⌉ , 𝑛 ≥ 5                                       

𝑛 − 𝑖 + 1, for 4𝑡ℎ component, 𝑖 odd, ⌈
𝑛

2
⌉ + 2 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 5                                  

𝑖 − 2, for 4𝑡ℎ component, 𝑖 = ⌈
n

2
⌉ + 1                                                                   

⌈
𝑛

2
⌉ − 2, for 5𝑡ℎ component, 𝑖 = 1                                                                              

⌈
𝑛

2
⌉ − 𝑖 + 1, for  5𝑡ℎ component, 𝑖 odd, 2 ≤ 𝑖 ≤ ⌈

𝑛

2
⌉ , 𝑛 ≥ 5                                        

𝑖 − ⌈
𝑛

2
⌉ − 1, for 5𝑡ℎ component, 𝑖 odd, ⌈

𝑛

2
⌉ + 2 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 5                                  

0, otherwise                                                                                                          
     

 

𝑐Π(𝑢𝑛+𝑖) =

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

1, for  2𝑛𝑑 , 3𝑟𝑑  and 4𝑡ℎcomponent, 𝑖 = 1                                                      

for 2𝑛𝑑  and 4𝑡ℎcomponent, 2 ≤ 𝑖 ≤ 𝑛 − 1, 𝑛 ≥ 5                                  

for 3𝑟𝑑  and 4𝑡ℎcomponent, 3 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 5                                          

2, for 2𝑛𝑑 component, 𝑖 = ⌈
n

2
⌉                                                                          

𝑖 − 1, for 1𝑠𝑡  component, 2 ≤ 𝑖 ≤ ⌈
𝑛

2
⌉ − 1, 𝑛 ≥ 5                                              

⌈
𝑛

2
⌉ − 1, for 5𝑡ℎ component, 𝑖 = 1                                                                              

⌈
𝑛

2
⌉ − 𝑖, for  5𝑡ℎ component, 2 ≤ 𝑖 ≤ ⌈

𝑛

2
⌉ − 1, 𝑛 ≥ 5                                            

𝑖 − ⌈
𝑛

2
⌉ , for 5𝑡ℎ component, ⌈

𝑛

2
⌉ + 2 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 5                                             

𝑛 − 𝑖 + 1, for  1𝑠𝑡  component, ⌈
𝑛

2
⌉ + 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 5                                             

0, otherwise                                                                                                           
     

 

𝑐Π(𝑣𝑖) =

{
 
 
 
 
 
 

 
 
 
 
 
 𝑖, for 4𝑡ℎ component, 1 ≤ 𝑖 ≤ ⌈

𝑛

2
⌉ , 𝑛 ≥ 5                                          

𝑛 − 𝑖 + 2, for 4𝑡ℎ component, ⌈
𝑛

2
⌉ + 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 5                                  

0, for 3𝑟𝑑  component, 𝑖 odd, 1 ≤ 𝑖 ≤ 𝑛                                              

for 2𝑛𝑑  component, 𝑖 even, 2 ≤ 𝑖 ≤ 𝑛 − 1                                    

⌈
𝑛

2
⌉ − 𝑖 + 2, for 5𝑡ℎ component, 2 ≤ 𝑖 ≤ ⌈

𝑛

2
⌉ , 𝑛 ≥ 5                                         

⌈
𝑛

2
⌉ for 5𝑡ℎ component, 𝑖 = 1                                                                  

𝑖 − ⌈
𝑛

2
⌉ , for 5𝑡ℎ component, ⌈

𝑛

2
⌉ + 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 5                                 

1, otherwise                                                                                              
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𝑐Π(𝑣𝑛+𝑖) =

{
 
 
 
 
 

 
 
 
 
 𝑖, for 1𝑠𝑡 component, 1 ≤ 𝑖 ≤ ⌈

𝑛

2
⌉ , 𝑛 ≥ 5                                         

𝑛 − 𝑖 + 2, for 1𝑠𝑡  component, ⌈
𝑛

2
⌉ + 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 5                                  

0, for 3𝑟𝑑  component, 𝑖 odd, 1 ≤ 𝑖 ≤ 𝑛                                              

for 2𝑛𝑑  component, 𝑖 even, 2 ≤ 𝑖 ≤ 𝑛 − 1                                    

⌈
𝑛

2
⌉ − 𝑖 + 1, for 5𝑡ℎ component, 1 ≤ 𝑖 ≤ ⌈

𝑛

2
⌉ − 1, 𝑛 ≥ 5                                  

𝑖 − ⌈
𝑛

2
⌉ + 1, for 5𝑡ℎ component, ⌈

𝑛

2
⌉ ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 5                                         

1, otherwise                                                                                              

 

𝑐Π(𝑤𝑖) =

{
 
 
 
 
 

 
 
 
 
 

0, for 1𝑠𝑡 component, 1 ≤ 𝑖 ≤ 𝑛                                             

2, for 2𝑛𝑑  component, 𝑖 = 1                                                     

𝑖, for 4𝑡ℎ component, 1 ≤ 𝑖 ≤ ⌈
𝑛

2
⌉ , 𝑛 ≥ 5                            

𝑛 − 𝑖 + 2, for 4𝑡ℎ component, ⌈
𝑛

2
⌉ + 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 5                    

⌈
𝑛

2
⌉ − 𝑖 + 1, for 5𝑡ℎ component, 1 ≤ 𝑖 ≤ ⌈

𝑛

2
⌉ , 𝑛 ≥ 5                          

𝑖 − ⌈
𝑛

2
⌉ , for 5𝑡ℎ component, ⌈

𝑛

2
⌉ + 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 5                   

1, otherwise                                                                                

 

𝑐Π(𝑤𝑛+𝑖) =

{
 
 
 
 
 

 
 
 
 
 

0, for 4𝑡ℎcomponent, 1 ≤ 𝑖 ≤ 𝑛                                              

2, for 2𝑛𝑑 component, 𝑖 = 1                                                    

𝑖, for 1𝑠𝑡  component, 1 ≤ 𝑖 ≤ ⌈
𝑛

2
⌉ , 𝑛 ≥ 5                            

𝑛 − 𝑖 + 1, for 1𝑠𝑡 component, ⌈
𝑛

2
⌉ + 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 5                     

⌈
𝑛

2
⌉ − 𝑖, for 5𝑡ℎ component, 1 ≤ 𝑖 ≤ ⌈

𝑛

2
⌉ − 1, 𝑛 ≥ 5                   

𝑖 − ⌈
𝑛

2
⌉ + 1, for 5𝑡ℎ component, ⌈

𝑛

2
⌉ ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 5                            

1, otherwise                                                                                

 

 
Next, for ⌈𝑛

2
⌉ even. Let c be a coloring of barbell Origami graph 𝑩𝑂𝑛, we make the partition Π of 

𝑉(𝑩𝑂𝑛): 

𝑐(𝑢𝑖)       =

{
 
 
 
 
 

 
 
 
 
 2, for odd 𝑖, 3 ≤ 𝑖 ≤ ⌈

𝑛

2
⌉ − 1              

for odd 𝑖, ⌈
𝑛

2
⌉ + 1 ≤ 𝑖 ≤ 𝑛              

3, for even 𝑖, 2 ≤ 𝑖 ≤ ⌈
𝑛

2
⌉ − 2            

for even 𝑖, ⌈
𝑛

2
⌉ + 2 ≤ 𝑖 ≤ 𝑛 − 1    

4, for 𝑖 = 1                                             

5, for 𝑖 = ⌈
𝑛

2
⌉                                         
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𝑐(𝑢𝑛+𝑖)  =

{
 
 
 
 
 

 
 
 
 
 
1, for 𝑖 = 1                                          

2, for odd 𝑖, 3 ≤ 𝑖 ≤ ⌈
𝑛

2
⌉ − 1           

for odd 𝑖, ⌈
𝑛

2
⌉ + 1 ≤ 𝑖 ≤ 𝑛           

3, for even 𝑖, 2 ≤ 𝑖 ≤ ⌈
𝑛

2
⌉ − 1         

for even 𝑖, ⌈
𝑛

2
⌉ + 2 ≤ 𝑖 ≤ 𝑛 − 1 

5, for 𝑖 = ⌈
𝑛

2
⌉                                       

 

𝑐(𝑣𝑖)       = {
2, for even 𝑖, 2 ≤ 𝑖 ≤ 𝑛 − 1 
3, for odd 𝑖, 1 ≤ 𝑖 ≤ 𝑛           

 

𝑐(𝑣𝑛+𝑖)  = {
2, for even 𝑖, 2 ≤ 𝑖 ≤ 𝑛 − 1
3, for odd 𝑖, 1 ≤ 𝑖 ≤ 𝑛          

 

𝑐(𝑤𝑖)      = 1, 1 ≤ 𝑖 ≤ 𝑛 
𝑐(𝑤𝑛+𝑖) = 4, 1 ≤ 𝑖 ≤ 𝑛 
 
Therefore the color codes of all the vertices of 𝑉(𝑩𝑂𝑛) are : 

𝑐Π(𝑢𝑖) =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

1, for 1𝑠𝑡 , 2𝑛𝑑  and 3𝑟𝑑component, 𝑖 = 1                                                        

for 1𝑠𝑡  and 2𝑛𝑑component, 𝑖 even, 2 ≤ 𝑖 ≤ 𝑛 − 1, 𝑛 ≥ 7                     

for 1𝑠𝑡 and 3𝑟𝑑component, 𝑖 odd, 3 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 7                               

2, for 3𝑟𝑑  component, 𝑖 = ⌈
n

2
⌉                                                                           

𝑖 − 1, for 4𝑡ℎ component, 2 ≤ 𝑖 ≤ ⌈
𝑛

2
⌉ , 𝑛 ≥ 7                                                     

𝑛 − 𝑖 + 1, for 4𝑡ℎ component, ⌈
𝑛

2
⌉ + 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 7                                             

⌈
𝑛

2
⌉ − 𝑖, for 5𝑡ℎ component, 1 ≤ 𝑖 ≤ ⌈

𝑛

2
⌉ − 1, 𝑛 ≥ 7                                             

𝑖 − ⌈
𝑛

2
⌉ , for 5𝑡ℎ component, ⌈

𝑛

2
⌉ + 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 7                                             

0, otherwise                                                                                                          
     

 

𝑐Π(𝑢𝑛+𝑖) =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

1, for 2𝑛𝑑 , 3𝑟𝑑  and 4𝑡ℎ component, 𝑖 = 1                                                       

for 2𝑛𝑑 and 4𝑡ℎ component, 𝑖 even, 2 ≤ 𝑖 ≤ ⌈
𝑛

2
⌉ − 1, 𝑛 ≥ 7                 

for 3𝑟𝑑and 4𝑡ℎ component, 𝑖 odd, 3 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 7                               

2, for 3𝑟𝑑  component, 𝑖 = ⌈
n

2
⌉                                                                           

𝑖 − 1, for 1𝑠𝑡 component, 2 ≤ 𝑖 ≤ ⌈
𝑛

2
⌉ , 𝑛 ≥ 7                                                     

𝑛 − 𝑖 + 1, for 1𝑠𝑡 component, ⌈
𝑛

2
⌉ + 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 7                                              

⌈
𝑛

2
⌉ − 𝑖, for 5𝑡ℎ component, 1 ≤ 𝑖 ≤ ⌈

𝑛

2
⌉ − 1, 𝑛 ≥ 7                                              

𝑖 − ⌈
𝑛

2
⌉ , for 5𝑡ℎ component, ⌈

𝑛

2
⌉ + 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 7                                              

0, otherwise                                                                                                           
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𝑐Π(𝑣𝑖) =

{
 
 
 
 
 
 

 
 
 
 
 
 𝑖, for 4𝑡ℎ component, 1 ≤ 𝑖 ≤ ⌈

𝑛

2
⌉ , 𝑛 ≥ 7                                         

𝑛 − 𝑖 + 2, for 4𝑡ℎ component, ⌈
𝑛

2
⌉ + 2 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 7                                   

0, for 3𝑟𝑑  component, 𝑖 odd, 1 ≤ 𝑖 ≤ 𝑛                                              

for 2𝑛𝑑  component, 𝑖 even, 2 ≤ 𝑖 ≤ 𝑛 − 1                                    

⌈
𝑛

2
⌉ − 𝑖 + 1, for 5𝑡ℎ component, 2 ≤ 𝑖 ≤ ⌈

𝑛

2
⌉ , 𝑛 ≥ 7                                         

⌈
𝑛

2
⌉ − 1 for 5𝑡ℎ component, 𝑖 = 1                                                                  

𝑖 − ⌈
𝑛

2
⌉ + 1, for 5𝑡ℎ component, ⌈

𝑛

2
⌉ + 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 7                                 

1, otherwise                                                                                              

 

𝑐Π(𝑣𝑛+𝑖) =

{
 
 
 
 
 
 

 
 
 
 
 
 𝑖, for 1𝑠𝑡 component, 1 ≤ 𝑖 ≤ ⌈

𝑛

2
⌉ , 𝑛 ≥ 7                                         

𝑛 − 𝑖 + 2, for 1𝑠𝑡  component, ⌈
𝑛

2
⌉ + 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 7                                  

0, for 3𝑟𝑑  component, 𝑖 odd, 1 ≤ 𝑖 ≤ 𝑛                                              

for 2𝑛𝑑  component, 𝑖 even, 2 ≤ 𝑖 ≤ 𝑛 − 1                                    

⌈
𝑛

2
⌉ − 𝑖 + 1, for 5𝑡ℎ component, 2 ≤ 𝑖 ≤ ⌈

𝑛

2
⌉ , 𝑛 ≥ 7                                         

⌈
𝑛

2
⌉ − 1 for 5𝑡ℎ component, 𝑖 = 1                                                                  

𝑖 − ⌈
𝑛

2
⌉ + 1, for 5𝑡ℎ component, ⌈

𝑛

2
⌉ + 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 7                                 

1, otherwise                                                                                              

 

𝑐Π(𝑤𝑖) =

{
 
 
 
 
 

 
 
 
 
 

0, for 1𝑠𝑡 component, 1 ≤ 𝑖 ≤ 𝑛                                             

2, for 2𝑛𝑑  component, 𝑖 = 1                                                    

𝑖, for 4𝑡ℎ component, 1 ≤ 𝑖 ≤ ⌈
𝑛

2
⌉ , 𝑛 ≥ 7                            

𝑛 − 𝑖 + 1, for 4𝑡ℎ component, ⌈
𝑛

2
⌉ + 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 7                    

⌈
𝑛

2
⌉ − 𝑖, for 5𝑡ℎ component, 1 ≤ 𝑖 ≤ ⌈

𝑛

2
⌉ − 1, 𝑛 ≥ 7                    

𝑖 − ⌈
𝑛

2
⌉ + 1, for 5𝑡ℎ component, ⌈

𝑛

2
⌉ ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 7                            

1, otherwise                                                                                 

 

 

𝑐Π(𝑤𝑛+𝑖) =

{
 
 
 
 
 

 
 
 
 
 

0, for 4𝑡ℎ component, 1 ≤ 𝑖 ≤ 𝑛                                             

2, for 2𝑛𝑑 component, 𝑖 = 1                                                    

𝑖, for 1𝑠𝑡  component, 1 ≤ 𝑖 ≤ ⌈
𝑛

2
⌉ , 𝑛 ≥ 7                            

𝑛 − 𝑖 + 1, for 1𝑠𝑡 component, ⌈
𝑛

2
⌉ + 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 7                    

⌈
𝑛

2
⌉ − 𝑖, for 5𝑡ℎ component, 1 ≤ 𝑖 ≤ ⌈

𝑛

2
⌉ − 1, 𝑛 ≥ 7                    

𝑖 − ⌈
𝑛

2
⌉ + 1, for 5𝑡ℎ component, ⌈

𝑛

2
⌉ ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 7                            

1, otherwise                                                                                 

 

 
 

 

 



ICASMI 2020
Journal of Physics: Conference Series 1751 (2021) 012017

IOP Publishing
doi:10.1088/1742-6596/1751/1/012017

8

 
 
 
 
 
 

Subcase 2.2(even n).  
First, for 𝑛

2
 odd. Let c be a coloring of certain barbell Origami graph 𝑩𝑂𝑛, We make the partition Π of 

𝑉(𝑩𝑂𝑛): 

𝑐(𝑢𝑖)       = {
2, for odd 𝑖, 3 ≤ 𝑖 ≤ 𝑛 − 1                
3, for even 𝑖, 2 ≤ 𝑖 ≤ 𝑛                      
4, for 𝑖 = 1                                            

 

𝑐(𝑢𝑛+𝑖)  = {
1, for 𝑖 = 1                                            
2, for odd 𝑖, 3 ≤ 𝑖 ≤ 𝑛 − 1                
3, for even 𝑖, 2 ≤ 𝑖 ≤ 𝑛                      

 

𝑐(𝑣𝑖)       = {
2, for even 𝑖, 2 ≤ 𝑖 ≤ 𝑛          
3, for odd 𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1    

 

𝑐(𝑣𝑛+𝑖)  = {
2, for even 𝑖, 2 ≤ 𝑖 ≤ 𝑛          
3, for odd 𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1    

 

𝑐(𝑤𝑖)       =

{
 
 

 
 1,  for 1 ≤ 𝑖 ≤

𝑛

2
− 1          

for  
𝑛

2
+ 1 ≤ 𝑖 ≤ 𝑛       

5 for 𝑖 =
𝑛

2
                         

 

𝑐(𝑤𝑛+𝑖)  =

{
 
 

 
 4,  for 1 ≤ 𝑖 ≤

𝑛

2
− 1          

for  
𝑛

2
+ 1 ≤ 𝑖 ≤ 𝑛       

5 for 𝑖 =
𝑛

2
                         

 

 
Therefore the color codes of all the vertices of 𝑉(𝐵𝑶𝒏) are : 

𝑐Π(𝑢𝑖) =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

1, for 1𝑠𝑡  and 3𝑟𝑑 component, 𝑖 odd, 1 ≤ 𝑖 ≤ 𝑛 − 1, 𝑛 ≥ 6                      

for 1𝑠𝑡  and 2𝑛𝑑component, 𝑖 even, 2 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 6                             

2, for 3𝑟𝑑  component, 𝑖 = 1                                                                              

𝑖 − 1, for 4𝑡ℎ component, 2 ≤ 𝑖 ≤
𝑛

2
, 𝑛 ≥ 6                                                        

𝑛 − 𝑖 + 1, for 4𝑡ℎ component,
𝑛

2
+ 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 6                                                  

𝑛

2
, for 5𝑡ℎ component, 𝑖 = 1                                                                               

𝑛

2
− 𝑖 + 1, for  5𝑡ℎ component, 2 ≤ 𝑖 ≤

𝑛

2
, 𝑛 ≥ 6                                                        

𝑖 −
𝑛

2
, for 5𝑡ℎ component,

𝑛

2
+ 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 6                                                  

0, otherwise                                                                                                           
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𝑐Π(𝑢𝑛+𝑖) =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

1, for 3𝑟𝑑  and 4𝑡ℎ component, 𝑖 odd, 1 ≤ 𝑖 ≤ 𝑛 − 1, 𝑛 ≥ 6                      

for 2𝑛𝑑  and 4𝑡ℎ component, 𝑖 even, 2 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 6                           

2, for 2𝑛𝑑  component, 𝑖 = 1                                                                              

𝑖 − 1, for 1𝑠𝑡 component, 2 ≤ 𝑖 ≤
𝑛

2
, 𝑛 ≥ 6                                                         

𝑛 − 𝑖 + 1, for 1𝑠𝑡 component, ,
𝑛

2
+ 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 6                                               

𝑛

2
, for 5𝑡ℎ component, 𝑖 = 1                                                                               

𝑛

2
− 𝑖 + 1, for  5𝑡ℎ component, 2 ≤ 𝑖 ≤

𝑛

2
, 𝑛 ≥ 6                                                        

𝑖 −
𝑛

2
, for 5𝑡ℎ component,

𝑛

2
+ 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 6                                                 

0, otherwise                                                                                                           
     

 

𝑐Π(𝑣𝑖) =

{
 
 
 
 
 
 

 
 
 
 
 
 𝑖, for 4𝑡ℎ component, 1 ≤ 𝑖 ≤

𝑛

2
, 𝑛 ≥ 6                                            

𝑛 − 𝑖 + 2, for 4𝑡ℎ component,
𝑛

2
+ 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 6                                     

0, for 3𝑟𝑑  component, 𝑖 odd, 1 ≤ 𝑖 ≤ 𝑛 − 1                                      

for 2𝑛𝑑 component, 𝑖 even, 2 ≤ 𝑖 ≤ 𝑛                                            
𝑛

2
− 𝑖 + 2, for 5𝑡ℎ component, 1 ≤ 𝑖 ≤

𝑛

2
− 1, 𝑛 ≥ 6                                      

𝑖 −
𝑛

2
+ 1, for 5𝑡ℎ component,

𝑛

2
+ 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 6                                      

2 for 1𝑠𝑡  component, 𝑖 =
𝑛

2
                                                                  

1, otherwise                                                                                              

 

𝑐Π(𝑣𝑛+𝑖) =

{
 
 
 
 
 
 

 
 
 
 
 
 𝑖, for 1𝑠𝑡  component, 1 ≤ 𝑖 ≤

𝑛

2
, 𝑛 ≥ 6                                            

𝑛 − 𝑖 + 2, for 1𝑠𝑡 component,
𝑛

2
+ 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 6                                     

0, for 3𝑟𝑑  component, 𝑖 odd, 1 ≤ 𝑖 ≤ 𝑛 − 1                                      

for 2𝑛𝑑 component, 𝑖 even, 2 ≤ 𝑖 ≤ 𝑛                                            
𝑛

2
− 𝑖 + 2, for 5𝑡ℎ component, 1 ≤ 𝑖 ≤

𝑛

2
− 1, 𝑛 ≥ 6                                     

𝑖 −
𝑛

2
+ 1, for 5𝑡ℎ component, 𝑖 odd,

𝑛

2
+ 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 6                          

2 for 4𝑡ℎ component, 𝑖 =
𝑛

2
                                                                 

1, otherwise                                                                                              
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𝑐Π(𝑤𝑖) =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 0, for 1𝑠𝑡  component, 1 ≤ 𝑖 ≤

𝑛

2
− 1                                      

for 1𝑠𝑡 component,
𝑛

2
+ 1 ≤ 𝑖 ≤ 𝑛                                      

2, for 1𝑠𝑡  component, 𝑖 =
𝑛

2
                                                      

𝑖, for 4𝑡ℎ component, 1 ≤ 𝑖 ≤
𝑛

2
, 𝑛 ≥ 6                               

𝑛 − 𝑖 + 1, for 4𝑡ℎ component,
𝑛

2
+ 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 6                        

𝑛

2
− 𝑖 + 1, for 5𝑡ℎ component, 1 ≤ 𝑖 ≤

𝑛

2
− 1, 𝑛 ≥ 6                       

𝑖 −
𝑛

2
, for 5𝑡ℎ component,

𝑛

2
+ 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 6                       

1, otherwise                                                                                 

 

𝑐Π(𝑤𝑛+𝑖) =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 0, for 4𝑡ℎ component, 1 ≤ 𝑖 ≤

𝑛

2
− 1                                      

for 4𝑡ℎ component,
𝑛

2
+ 1 ≤ 𝑖 ≤ 𝑛                                      

2, for 4𝑡ℎ component, 𝑖 =
𝑛

2
                                                      

𝑖, for 1𝑠𝑡  component, 1 ≤ 𝑖 ≤
𝑛

2
, 𝑛 ≥ 6                                

𝑛 − 𝑖 + 1, for 1𝑠𝑡 component,
𝑛

2
+ 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 6                         

𝑛

2
− 𝑖 + 1, for 5𝑡ℎ component, 1 ≤ 𝑖 ≤

𝑛

2
− 1, 𝑛 ≥ 6                       

𝑖 −
𝑛

2
, for 5𝑡ℎ component,

𝑛

2
+ 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 6                       

1, otherwise                                                                                 

 

 

Next, for 𝑛
2
 even. Let c be a coloring of barbell Origami graph 𝑩𝑂𝑛, We make the partition Π of 

𝑉(𝑩𝑂𝑛): 

𝑐(𝑢𝑖)       = {
2, for odd 𝑖, 3 ≤ 𝑖 ≤ 𝑛 − 1                
3, for even 𝑖, 2 ≤ 𝑖 ≤ 𝑛                      
4, for 𝑖 = 1                                            

 

𝑐(𝑢𝑛+𝑖)  = {
1, for 𝑖 = 1                                            
2, for odd 𝑖, 3 ≤ 𝑖 ≤ 𝑛 − 1                
3, for even 𝑖, 2 ≤ 𝑖 ≤ 𝑛                      

 

𝑐(𝑣𝑖)       = {
2, for even 𝑖, 2 ≤ 𝑖 ≤ 𝑛          
3, for odd 𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1    

 

𝑐(𝑣𝑛+𝑖)  = {
2, for even 𝑖, 2 ≤ 𝑖 ≤ 𝑛          
3, for odd 𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1    

 

𝑐(𝑤𝑖)       =

{
 
 

 
 1,  for 1 ≤ 𝑖 ≤

𝑛

2
                 

for  
𝑛

2
+ 2 ≤ 𝑖 ≤ 𝑛       

5 for 𝑖 =
𝑛

2
+ 1                 

 

𝑐(𝑤𝑛+𝑖)  =

{
 
 

 
 4, for 1 ≤ 𝑖 ≤

𝑛

2
                  

for  
𝑛

2
+ 1 ≤ 𝑖 ≤ 𝑛       

5 for 𝑖 =
𝑛

2
+ 1                 
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Therefore the color codes of all the vertices of 𝑉(𝑩𝑶𝒏) are : 

𝑐Π(𝑢𝑖) =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

1, for 1𝑠𝑡 and 3𝑟𝑑  component, 𝑖 odd, 1 ≤ 𝑖 ≤ 𝑛 − 1, 𝑛 ≥ 4                      

for 1𝑠𝑡  and 2𝑛𝑑component, 𝑖 even, 2 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 4                             

2, for 2𝑛𝑑  component, 𝑖 = 1                                                                              

𝑖 − 1, for 4𝑡ℎ component, 2 ≤ 𝑖 ≤
𝑛

2
, 𝑛 ≥ 4                                                        

𝑛 − 𝑖 + 1, for 4𝑡ℎ component,
𝑛

2
+ 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 4                                                 

𝑛

2
, for 5𝑡ℎ component, 𝑖 = 1                                                                               

𝑛

2
− 𝑖 + 2, for  5𝑡ℎ component, 2 ≤ 𝑖 ≤

𝑛

2
+ 1, 𝑛 ≥ 4                                                

𝑖 −
𝑛

2
− 1, for 5𝑡ℎ component,

𝑛

2
+ 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 4                                                 

0, otherwise                                                                                                           
     

 

𝑐Π(𝑢𝑛+𝑖) =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

1, for 3𝑟𝑑  and 4𝑡ℎ component, 1 ≤ 𝑖 ≤ 𝑛 − 1, 𝑛 ≥ 4                                  

for 2𝑛𝑑  and 4𝑡ℎ component, 𝑖 even, 2 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 4                            

2, for 2𝑛𝑑 component, 𝑖 = 1                                                                              

𝑖 − 1, for 1𝑠𝑡  component, 2 ≤ 𝑖 ≤
𝑛

2
, 𝑛 ≥ 4                                                         

𝑛 − 𝑖 + 1, for 1𝑠𝑡  component,
𝑛

2
+ 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 4                                                 

𝑛

2
, for 5𝑡ℎ component, 𝑖 = 1                                                                               

𝑛

2
− 𝑖 + 2, for 5𝑡ℎ component, 2 ≤ 𝑖 ≤

𝑛

2
+ 1, 𝑛 ≥ 4                                                  

𝑖 −
𝑛

2
− 1, for 5𝑡ℎ component,

𝑛

2
+ 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 4                                                  

0, otherwise                                                                                                           
     

 

𝑐Π(𝑣𝑖) =

{
 
 
 
 
 
 

 
 
 
 
 
 𝑖, for 4𝑡ℎ component, 1 ≤ 𝑖 ≤

𝑛

2
, 𝑛 ≥ 4                                           

𝑛 − 𝑖 + 2, for 4𝑡ℎ component,
𝑛

2
+ 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 4                                     

0, for 3𝑟𝑑  component, 𝑖 odd, 1 ≤ 𝑖 ≤ 𝑛 − 1                                      

for 2𝑛𝑑  component, 𝑖 even, 2 ≤ 𝑖 ≤ 𝑛                                            
𝑛

2
− 𝑖 + 3, for 5𝑡ℎ component, 2 ≤ 𝑖 ≤

𝑛

2
, 𝑛 ≥ 4                                            

𝑛

2
+ 1 for 5𝑡ℎ component, 𝑖 = 1                                                                  

𝑖 −
𝑛

2
, for 5𝑡ℎ component,

𝑛

2
+ 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 4                                     

1, otherwise                                                                                              
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𝑐Π(𝑣𝑛+𝑖) =

{
 
 
 
 
 
 

 
 
 
 
 
 𝑖, for 1𝑠𝑡  component, 𝑖 odd, 1 ≤ 𝑖 ≤

𝑛

2
, 𝑛 ≥ 4                                 

𝑛 − 𝑖 + 2, for 1𝑠𝑡  component,
𝑛

2
+ 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 4                                     

0, for 3𝑟𝑑  component, 𝑖 odd, 1 ≤ 𝑖 ≤ 𝑛 − 1                                      

for 2𝑛𝑑  component, 𝑖 even, 2 ≤ 𝑖 ≤ 𝑛                                            
𝑛

2
− 𝑖 + 3, for 5𝑡ℎ component, 2 ≤ 𝑖 ≤

𝑛

2
, 𝑛 ≥ 4                                            

𝑛

2
+ 1 for 5𝑡ℎ component, 𝑖 = 1                                                                  

𝑖 −
𝑛

2
, for 5𝑡ℎ component, 𝑖 odd,

𝑛

2
+ 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 4                         

1, otherwise                                                                                              

 

𝑐Π(𝑤𝑖) =

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 0, for 1𝑠𝑡  component, 1 ≤ 𝑖 ≤

𝑛

2
− 1                                      

for 1𝑠𝑡 component,
𝑛

2
+ 1 ≤ 𝑖 ≤ 𝑛                                      

for 5𝑡ℎ component, 𝑖 =
𝑛

2
+ 1                                              

2, for 1𝑠𝑡 component, 𝑖 =
𝑛

2
+ 1                                              

𝑖, for 4𝑡ℎ component, 1 ≤ 𝑖 ≤
𝑛

2
, 𝑛 ≥ 4                               

𝑛 − 𝑖 + 1, for 4𝑡ℎ component,
𝑛

2
+ 2 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 4                        

𝑛

2
− 𝑖 + 3, for 5𝑡ℎ component, 1 ≤ 𝑖 ≤

𝑛

2
− 1, 𝑛 ≥ 8                       

𝑖 −
𝑛

2
, for 5𝑡ℎ component,

𝑛

2
+ 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 8                       

1, otherwise                                                                                 

 

𝑐Π(𝑤𝑛+𝑖) =

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 0, for 4𝑡ℎ component, 1 ≤ 𝑖 ≤

𝑛

2
− 1                                      

for 4𝑡ℎ component,
𝑛

2
+ 1 ≤ 𝑖 ≤ 𝑛                                      

for 5𝑡ℎ component, 𝑖 =
𝑛

2
+ 1                                              

2, for 4𝑡ℎ component, 𝑖 =
𝑛

2
+ 1                                              

𝑖, for 1𝑠𝑡  component, 1 ≤ 𝑖 ≤
𝑛

2
, 𝑛 ≥ 4                                

𝑛 − 𝑖 + 1, for 1𝑠𝑡  component,
𝑛

2
+ 2 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 4                        

𝑛

2
− 𝑖 + 3, for 5𝑡ℎ component, 1 ≤ 𝑖 ≤

𝑛

2
− 1, 𝑛 ≥ 8                       

𝑖 −
𝑛

2
, for 5𝑡ℎ component,

𝑛

2
+ 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 8                       

1, otherwise                                                                                 

 

 
Since all the vertices have different color codes, c is a locating coloring of certain barbell Origami 

graphs 𝑩𝑂𝑛, so that χ𝐿(𝑩𝑂𝑛) = 5, for 𝑛 ≥ 3. This concludes the proof.              
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