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ABSTRACT 
Emergence of drug resistant bacteria is one of the serious problems in today’s public health. 
However, the relationship between genomic mutation of bacteria and the phenotypic dif-
ference of them is still unclear. In this paper, based on the mutation information in whole 
genome sequences of 96 MRSA strains, two kinds of phenotypes (pathogenicity and drug 
resistance) were learnt and predicted by machine learning algorithms. As a result of effec-
tive feature selection by cross entropy based sparse logistic regression, these phenotypes 
could be predicted in sufficiently high accuracy (100% and 97.87%, respectively) with less 
than 10 features. It means that we could develop a novel rapid test method in the future for 
checking MRSA phenotypes. 

 

1. INTRODUCTION 
As shown in an action plan shown by World Health Organization in 2015, antimicrobial resistance is 

a really serious problem in today’s infectious disorder. Due to the fast evolution of bacteria, they obtain the 
ability of resisting antimicrobial drugs. Among various single- or multi-drug resistant bacteria, Methicil-
lin-resistant Staphylococcus aureus (MRSA) is one of the most popular and serious infectious microbial. 
The ability of surviving under the treatment by methicillin might come from the genomic sequence of mi-
crobial, however, still it is unclear in which mutation of genome causes it. Especially, reason of phenotypic 
difference between MRSA strains has not been well studied. 

To analyze the relationship between genotypes and phenotypes, we have red whole genome sequences 
of 96 MRSA strains by a next generation sequencer. After mapping the short reads from sequencer onto a 
reference genome sequence of MRSA, thousands of mutations called insertion or deletion (Indel) have 
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been detected in the whole genome sequences of 96 MRSA strains. On the other hand, we prepared two 
phenotypes of these MRSA strains. The first phenotype is about pathogeny, and the second is about drug 
resistance. Then, next problem to be solved is finding the relationship between mutations and phenotypes. 
Actually, most of the mutations might be irrelevant from these phenotypes and only a small subset of them 
might cause the difference in the phenotypes of the strains. In this paper, we applied machine learning al-
gorithms, which is classification by support vector machine and feature selection for the improvement of 
classification accuracy. Through the process of finding a feature subset for higher classification accuracy, 
features (i.e. mutations) irrelevant to a phenotype are naturally removed. As a result, we could achieve 
highly accurate classification by less than 10 features in average. For effectively selecting features from high 
dimensional binary vectors representing the existence of mutations in MRSA strains, we used cross entro-
py based sparse logistic regression. Since our MRSA mutation data show a certain level of sparsity (around 
80% of values are zero), the algorithm is expected to improve the performance of classification. 

2. METHODS 
2.1. Sparse Logistic Regression 

Sparse model is an approach to reduce complexity by neglecting less influential features in the model. 
The sparse model leads to achieve more interpretable selected features for a typical sparse dataset. The 
sparsity concept has been gaining attention in many fields of application such as statistics, data mining, 
and signal processing [1]. Sparsity also plays an important role in genomic studies especially in term of 
reducing fraction of genes in order to accurately predict disease out of non-disease samples [2]. The idea 
of this technique is simply achieved by modifying the model (e.g. by adding regularization on the model) 
that simultaneously produces good predictions and sparse (i.e. zero coefficient for less influential features) 
[3].  

One of the applications of sparse model is that in logistic regression which is a statistical model to 
handle a binary (dichotomous) classification problem. Many researchers have been dealing with sparse 
model along with logistic regression [2, 4-6]. This binary response can be viewed as a nonlinear function 
of features. Let { }0,1iy ∈  be a sample vector of size 1n× , ix  be a 1p×  vector of features, and 

( )1|i i ip yπ = = x  be the vector of probability estimates. Logistic regression generates the coefficients of 
features to predict a logit transformation of the probability of sample cases: 
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where 0β  is the intercept and jβ  is the j-th coefficient of j-th feature. The log-likelihood function of 
above equation is defined as: 
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where ( )0 1, , , pβ β β= β , vector of coefficients. 
The advantage of logistic regression is its possibility to estimate the probabilities iπ  and 1 iπ−  si-

multaneously for each class and making classification. 
To construct a sparse logistic regression is simply by adding a nonnegative penalty or constrain term 

to the logistic regression model in order to reduce the dimension of features. The most well-known penal-
ty is one proposed by Tibshirani [7], the L1-penalty, also known as LASSO (least absolute shrinkage and 
selection operator). The L1-penalty equals to the sum of all absolute coefficients, jβ= ∑β . This penalty 
constrain simultaneously performs feature selection and coefficient estimation. The penalized logistic re-
gression then becomes ( )PLR λ= − + β β . The estimate of coefficient then defined as 
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The scalar λ is a tuning parameter. Choosing this parameter is crucial in the feature selection to suc-
cessfully reach high accuracies [8].  

2.2. Cross Entropy Method 

The Cross Entropy Method (CEM) was originally introduced by Rubinstein [9] as an adaptive algo-
rithm to estimate probabilities of rare events in complex stochastic network by involving minimization of 
variance. By then a simple modification of the original work could be used for solving a complex combi-
natorial optimization problem [10]. Many applications have been shown to testify the power of the CE 
method for solving NP-hard problems. The advantages of the cross entropy method in comparison to 
other optimization methods, such as simulated annealing, tabu search, and genetic algorithm, are fast and 
optimal updating rules [11, 12].  

Briefly, the CEM involves two iterative phases: 1) Generating random data sample as candidate para-
meters using a specified mechanism, 2) Updating the parameters based on the data to produce “better” 
solution in the next iteration [13]. The details of CEM are as follows. Suppose that we aim to minimize (or 
maximize) the target function S over the solution space Ω and let *x  the corresponding minimizer. For 
simplicity let assume we have only one single variable to minimize S(x). Denote the minimum fitness by 

*θ , so that 

( ) ( )* * minS x S xθ = =  

So, we wish to minimize the function S(x) over all x in the solution space Ω. Based on CEM, initially 
we generate n samples as the candidate solution to minimize S(x). The samples can be generated according 
to a uniformly random distribution or a certain normal random distribution. Let’s assume, for instance, a 
normal random distribution. Next, we calculate the fitness of each sample and sort the samples based on 
the fitness. Then calculate the mean and the standard deviation only on the best fitness proportion or the 
elite samples. Based on this pair of mean and standard deviation we generate samples in the next iteration. 
These iterative procedures are conducted until the stopping criteria satisfied.  

The tutorial on CEM is given in [13] and some examples of CEM application can be found in [14]. 
The following figure shows pseudo-code of the cross-entropy algorithm for normal distribution. 

Input: ( )0 0,1 0,2 0,, , , pβ β β β=   and ( )0 0,1 0,2 0,, , , pσ σ σ σ=   % initial distribution parameters 
n % sample size 
ρ % elite sample size 
ε % stopping criterion 
d % initial criterion 
t = 0% iteration 

while d ≥ ε 
• set t = t + 1 
• generate matrix B of size n × p based on vector β0 and the corresponding standard deviation σ0  
• for each column of B, fit the values to the objective function 
• evaluate the fitness 
• sort each column of B partially based on the fitness 
• take the best ρ sample of each column of B 
• calculate the means and deviations to get new parameters βt+1 and σt+1 
• calculate d 

end while 

3. RESULTS AND DISCUSSIONS 
3.1. Datasets 

From male and female patients mainly more than 60 years old at Kanazawa University Hospital from 
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1998 to 2015, 96 strains of MRSA were taken and their DNA sequences have been extracted. DNA se-
quences from a strain are red by Hiseq 2500, one of the most popular and reliable next generation se-
quencers. The output of the sequencer is a huge amount of fixed length subsequences called short reads. In 
this experiment, for each strain we obtained around 6.5 million of short reads with the length of 150 base. 
Using Bowtie 2 software, they are mapped to HO 5096 0412, the reference genome sequence which we 
chose. After that, 5587 Indels were detected by using VarScan software. It means that we prepared 96 fea-
ture vectors with binary values for 5587 features. At this point, a feature corresponds to a specific insertion 
or deletion at a position of reference genome sequence. For instance, a feature “581245:T->TTCAGAC” 
corresponds to an insertion of “TCAGAC” right after the “T” at position 581245 of the reference genome 
sequence. Since two or more features sharing completely the same pattern of occurrence in 96 strains are 
harmful for classification accuracy, such redundant features are unified. Finally, 96 feature vectors with 
1978 unified features have been prepared. About the phenotypes used as class labels to be predicted, a pa-
thogenic phenotype (1: developed, 0: latent) is identified for all 96 strains. For another phenotype about 
drug resistance, resistance of each strain to four kinds of antimicrobial drugs (Piperacillin (PIPC), Sulbac-
tam/Ampicillin (S/A), Cefazolin (CEZ), and Clindamycin (CLDM)) has been tested (1: PIPC, S/A, and 
CEZ resistant, 0: PIPC, S/A, CEZ, and CLDM resistant). Since we could not precisely identify this pheno-
type for two strains, 94 strains were used for predicting the drug resistance phenotype. In this context, two 
features became meaningless and were removed since they showed the same value (all zero or all one) for 
94 strains. Therefore, 1976 unified features were used for predicting drug resistance phenotype. Details of 
two datasets are summarized in Table 1.  

3.2. Experiment 

In our experiment we adopted leave one out cross validation (LOOCV) to ensure our methods work 
well. As a result, we have training-testing pair datasets as the number of samples, i.e. 96 for Pathogenicity 
dataset and 94 for Drug resistance dataset. Dealing with high dimensional dataset in some circumstance is 
time consuming, especially when adopting LOOCV. To avoid spending too much time for eliminating so 
many unimportant features, we applied random forest method to remove zero-importance features from 
training datasets. After removing these features, the sparse logistic regression took place to select and es-
timate the features and their coefficients simultaneously. We employed CE algorithm to estimate the coef-
ficients. At the end we used support vector machine (SVM) classifier for sample classification. 

3.3. Results 

As shown in Table 2 and Table 3, the performance of our proposed method applied to both datasets 
based on classification accuracy was almost perfect. In Pathogenicity dataset we reached 100% accuracy, 
while in Drug resistance dataset the accuracy was 97.87%. They outperformed the accuracies 92.1% and 
95.5% achieved by the similar experiments we did with correlation-based feature selection with grid 
search.  

Since the set of selected features are different in every iteration of cross-validation, we counted each 
feature’s occurrence (i.e. inclusion in feature set) through the cross validation. Relative frequency indicates 
the percentage of occurrence, and features with high relative frequency are shown in Figure 1 and Figure 
2. For the top 4 selected features in Pathogenicity datasets, the occurrences of features are relatively to 
have the same level when LOOCV to apply. In contrast, we can easily see the disparity among the top 4 
selected features in Drug resistance dataset. This implies that feature selection in Pathogenicity dataset 
might be more stable than in Drug resistance dataset. 

4. CONCLUSION 
Feature selection to achieve high accuracy classification is one of the main focuses in the data analysis 

for high-dimensional datasets. A powerful technique to a typical dataset does not guarantee to be appro-
priate for another dataset. We have shown that our method can perform good results in tackling feature  
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Table 1. Brief information for the datasets. 

Dataset (phenotype) Samples Features Classes 

Pathogenicity 
96 (1: 63 samples,  

0: 33 samples) 
1978 

1: developed 
0: latent 

Drug resistance 
94 (1: 19 samples,  

0: 75 samples) 
1976 

1: PIPC, S/A, and CEZ resistant 
0: PIPC, S/A, CEZ, and CLDM resistant 

 
Table 2. Results for Pathogenicity dataset. Best performance is shown in bold face.  

Tuning parameter (λ) 2.0 3.0 4.0 4.5 4.5 

Classification  
Accuracy 

0.9063 0.9583 0.9896 1.0000 0.9896 

Average Number of  
Selected Features 

12.71 12.22 5.73 5.36 3.03 

Best performance shown in boldface. 
 
Table 3. Results for Drug resistance dataset. Best performance is shown in bold face. 

Tuning parameter (λ) 2.0 2.5 3.0 3.5 5.0 

Classification  
Accuracy 

0.9468 0.9681 0.9787 0.9681 0.9574 

Average Number of  
Selected Features 

7.32 5.62 4.62 4.68 3.44 

 

 
Figure 1. Top features selected in pathogenicity dataset. 
These features are frequently included in the set of se-
lected features through cross-validation. 

100.00

48.96

92.71

59.38

27.08

75.00

84.38

x1

x2

x11

x12

x65

x87

x1975

Relative Frequency

https://doi.org/10.4236/jbise.2020.137016


 

 

https://doi.org/10.4236/jbise.2020.137016 173 J. Biomedical Science and Engineering 
 

 

Figure 2. Top features selected in Drug resistance dataset. These 
features are frequently included in the set of selected features 
through cross-validation.  

 
selection for sparse datasets especially for the datasets we used in this work. In addition, this result could 
be utilized to develop a novel rapid test method in the future for checking MRSA phenotypes, if the feature 
set is further tested by real experiments. 
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