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Abstract: The development of techniques for calibrating the trip distribution models to obtain 
O-D matrices is well advanced. Therefore, the study of transportation demand should be 
implemented with distribution of trips in origins and destinations. The first step to study trip 
distribution is to divide physical space under investigation into mutually exclusive zones or 
locations. 
 
Calibration of the gravity model involves adjusting the friction factor with Newton-Raphson 
Method. An important consideration in developing the gravity model is "balancing" 
productions and attractions. Balancing means that the total productions and attractions for a 
study area are equal. The objective of this paper is to present the pattern of balancing factor in 
Gravity to achieve convergence with any beta values as input, using Matlab program. It is 
shown, by way of exponential as friction factor and using Double Constraint Gravity as 
balancing factor, we could see that the bigger beta value as input, the longer iteration to 
achieve convergence. 
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1. INTRODUCTION 
 
The transportation activity is essentially to link people and goods that are spatially separated. 
Calibration of the gravity model involves adjusting the friction factor with Newton-Raphson 
Method. An important consideration in developing the gravity model is "balancing" 
productions and attractions. Balancing means that the total productions and attractions for a 
study area are equal.  
 
Sometimes, we put any beta value as first input to count balancing factor in modeling. The 
objective of this paper is to present the pattern of balancing factor in Gravity to achieve 
convergence with any beta values as input, using Matlab program. The friction factor is 
exponential function, and the type of balancing factor is DCGR. Iterative solution algorithms, 
that are modifications of the Newton-Raphson Technique, are proposed to solve each of the 
model formulations. 
 
2. O-D MATRICES 
 
The origin-destination matrix is a key element of the classical four-stages model, widely used 
in transportation modeling. This approach assumes that the survey area is divided into several 
zones, those are considered as indivisible entities during the modeling process. 
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OD matrix estimation, corresponding to the distribution phase of the four-stages process, is 
the most popular representation of transportation demand. It consists in defining a two-entries 
table, called the demand matrix or origin-destination (OD) matrix, whose rows and columns 
represent the zones of the study area. A cell of the matrix refers therefore to a particular 
origin-destination pair, and contains the total number of people accomplishing this journey.  
 
This number has to be estimated from the data. Much research has concentrated on estimating 
an OD matrix and using it efficiently. Therefore, the study of transportation demand should be 
implemented with distribution of trips in origins and destinations. The first step to study trip 
distribution is to divide physical space under investigation into mutually exclusive zones or 
locations. Then, the trip distribution can be conveniently specified in a matrix form. If tid(k) 
indicates the number of trips during a given time period k between origin location i and 
destination location d, an n-by-n matrix T(k) = [tid(k)] can be constructed where n is the 
number of locations. This matrix is often called trip table, trip distribution matrix or origin-
destination (O-D) matrix. In general, a typical O-D matrix is not symmetric and shown in 
Figure 1. 
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 Figure 1 O-D Matrices 
 
From the O-D matrix, trip production and attraction of each location can be easily obtained. 
The trip production of i, Ai(k) is the sum of row i representing the total number of trips 
originating from location i. The sum of column d, Bd (k) is the total number of trips destined 
to location d and is called the trip attraction of d. The grand total Tid(k) of the O-D matrix, 
called total trip demand, represents the total number of trips across all locations. The 
following summarizes the characteristics of the O-D matrix. 
 
3.  GRAVITY MODEL 
 
Gravity models are the most common form of trip distribution models currently in use. They 
are based on the assumption that the trip interchange between zones is directly proportional to 
the relative attractiveness of each zone, while inversely proportional to some function of  the 
spatial separation between the zones. Gravity models have a number of theoretical 
advantages. However, they also have shortcomings. The most significant may be that they 
lack the ability to explain many behavioral aspects of destination choices, as travel costs and 
attraction are the only factors that solely determine the trip interchange patterns. 
 
The gravity model is much like Newton's theory of gravity. The gravity model assumes that 
the trips produced at an origin and attracted to a destination are directly proportional to the 
total trip productions at the origin and the total attractions at the destination. The calibrating 
term or "friction factor" (fid) represents the reluctance or impedance of persons to make trips 
of various duration or distances. The general friction factor indicates that as travel times 
increase, travelers are increasingly less likely to make trips of such lengths. Calibration of the 
gravity model involves adjusting the friction factor. 
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The socioeconomic adjustment factor is an adjustment factor for individual trip interchanges. 
An important consideration in developing the gravity model is "balancing" productions and 
attractions. Balancing means that the total productions and attractions for a study area are 
equal. 
 
The analogous transport gravity model is: 
 

 2
id

di
id d

OO
kT =     :   k is a constant             (1) 

 
It shown that Trip produce at i an attracted and attracted at d equal as Oi and Dd , otherwise as 
square inverse to distance from i to d. In mathematics form, this gravity model can be 
expresses as : 

 

iddiid fDOT =     (2)           
 

Equation (2) show if one of value Oi and one of value Dd become double, so trip between 
zone i to d increase four times. This is fatality error because the real trip is supposed to be 
increase two times. To solve this problems, we need a deterrence factor to limited equation 
Tid.  

             ∑ =
d iOidT  and ∑ =

i dDidT            (3)                   

 
Suppose now there are M modes travelling between zones, the modified gravity model 
(Doubly-Constrained Gravity Model) can then be expressed as: 
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where: m

iA  and m
dB = the balancing factors expressed as: 
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Here, fid is measure of accessibility from zone i to zone d. Hyman (1969) stated there are three 
kinds of friction factor functions can be selected: power, exponential, and combined. The 
separation distance is referred to as the deterrence or impedance function and is often 
measured by travel time. 
 
 Power Function : ( ) α−= idid CCf   (6) 

 Exponential Function : ( ) idC
id eCf β−=   (7) 

 Tanner/Combined Function : ( ) idC
idid eCCf βα −= .   (8) 

 

There are four kinds of Gravity model (Tamin,1997): 
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 Un Constraint Gravity (UCGR) 
This model is have no constraint, that’s mean the total trip must be equal as Total trip that 
produced from production and attraction stage. Otherwise production and attraction from 
model is equal, but it shouldn’t equal as production and attraction that we expected.  

 

idddiiid fBDAOT =  , 
 

 As Equation 4, where 1=iA  for all i  and 1=dB  for all d. 
 

 Gravity single constraint (Production Constraint Gravity/PCGR) 
Actual total trip from production is should be same as total trip as result from modeling. 
Production as result from modeling should be same as production we expected. Attraction 
from modeling could be different from attraction that expected.  
 

As Equation 4, where  1=dB   for all d and ( )∑
=

d
iddd

i fDB
A 1  for all i. 

 Gravity single constraint (Attraction Constraint Gravity/ACGR) 
Actual total trip from production is should be same as total trip as result from modeling. 
Attraction as result from modeling should be same as attraction we expected. Production 
from modeling could be different from production that expected.  
 

As Equation 4, where 1=iA  for all i  and ( )∑
=

i
idii

d fOA
B 1  for all d 

 
 Double Constraint Gravity (DCGR) 

Production and Attraction in this model should be same as expected, see equation 4..  
 

 ( )∑
=

d
iddd

i fDB
A 1  for all  i and  

 ( )∑
=

i
idii

d fOA
B 1  for all d. 

From that equation  it shown that value of m
iA  and m

dB  depend each other and it achieved 
by iteration process. Give starting point Bd = 1 for all d, so we could get the value of Ai. 
This value of Ai is used for equation (4) to get value of Bd. It would be continuously until 
Ai and Bd value achieve convergence. The first value for balancing factor not influence the 
final result, otherwise influence to n iteration to get convergence.  

 
For the simplification purposes, we define the following terms as follows:  

 
[ ]idT  = the observed O-D matrix from origin i to destination d.  

m
iO   =  the total trips of each mode m generated by origin i. 
m
dD  =  the total trips of each mode m attracted by destination d. 

m
d

m
i BA ,  =  the balancing factors for each mode m for origin i and destination d. 
m
idC   =  the trip cost of travelling from origin i to destination d by mode m. 

β  =  the unknown estimated parameter to be calibrated.  
m     =  the total number of modes. 
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N           =  the total number of origins or destinations. 
fid =   a calibration term for interchange id, (friction factor) or travel time factor  
  idC

id ef β−=  

i                 =   origin zone 
d        =  destination zone 
 

We use the notational conventional that ∑
m

means the summation begins at m=1 and continues 

over the entire range of the subscript. 
 
4. METHODOLOGY 
 
Newton–Raphson method is an efficient algorithm for finding approximations to the zeros (or 
roots) of a real-valued function.Using Newton-Raphson Method, we should find derivative 
function of Ai and Bd. It produces iteratively a sequence of approximations to the root, their 
rate of convergence to the root is quadratic. It can also be used to find a minimum or 
maximum of such a function, by finding a zero in the function's first derivative. (Weisstein 
and Eric W.,2008). For further explanation, is shown as bellow. 
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Before the gravity model can be used for prediction of future travel demand, it must be 
calibrated. Calibration is accomplished by adjusting the various factors within the gravity 
model until the model can duplicate a known base year’s trip distribution. For example, if you 
knew the trip distribution for the current year, you would adjust the gravity model so that it 
resulted in the same trip distribution as was measured for the current year. The method to 
calibrate the balancing factor in gravity model is shown as bellow. 
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Calculate deterrence (negative exponential) Fid ,
Fid β and Fid β
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Figure 2 Method of calibration balancing factor in gravity model  

 
5. RESULT 
 
This section present some result of the pattern of balancing factor in Gravity to achieve 
convergence with any beta values as input . We put beta value as 0.01, 0.05, 0.1, 0.5, 1, 2 and 
3. Using Matlab program, we calculate the balancing factor Ai and Bd, first derivative ∂Ai/∂β 
and ∂Bd/∂β and calculate second derivative ∂2Ai/∂β2 and ∂2Bd/∂β2. 
   
a. Ai 
 

Table 1 Iteration Beta Value as Input for Calculate Ai 
Iteration Beta 0.01 Beta 0.05 Beta 0.1 Beta 0.5 Beta 1 Beta 2 Beta 3

1 0.00156 0.008545 0.026168 0.077422 0.105898 0.107424 0.107429
2 3.83E-06 0.000458 0.00271 0.413982 0.628105 0.638962 0.638995
3 5.03E-09 2.14E-05 0.000648 0.685995 1.311641 1.342932 1.343014
4 7.53E-12 9.13E-07 0.000117 0.854713 2.292533 2.370142 2.370314
5 1.15E-14 3.86E-08 1.98E-05 0.891637 3.757836 3.947576 3.947921
6 8.88E-16 1.64E-09 3.3E-06 0.821214 5.953823 6.4296 6.430296
7 8.88E-16 6.93E-11 5.47E-07 0.701899 9.151556 10.37844 10.37987

…..
……

9029 #N/A #N/A #N/A #N/A #N/A #N/A 6.1E-05
9030 #N/A #N/A #N/A #N/A #N/A #N/A 3.05E-05
9031 #N/A #N/A #N/A #N/A #N/A #N/A 3.05E-05
9032 #N/A #N/A #N/A #N/A #N/A #N/A 0
9033 #N/A #N/A #N/A #N/A #N/A #N/A 0  
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Figure 3  The Number of Iteration with Several Beta Value as Input for Ai 

 
As shown in Table 1 and Figure 3, we know that with value of beta=0.01, we achieve 
convergence level in iterative 8th. If we put value of beta=0.05, we need iterative 11th to 
achieve convergence. It have same pattern until iterative 9032 to achieve convergence with 
the value of beta=3. So, the bigger we put value for beta, the longer iterative to achieve 
convergence. 
 
b.  Bd 
 

Table 2 Iteration Beta Value as Input for Calculate Bd 
Iteration Beta 0.01 Beta 0.05 Beta 0.1 Beta 0.5 Beta 1 Beta 2 Beta 3

1 0.001778 0.002465 0.003494 0.009568 0.010402 0.010443 0.010443
2 6.11E-08 2.68E-06 1.28E-05 0.000653 0.001232 0.001283 0.001283
3 1.2E-11 1.51E-08 1.55E-07 0.00086 0.002132 0.002284 0.002285
4 1.48E-15 2.77E-10 7.78E-08 0.000897 0.003228 0.003628 0.00363
5 7.59E-18 2.07E-11 1.87E-08 0.000818 0.00457 0.005548 0.005552
6 4.34E-19 9.64E-13 3.42E-09 0.000684 0.006132 0.008374 0.008386
7 0 4.17E-14 5.83E-10 0.00055 0.007755 0.012596 0.012625

…..
……

9260 #N/A #N/A #N/A #N/A #N/A #N/A 1.79E-07
9261 #N/A #N/A #N/A #N/A #N/A #N/A 1.19E-07
9262 #N/A #N/A #N/A #N/A #N/A #N/A 5.96E-08
9263 #N/A #N/A #N/A #N/A #N/A #N/A #N/A
9264 #N/A #N/A #N/A #N/A #N/A #N/A #N/A  
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Figure 4  The Number of Iteration with Several Beta Value as Input for Bd 

 
As shown in Table 2 and Figure 4, we know that with value of beta=0.01, we achieve 
convergence level in iterative 7th. If we put value of beta=0.05, we need iterative 12th to 
achieve convergence. It have same pattern until iterative 9263 to achieve convergence with 
the value of beta=3. So, the bigger we put value for beta, the longer iterative to achieve 
convergence. 
 
c.   ∂Ai/∂β 
 

Table 3 Iteration Beta Value as Input for Calculate ∂Ai/∂β 
Iteration Beta 0.01 Beta 0.05 Beta 0.1 Beta 0.5 Beta 1 Beta 2 Beta 3

1 1.294812 0.821618 1.488994 24975.68 3.27E+10 1.25E+23 1.56E+35
2 0.002818 0.11148 0.759096 16515.92 2.21E+10 8.67E+22 1.11E+35
3 3.88E-06 0.005211 0.15831 11770.87 1.65E+10 6.68E+22 8.85E+34
4 5.91E-09 0.000223 0.027798 8951.065 1.34E+10 5.59E+22 7.67E+34
5 9.31E-12 9.44E-06 0.004681 7162.507 1.15E+10 4.95E+22 6.97E+34
6 #N/A 4E-07 0.000778 5949.906 1.04E+10 4.54E+22 6.52E+34
7 #N/A 1.69E-08 0.000129 5075.446 9.69E+09 4.27E+22 6.2E+34

…..
……

8253 #N/A #N/A #N/A #N/A #N/A #N/A 2.36E+21
8254 #N/A #N/A #N/A #N/A #N/A #N/A 4.72E+21
8255 #N/A #N/A #N/A #N/A #N/A #N/A 4.72E+21
8256 #N/A #N/A #N/A #N/A #N/A #N/A #N/A
8257 #N/A #N/A #N/A #N/A #N/A #N/A #N/A  
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Figure 5  The Number of Iteration with Several Beta Value as Input for ∂Ai/∂β 

 
As shown in Table 3 and Figure 5, we know that with value of beta=0.01, we achieve 
convergence level in iterative 6th. If we put value of beta=0.05, we need iterative 24th to 
achieve convergence. It have same pattern until iterative 8256 to achieve convergence with 
the value of beta=3. So, the bigger we put value for beta, the longer iterative to achieve 
convergence. 
 
d.  ∂Bd/∂β 
 

Table 4 Iteration Beta Value as Input for Calculate ∂Bd/∂β 
Iteration Beta 0.01 Beta 0.05 Beta 0.1 Beta 0.5 Beta 1 Beta 2 Beta 3

1 0.093246 0.130724 0.190485 21.36944 35143278 3.05E+20 7.02E+32
2 3.69E-05 0.000513 0.001559 16.68217 34136471 2.98E+20 6.87E+32
3 6.72E-09 2.41E-06 3.85E-05 14.13229 33224361 2.91E+20 6.73E+32
4 1.89E-12 8.03E-08 2.25E-05 12.27604 32379524 2.85E+20 6.59E+32
5 6.23E-15 5.18E-09 4.63E-06 10.85308 31585256 2.79E+20 6.46E+32
6 #N/A 2.37E-10 8.17E-07 9.713661 30830928 2.73E+20 6.33E+32
7 #N/A 1.02E-11 1.38E-07 8.768866 30109378 2.67E+20 6.2E+32

…..
……

7987 #N/A #N/A #N/A #N/A #N/A #N/A 1.84E+19
7988 #N/A #N/A #N/A #N/A #N/A #N/A 1.84E+19
7989 #N/A #N/A #N/A #N/A #N/A #N/A 1.84E+19
7990 #N/A #N/A #N/A #N/A #N/A #N/A 0
7991 #N/A #N/A #N/A #N/A #N/A #N/A 0  
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Figure 6  The Number of Iteration with Several Beta Value as Input for ∂Bd/∂β 

 
As shown in Table 4 and Figure 6, we know that with value of beta=0.01, we achieve 
convergence level in iterative 6th. If we put value of beta=0.05, we need iterative 23rd to 
achieve convergence. It have same pattern until iterative 7990 to achieve convergence with 
the value of beta=3. So, the bigger we put value for beta, the longer iterative to achieve 
convergence. 
 
e.   ∂2Ai/∂ β2 
 

Table 5 Iteration Beta Value as Input for Calculate ∂2Ai/∂ β2 
Iteration Beta 0.01 Beta 0.05 Beta 0.1 Beta 0.5 Beta 1 Beta 2 Beta 3

1 160.248 219.6389 986.6004 1.18E+09 8.86E+19 1.59E+41 6.09E+61
2 0.250657 17.8852 239.6214 7.53E+08 5.7E+19 1.1E+41 4.34E+61
3 0.00036 0.801263 42.84941 5.22E+08 4E+19 8.4E+40 3.47E+61
4 5.56E-07 0.034184 7.244364 3.88E+08 3.06E+19 6.98E+40 3.01E+61
5 8.77E-10 0.001449 1.204915 3.05E+08 2.51E+19 6.13E+40 2.74E+61
6 6.82E-13 6.14E-05 0.199319 2.5E+08 2.17E+19 5.6E+40 2.56E+61
7 1.71E-12 2.6E-06 0.032909 2.11E+08 1.95E+19 5.24E+40 2.43E+61

…..
……

8718 #N/A #N/A #N/A #N/A #N/A #N/A 1.46E+48
8719 #N/A #N/A #N/A #N/A #N/A #N/A 1.46E+48
8720 #N/A #N/A #N/A #N/A #N/A #N/A 1.46E+48
8721 #N/A #N/A #N/A #N/A #N/A #N/A #N/A
8722 #N/A #N/A #N/A #N/A #N/A #N/A #N/A  
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Figure 7  The Number of Iteration with Several Beta Value as Input for ∂2Ai/∂ β2 

 

As shown in Table 5 and Figure 7, we know that with value of beta=0.01, we achieve 
convergence level in iterative 158th. If we put value of beta=0.05, we need iterative 158th to 
achieve convergence. It have same pattern until iterative 8721 to achieve convergence with 
the value of beta=3. So, the bigger we put value for beta, the longer iterative to achieve 
convergence. 
 
f.   ∂2Bd/∂β2 
 

Table 6 Iteration Beta Value as Input for Calculate ∂2Bd/∂β2 
Iteration Beta 0.01 Beta 0.05 Beta 0.1 Beta 0.5 Beta 1 Beta 2 Beta 3

1 5.110642 7.724222 13.54406 10788470 4.55E+18 2.86E+40 3.56E+61
2 0.002635 0.034941 0.024567 649748.6 2.26E+16 1.36E+38 1.02E+59
3 4.3E-07 4.18E-05 0.032973 546568.7 2.2E+16 1.35E+38 1.02E+59
4 2.33E-10 1.64E-05 0.007071 472453 2.15E+16 1.34E+38 1.02E+59
5 6.03E-13 8.35E-07 0.00126 416369.7 2.11E+16 1.33E+38 1.02E+59
6 8.88E-16 3.68E-08 0.000213 371933.2 2.07E+16 1.32E+38 1.02E+59
7 8.88E-16 1.57E-09 3.55E-05 335368.9 2.04E+16 1.31E+38 1.02E+59

…..
……

7795 #N/A #N/A #N/A #N/A #N/A #N/A 2.28E+46
7796 #N/A #N/A #N/A #N/A #N/A #N/A 2.28E+46
7797 #N/A #N/A #N/A #N/A #N/A #N/A 2.28E+46
7798 #N/A #N/A #N/A #N/A #N/A #N/A 0
7799 #N/A #N/A #N/A #N/A #N/A #N/A 0  
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Figure 8  The Number of Iteration with Several Beta Value as Input for ∂2Ai/∂ β2 

 
As shown in Table 6 and Figure 8, we know that with value of beta=0.01, we achieve 
convergence level in iterative 157th. If we put value of beta=0.05, we need iterative 157th to 
achieve convergence. It have same pattern until iterative 7798 to achieve convergence with 
the value of beta=3. So, the bigger we put value for beta, the longer iterative to achieve 
convergence. 
 
The number of iteration for each beta value to achieve convergence in Ai, Bd, ∂Ai/∂β, ∂Bd/∂β, 
∂2Ai/∂ β2 and ∂2Bd/∂β2 is described in Table 7. 
 

Table 7 The Number of Iteration of Ai, Bd, ∂Ai/∂β, ∂Bd/∂β, ∂2Ai/∂ β2 and ∂2Bd/∂β2 
 Number of Iteration (Iteration n) 

β =0.01 β =0.05 β =0.1 β =0.5 β =1 β =2 β = 3 
Ai 8 11 21 405 1675 4272 9032 
Bd 7 12 20 421 1746 4284 9263 

∂Ai/∂β 6 24 24 1824 1824 3788 8256 
∂Bd/∂β 6 23 23 1824 1824 3550 7990 
∂2Ai/∂ β2 158 158 158 506 1414 3965 8721 
∂2Bd/∂β2 157 157 157 505 1426 3512 7798 

 
Table 7 shown that to get convergence in Ai value, if we put beta value=0.01 (β=0.01), Ai 
would convergent in 8th iteration and so with other value of beta. Second derivative of Ai and 
Bd need more iteration than others. 
 
6. CONCLUSION 
 
The pattern of balancing factor in Gravity to achieve convergence with any beta values as 
input is presented using Matlab program. It is shown, by way of exponential as friction factor 
and using Double Constraint Gravity as balancing factor, we could see that the bigger beta 
value as input (β>1), the longer iteration to achieve convergence. 
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