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Abstract: As a functional food, honey is a food product that is exposed to the risk of food fraud. To
mitigate this, the establishment of an authentication system for honey is very important in order
to protect both producers and consumers from possible economic losses. This research presents a
simple analytical method for the authentication and classification of Indonesian honeys according
to their botanical, entomological, and geographical origins using ultraviolet (UV) spectroscopy and
SIMCA (soft independent modeling of class analogy). The spectral data of a total of 1040 samples,
representing six types of Indonesian honey of different botanical, entomological, and geographical
origins, were acquired using a benchtop UV-visible spectrometer (190–400 nm). Three different
pre-processing algorithms were simultaneously evaluated; namely an 11-point moving average
smoothing, mean normalization, and Savitzky–Golay first derivative with 11 points and second-
order polynomial fitting (ordo 2), in order to improve the original spectral data. Chemometrics
methods, including exploratory analysis of PCA and SIMCA classification method, was used to
classify the honey samples. A clear separation of the six different Indonesian honeys, based on
botanical, entomological, and geographical origins, was obtained using PCA calculated from pre-
processed spectra from 250–400 nm. The SIMCA classification method provided satisfactory results
in classifying honey samples according to their botanical, entomological, and geographical origins
and achieved 100% accuracy, sensitivity, and specificity. Several wavelengths were identified (266,
270, 280, 290, 300, 335, and 360 nm) as the most sensitive for discriminating between the different
Indonesian honey samples.

Keywords: UV spectroscopy; authentication; botanical origin; geographical origin; Indonesian honey;
entomological origin

1. Introduction

According to the Codex Alimentarius Commission [1], honey is defined as “the natural
sweet substance produced by honey bees from the nectar of plants or from secretions
of living parts of plants, which the bees collect, transform by combining with specific
substances of their own, deposit, dehydrate, store and leave in the honey comb to ripen
and mature”. The main components of honey are carbohydrates (e.g., glucose and fructose
in nearly 75% w/w), organic acids, amino acids, vitamins, volatile oils, and minerals [2–4].
Moreover, its minor components and appearance are highly affected by different sources
of nectar (botanical origin), different types of honeybees, and geographical factors, such
as beekeeping practices, climate, and storage conditions [5]. In terms of botanical origin,
honey can be categorized into two broad types, namely monofloral and multifloral honey.
Generally, due to limited production and availability, monofloral honey is more valued and
consequently has a higher market price than multifloral honey [3,6]. Currently, Indonesian
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beekeepers use several species of honeybee, including Apis dorsata, Apis mellifera and
Apis cerana L. Apis dorsata honey, in general, is more expensive than Apis mellifera honey
due to its infrequent production and massive deforestation. The main area of production is
the island of Sumbawa, which accounts for almost 80% of total national honey production
in Indonesia.

Honey is regarded as a functional food with health-promoting and disease-preventing
properties, and is typically high in important nutrients [7]. For this reason, honey’s
popularity and high market value expose it to the risk of food fraud. According to Valand
et al. [8], food fraud is a collective term that encompasses the deliberate substitution,
addition, tampering or misrepresentation of food, food ingredients or food packaging,
or false or misleading statements made about a product for economic gain. Fraudulent
practices involved in honey production and sales include adulteration of honey with sugar
or syrup and mislabeling of botanical, entomological, and geographical origin [9]. To
ensure fair trading of such high valued products as honey, an authentication system needs
to be established to detect fraud in the honey supply chain. Most reported works on
honey authentication mainly focus on the floral type (botanical origin) and geographical
origins, and less frequently on entomological origins [10–14]. Few reported works have
been reported on the honey authentication based on entomological origins [15,16].

To date, several authentication protocols for the natural product including honey using
various analytical methods implemented with chemometrics have been reported [3,17–19].
According to Chin and Sowndhararajan [20], there are two main analytical methods used
in honey classification, identification, and authentication: classical and modern methods.
Two popular classical methods are physicochemical analysis for determining monofloral
botanical honey origins from Ortigueira, Brazil [21], and a melissopalynological approach
for identifying floral pollen grains present in Egyptian honey [22]. While these two classical
methods are accurate, they are time consuming, tedious to implement, and require highly
trained personnel to perform them. Included among the modern methods available
for honey authentication are chromatographic, mass spectrometry, spectroscopy (UV-
visible, near infrared (NIR), mid infrared (MIR) and terahertz (THz)), nuclear magnetic
resonance/NMR (1H NMR, 13C NMR), and molecular (real-time PCR) techniques [20].
Both chromatographic and mass spectrometry methods are time consuming and involve
expensive devices and laborious sample preparation. While spectroscopy in the NIR,
mid-infrared and THz regions has acceptable accuracy, is quite fast, and needs little sample
preparation, it does require expensive instruments. NMR is also accurate, but it is time
consuming and uses expensive equipment. Recently, a real-time polymerase chain reaction
(PCR) procedure was used to detect Spanish honey adulteration [23]. It was concluded that
real-time PCR could detect adulteration of honey with rice molasses at very low levels of
adulteration. However, this technique is quite expensive, time consuming, and requires
laborious data acquisition.

Recently, UV spectroscopy for food analysis has received increasing attention due
to multiple advantages, e.g., being simple, relatively fast, requiring little or no sample
preparation, and the use of relatively inexpensive equipment [24,25]. UV spectroscopy
utilizes the wavelength range from 200–400 nm and has been used for the authentication
of expensive Sidr Yemeni honey with acceptable results [26] and was further validated
by Ansari et al. [7]. The UV model developed according to Roshan et al. [26] successfully
differentiated the botanical source of Saudi honey samples properly. This UV method
is relatively fast, inexpensive, and easy to implement for routine analysis. However,
their reported methodology includes the use of a chemical solvent (ethanol) for sample
preparation. Previously, Suhandy and co-workers applied low-cost UV-visible spectroscopy
for the detection of adulteration of Indonesian specialty coffee with a simple and chemical-
free (solvent) sample preparation method [27–31]. In this present work, we use a chemical-
free (no solvent used) sample preparation for honey authentication. To the best of our
knowledge, there is no report of authentication of Indonesian honey according to their
botanical, entomological and geographical origins by UV spectroscopy. Therefore, our
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objective is to implement a simple, inexpensive, and chemical-free analytical method
based on UV spectroscopy and SIMCA (soft independent modeling of class analogy)
for the classification of Indonesian honey according to its botanical, entomological, and
geographical origins.

2. Materials and Methods

2.1. Honey Samples from Different Botanical, Entomological, and Geographical Origins

Four types of honey collected by Apis dorsata bees were used: monofloral acacia
(Acacia mangium), monofloral durian (Durio zibethinus), multifloral Muara Enim, and mul-
tifloral Jambi honey. Two types of honey collected by Apis mellifera bees were also used:
monofloral longan (Euphorbia longan) and monofloral rubber tree (Hevea brasiliensis) honey.
The samples were harvested during 2018 and 2019 from different origins in Indonesia
(Table 1 and Figure 1). Apis mellifera honey from rubber tree and longan samples were har-
vested from a relatively homogeneous plantation of Hevea brasiliensis and Euphorbia longan
in Batang, Central Java, Indonesia. All Apis dorsata honey samples were collected from
a forest in Sumatra island, Indonesia. In Sumatra, there are five types of forest biore-
gion: protected forest, conservation forest, limited production forest, permanent pro-
duction forest, and conversion forest. Monofloral acacia in Riau was harvested from
a limited production forest bioregion with predominant vegetation of Acacia mangium,
Acacia crassicarpa, and Eucalyptus sp. In Jambi and Muara Enim, multifloral honey sam-
ples were collected from the protected forest with various large plants such as Koompassia
excelsa, Bouea macrophylla Griffith, Lansium parasiticum, and several small plants such as
Imperata cylindrica. Monofloral durian honey from Jambi was harvested from a conversion
forest. In this forest, farmers planted several fruit plants such as durian (Durio zibethi-
nus), oil palm (Elaeis guineensis), and longan (Euphorbia longan), and woody plants such
as Hevea brasiliensis and Tectona grandis L.f . A total of 2.5 kg of honey (non-filtered) was
obtained for each type of honey and kept in plastic bottles at room temperature (20–25 ◦C)
until analysis. The total number of samples of each type of honey was 120 for longan
and rubber tree, and 200 for acacia, durian, Muara Enim, and Jambi; a total of 1040 honey
samples were collected for analysis. These samples were randomly divided into three
sample sets, namely calibration (524 samples), validation (344 samples), and prediction
(172 samples).

Table 1. The characteristics of the honey samples and their origin.

Honey
Sample Floral Types Floral Sources Bee Types Geographical

Origin
Number of

Samples

Rubber tree Monofloral Hevea brasiliensis Apis mellifera Central Java 120
Longan Monofloral Euphorbia longan Apis mellifera Central Java 120
Durian Monofloral Durio zibethinus Apis dorsata Jambi 200
Jambi Multifloral - Apis dorsata Jambi 200

Muara Enim Multifloral - Apis dorsata South Sumatera 200
Acacia Monofloral Acacia mangium Apis dorsata Riau 200

2.2. UV Spectra Data Acquisition

The collected honey samples crystallized during storage in the laboratory. Prior to
spectral measurement, honey samples were heated using a water bath at 60 ◦C for 30 min
to liquefy the crystallized honey and obtain a homogenized honey sample, and were then
kept at room temperature [32]. To take UV spectral measurements each honey sample
was diluted 1:20 (mL:mL) using distilled water. A total of 2 mL of the diluted honey was
pipetted into a 10 mm quartz cuvette. The UV spectra (190–400 nm) at 1 nm intervals of the
honey samples were obtained using a low-cost benchtop UV-Vis spectrometer (Genesys™
10S UV-Vis, Thermo Scientific, Waltham, MA, USA) in transmittance mode. The spectral
acquisition was performed at room temperature. Three different pre-processing algorithms,
namely 11 points of moving average smoothing (MAS), mean normalization (MN), and
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Savitzky–Golay first derivative with 11 points, and second-order polynomial fitting (ordo
2) (SG 1d) were simultaneously used in sequence to improve the obtained raw spectral data.
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Figure 1. Geographical origin of Indonesian honeys used in this study.

2.3. Chemometrics Analysis

To explore the spectral data, PCA (principal component analysis) and SIMCA (soft
independent modeling of class analogy) were used for chemometric analysis. PCA is an
unsupervised pattern recognition technique, which provides results about similarities and
differences between samples without knowing anything about them [33]. In general, PCA
is used to decompose highly correlated and complex spectral data by projecting variables
into simpler and fewer uncorrelated new variables called principal components (PCs). For
each PC, the PCA calculated its score and loading. In most reported papers, the score plot
of the first two PCs (PC1 × PC2) or the first three PCs (PC1 × PC2 × PC3) are used to
visualize the cluster formation of the samples and investigate the possible occurrence of
outliers. Moreover, the plot of loadings visualizes the contribution of PCs and determines
important variables. Further explanation of the concepts and details of PCA have been
described in previous reports [34,35].

SIMCA is a supervised pattern recognition technique and belongs to a family of
modeling classifiers that distinguishes between members and non-members of different
classes [36]. SIMCA enables samples to be classified into existing classes or groups, assign-
ing new samples to one class, more than one class, or no class according to similarities with
these classes. First, a PCA model was developed for each class in the calibration sample set.
The developed SIMCA model was then validated using a leave-one-out cross-validation
method for the validation sample set. The prediction sample set (unknown samples) was
then compared to the class models and its membership assigned to classes according to
two criteria: the distance from the model center (leverage) and the distance to the model
(residual). The sample-to-model distance (Si) is a measure of how far the sample lies
from the modeled class. It is computed as the square root of the sample residual variance.
SIMCA results can be visualized in a Cooman’s plot (Si vs. Si) and confusion matrix. A
Cooman’s plot typically has four quadrants (Q1–Q4) and each predicted sample is assigned
to one of the four possible quadrants: Q1 is the upper left rectangle (for samples that belong
to model class 1), Q2 is the lower right rectangle (for samples that belong to model class 2),
Q3 is the lower-left rectangle (for samples that belong to both model classes 1 and 2), and
Q4 is the upper-right rectangle (for samples that do not belong to either model class 1 or 2).

The sensitivity, specificity, and accuracy were calculated using the equations according
to Xu et al. [37].
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The Unscrambler X version 10.4 (64-bit) (Camo Software AS, Oslo, Norway) was used
to perform spectra pre-processing, PCA, and SIMCA calculations.

3. Results and Discussion

3.1. Analysis of UV Spectra

Figure 2 shows the averaged original or raw (a) and pre-processed spectra (b) of
Indonesian honey of different botanical, entomological, and geographical origins. As
it can be seen in Figure 2, in the raw UV spectra of 6 types of honey samples, large
variations in the absorbance spectra were observed among different types of flora/botanical
(monofloral versus multifloral), among the different geographical origins of the honey
samples (Sumatra versus Java) as well as the different types of honeybees (Apis dorsata
versus Apis mellifera). It was difficult to directly extract significant information from the
raw spectra. For this reason, we improved the quality of the raw spectral data by applying
spectral data pre-processing. Mean-normalization (MN) was performed as one of the
spectral data pre-processing methods in this study. As was mentioned by Xing et al. [38],
mean-normalization is one of the most classical normalization methods. It is equivalent
to replacing the raw absorbance values by a profile centered on unity: only the relative
absorbance values are used to describe the sample, and the information carried by their
absolute levels is dropped. Savitzky–Golay first derivative with a second-order polynomial
and a window size of 11 points (SG 1d) was used to cancel the baseline drifts and to
enhance small spectral differences [39]. Due to similarity in honeybees (entomological),
and geographical and botanical origins, especially for Apis dorsata multifloral from Jambi
and Apis dorsata monofloral from Jambi, it was expected that the spectral differences within
those honey samples were small. This is the main reason to use SG 1d—to enhance those
small spectral differences. However, at the same time, as a consequence of derivation,
the noises were also enhanced. To avoid this, the spectra were first smoothed using
11 points of moving averaging smoothing pre-processing (MAS) as recommended by
previous work [39]. Therefore, in this present study, we utilized three sequential spectral
data pre-processing methods: MAS, MN, and SG 1d (MAS + MN + SG 1d). A similar
approach was previously used by Zhang et al. [39] and Shawky and Selim [40]. Overall, the
shape of the spectral curves was quite similar, especially between 250–400 nm, with sharp
differences in peak absorbance intensity at 270 and 300 nm. The two distinctive peaks
observed at around 270 nm and 300 nm are associated with the absorbance of benzoic,
salicylic, and aryl-alyphatic acids in honey [41]. These spectral results are consistent with
previously reported work. Previously, UV–Vis absorption spectra of sixteen bulk Tuscany
honey samples were reported, including acacia, clover, etc. [42]. Distinct peak absorbance
intensities were observed around 270–280 nm depending on the type of honey. Minor peaks
were also observed between 300–335 nm. The typical feature of original or raw UV spectral
data is high noise with a very high absorbance (more than 2) especially in the interval of
190–250 nm (high-frequency noise). This raw spectral data is rich in unrelated information
such as background information and systematic noise coming from the influences of light
scattering, differences in path length, sample particle size, low lamp intensity at the start of
spectral acquisition, and other factors [38]. Therefore, to achieve an acceptable result, in
this present study for further chemometrics calculation we utilized relatively low noise
spectral data using pre-processed spectral data in the interval of 250–400 nm.

3.2. PCA Analysis

Figure 3 shows the results of PCA analysis in a two-dimensional score plot of the
first two PCs (PC1 × PC2) in the original UV spectra (a) and pre-processed UV spectra
of the honey samples (b). PCA was calculated using 1040 honey samples (including
all spectra) from both the original and pre-processed spectral data (250–400 nm). The
cumulative informative variance (CIV) for the two PCs was 98% and 97% for original
and pre-processed spectra, respectively. This indicates that most of the variance in the
original dataset was contained in these two principal components. While both the original
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and pre-processed spectra could be used to separate the honey samples, when using the
original spectra some overlapping samples were observed between the clusters, especially
in the PC1 direction along the x-axis. For example, the durian cluster had a very similar
PC1 to that of the Jambi cluster. Clearer separation was obtained using the pre-processed
spectra. Even so, the durian and Jambi honey clusters were still very close to each other.
Both these honeys were harvested from the same geographical origin (Jambi), as shown
in Table 1. In the PC1 direction, which accounted for 93% of the explained variance, all
clusters could be discriminated with no overlapping samples being observed. It is evident
that rubber tree, longan, durian, Jambi, Muara Enim, and acacia honey could be correctly
classified. Therefore, further chemometrics analysis of SIMCA was performed using the
pre-processed spectra (250–400 nm) to classify the Indonesian honey samples according to
their botanical, entomological, and geographical origins.
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To detect the possible occurrence of outliers, a Hotelling’s T2 versus Q-residual from
the PCA calculation at the 95% probability level was plotted (Figure 4) using the third prin-
cipal component (PC3). Hotelling’s T2 is a common approach to determine the significance
of multivariate distances, while Q-residual represents how well samples are in accordance
with the model. Samples with both a high Q-residual and Hotelling’s T2 are more likely
to be outliers. According to the Hotelling’s T2 and Q residuals tests, three Muara Enim
samples were identified as outliers and removed before further analysis.
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An x-loadings plot of the first three PCs of the pre-processed spectra was used to
evaluate the most influential variables to classify honey samples (Figure 5). The x-loadings
plot of the PC1, which accounts for 93% of the variance, has a positive peak at 266 nm and
a negative peak at 300 nm. The PC2 and PC3, which account for 7% of the total variance,
had a negative peak at 280 nm and a positive peak at 290 nm.
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3.3. Supervised Classification of SIMCA

A SIMCA model for each class was created using calibration and validation samples
as shown in Table 2 (total 868 samples for 6 classes). The optimum number of principal
components (PCs) used for each class was determined by using a leave-one-out cross-
validation method. As seen in Table 2, a SIMCA model for each class was constructed
with a different number of optimum PCs. Three PCs were used to construct class rubber
tree, longan, Jambi and acacia SIMCA models with the obtained CIV in calibrations of
99.489, 99.520, 99.113, and 99.059%, respectively. Two PCs were used to develop class
durian and Muara Enim SIMCA models with the obtained CIV in calibration of 98.054 and
98.667%, respectively.
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Table 2. The result of SIMCA (soft independent modeling of class analogy) model development for each class using
calibration and validation sample sets.

SIMCA Model Number of Calibration
and Validation Samples

Number of Principal
Components (PCs)

The Cumulative Informative Variance (CIV) (%)

Calibration Validation

Rubber tree 100 3 99.489 98.893
Longan 100 3 99.520 98.962
Durian 167 2 98.054 98.155
Jambi 167 3 99.113 99.279

Muara Enim 167 2 98.667 98.910
Acacia 167 3 99.059 98.441

To evaluate the classification performance of the analyses investigated between all the
different honey samples collected in terms of botanical, entomological, and geographical
origins, we considered six classes of honey: rubber tree, longan, durian, Jambi, Muara
Enim, and acacia. The developed SIMCA models were used to verify the membership of
the prediction sample sets into six available classes. The prediction results are presented in
Table 3. According to Xu et al. [37], the accuracy, sensitivity, and specificity were 100% for
all classes.

Table 3. Confusion matrix of for SIMCA prediction result using prediction sample sets.

Predicted Classes

Rubber Tree Longan Durian Jambi Muara Enim Acacia

Actual Classes

Rubber tree 18 0 0 0 0 0
Longan 0 19 0 0 0 0
Durian 0 0 33 0 0 0
Jambi 0 0 0 31 0 0

Muara Enim 0 0 0 0 32 0
Acacia 0 0 0 0 0 32

The model distances for the six classes obtained by the SIMCA classification are
presented in Table 4. These values are usually utilized to estimate the distance between
the models to quantify possible differences between the models. It should be noted that a
model distance and discrimination power (dp) larger than 3 indicates good class separation
and that the models are significantly different with a low risk of misclassification in the
model [43–45]. As can be seen in Table 4, model distances were larger than 3 for all classes,
indicating that the developed SIMCA models were significantly different between the six
honey types collected. To evaluate the most influential wavelength for discriminating
between the models, discrimination power values of the SIMCA models were also plotted
against wavelength (Figure 6). For the spectra data from 250–400 nm, the discrimination
power was greater than 3. This confirms the spectral window selected (250–400 nm)
was appropriate for classifying the different types of Indonesian honey collected. Specific
wavelengths had a very high discrimination power: at 270 nm (dp = 120), 280 nm (dp = 200),
300 nm (dp = 175), 335 nm (dp = 275), and 360 nm (dp = 200). These wavelengths are
extremely important in the discrimination of the types of Indonesian honey collected.

Table 4. Model distance for each class calculated from prediction result using prediction sample sets.

Model Distance

Rubber Tree Longan Durian Jambi Muara Enim Acacia

Classes

Rubber tree 1 9139 4090 2783 2034 2403
Longan 1 3774 802 915 427
Durian 1 653 2573 3711
Jambi 1 1121 386

Muara Enim 1 167
Acacia 1
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SIMCA prediction results are also presented in the form of a Cooman’s plot (Figure 7).
There are six pairwise classes to be tested. The Cooman’s plots for these are shown in
Figure 7: acacia versus Jambi (a), acacia versus longan (b), acacia versus durian (c), acacia
versus rubber tree (d), Jambi versus Muara Enim (e), and longan versus durian (f). The
red dashed lines in Cooman’s plot are membership lines with a 95% confidence limit that
divide the membership area into four quadrants. In Figure 7a, the x-axis and y-axis denote
the distance to acacia and Jambi samples. All acacia samples appeared in the upper left
quadrant and were properly classified into the acacia class (33 samples). The Jambi samples
were located in the lower right quadrant (32 samples), which indicates correct classification
into the Jambi class, with only one Jambi sample falling in the upper right quadrant (belong
to neither class). However, no samples were plotted in the lower left quadrant (belongs to
both classes). Rubber tree (20 samples), durian (33 samples), Muara Enim (33 samples), and
longan (20 samples) were successfully rejected as belonging either to the acacia or Jambi
classes and were plotted in the upper right quadrant. Similar results were observed for
other pairwise classes, as can be seen in Figure 7b–f. This demonstrates the capability of
the developed SIMCA model to classify Indonesian honeys according to their botanical,
entomological, and geographical origins.
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In this research, a satisfactory classification of the different types of Indonesian honey
collected from different botanical, entomological, and geographical origins was achieved
using pre-processed UV spectral data (250–400 nm). Supervised classification using SIMCA
reported an accuracy, sensitivity, and specificity of 100%. Several specific wavelengths were
identified for accurate classification of Indonesian honey types, including 266, 270, 280, 290,
300, 335, and 360 nm. It should be noted that the obtained spectra were consistent with the
results reported in previous studies. A spectral window between 200–400 nm provided
the means to accurately classify and distinguish between monofloral genuine Sidr honey
from different geographical origins, the season of harvest, and non-Sidr honey. Using HCA
and PCA, obvious grouping patterns between the genuine Sidr and non-Sidr honeys were
achieved [26]. However, there was no further explanation on specific wavelengths that
were responsible for the discrimination. Using fluorescence spectroscopy, an excitation
wavelength with a spectral window between 260–290 nm had strong emission spectra
between 330–360 nm. Fluorescence spectra in this region originate from the aromatic amino
acids and are commonly used for the determination of the botanical origin of honey [46,47].
The excitation at 360 nm was associated with the fluorescent Maillard reaction products
present in honey, such as furosine and hydroxymethylfurfural, and exhibited emission
peaks at 440 and 425 nm [47]. In another study, excitation at 280 nm was used to classify
raw Ethiopian honeys using front-face fluorescence spectroscopy [48]. Recently, excitations
at 270–290 nm and 320–340 nm were also reported to be appropriate for detecting emission
spectra of minor components in honey such as amino acids (mainly tryptophan), proteins,
and some phenolic acids [42].
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4. Conclusions

In this study, PCA and SIMCA were performed on UV spectral data from Indone-
sian honey samples of different botanical, entomological, and geographical origins. The
subsequent evaluation of these models demonstrated that this UV spectroscopy along
with chemometrics can be used as a simple, chemical-free (no toxic waste), and low-cost
analytical method for the authentication of Indonesian honeys from differing botanical,
entomological, and geographical origins. PCA of the spectra, together with SIMCA, con-
firmed that the different honey types could be distinguished based on specific, sensitive
wavelengths within the 200 to 400 nm range, and potential outliers were detected. The
prediction performance of these developed models had an accuracy, sensitivity, and speci-
ficity of 100% for all models. Several specific wavelengths were identified as being highly
sensitive and specific fingerprints of the Indonesian honey types were investigated. These
wavelengths are closely associated with the optical properties of important chemical com-
ponents in these honeys. The present study provides a foundation for developing robust
models for distinguishing between the botanical, entomological, and geographical origins
of Indonesian honey types, as well as between different harvest years.
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