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Abstract Extending normal gamma and normal inverse Gaussian models, multivariate normal stable
Tweedie (NST) models are composed by a fixed univariate stable Tweedie variable having a positive
value domain, and the remaining random variables given the fixed one are real independent Gaussian
variables with the same variance equal to the fixed component. Within the framework of multivariate
exponential families, the NST models are recently classified by their covariance matrices V(m) depend-
ing on the mean vector m. In this paper, we prove the characterization of all the NST models through
their determinants of V(m), also called generalized variance functions, which are power of only one
component of m. This result is established under the NST assumptions of Monge-Ampeére property
and steepness. It completes the two special cases of NST, namely normal Poisson and normal gamma
models. As a matter of fact, it provides explicit solutions of particular Monge—Ampere equations in

differential geometry.

Keywords Covariance matrix, generalized variance function, Monge-Ampere equation, multivariate

exponential family, steepness
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1 Introduction and Motivations
The classical form of the Monge-Ampere equations can be written as
detK”" = f in©,

where © C R” is some open set, K : © — R is an unknown smooth function, K" =

(D%K)i,jzlw’k denotes the Hessian matrix of K with D the partial differential operator, and
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f is a given positive function (see, e.g., [9]). It arises in several mathematical problems from
analysis and geometry. However, explicit solutions remain generally challenging problems. In
particular for f = 1, the proofs of the basic Monge-Ampere equation such as “any strictly con-
vex smooth function K in RF such that det K" = 1 must be a quadratic form” were progressive,
different, and according to the dimension: Jorgens [13] for dimension k = 2 (see also [16] for an
easy proof), Calabi [5] for k = 3,4, 5, and Pogorelov [28] for k > 6. See Cheng and Yau [6] for
a more analytic proof, along the lines of affine geometry, and, for example, Xiong and Bao [30]
for another use.

Here, we are interested in the following form of the Monge-Ampere equations:

a(Ky,)?, for 1<p<2,
det K” = $ exp{(k+ 1)K, }, for p=2, (1.1)
a(-K,,)7?, for p> 2,

where K is an unknown cumulant function or log-Laplace transform, to be determined, p > 1 is
a given constant such that there exist a = a(p) and b = b(p, k) > 0, and K, is a given cumulant
function on the same domain ©,,, = © for any o-finite positive (or probability) measure v, on
R*. Let us recall that in the framework of the probability model F = F(p) = {Pg ,(dx) :=
exp[x' 0 — K, (0)|u(dx); & € ©,}, named natural exponential family (NEF) generated by
p € M(R¥) not concentrated on an affine subset of R¥, if X is a random vector distributed as
Py . then Eg(X) = K],(0) = (D;K.(0))i=1,... and Varg(X) = K/, (0). Since K,, : © — R is
known to be strictly convex, the function m(0) = K, (@) is a one-to-one transformation from
O, onto Mp := K},(0,,) and thus m = m(@) provides an alternative parametrization of the
family F = {P(m,F);m € Mg}, called the mean parametrization. Note that Mg depends
only on F, and not on the choice of the generating measure g of F. The covariance matrix
of P(m,F) can be written as a function of the mean parameter m, Vr(m) = Kj;(0), called
the variance function of F. Also, the differential of the inverse function of K;L defined by
m — 6(m) := (K’M)_l(m) is '(m) := [Di(KL)_l(m)]i:L.“,k = [Vg(m)]~!. Together with
the mean domain Mg, Vg characterizes F within the class of all NEFs. See [24, Chap. 54].
However, the so-called generalized variance function det Vg(m) = det KJ,(8(m)) does not
characterize the NEF F = F(u); and, it is necessary to solve individually the corresponding
Monge-Ampere equation.

A normal stable Tweedie (NST) family with power parameter p > 1 is a k-variate NEF on
[0,00) x RE=1 generated by the distribution of

(X1, Zov/X1, ..., Zi/X1), (12)

where Zs, ..., Zj, are iid random variables with standard normal distribution N'(0, 1) indepen-
dent of X; whose distribution belongs to the Tweedie [29] NEF on the positive real line with
variance function ymP, v > 0; see, e.g., [1] and the references cited therein. The representa-
tion (1.2) is extended to the so-called multiple stable Tweedie (MST) models, where X; and
the Z;’s are independent and each of them follows a given Tweedie NEF with p;,p; > 1. See,
e.g., [4, 8, 19, 26]. The main aim of this paper is the following NST characterization. Con-
sider a steep NEF (i.e., the mean domain is equal to the interior of the closed convex hull of

the distribution support) F on [0, 00) x R¥~1 governed by a cumulant function or Log-Laplace
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transform K (0) = log [ exp(8 " x)v(dx) such that (1.1) holds for v,, p > 1, generator the NST

NEF. Following [4] its variance function Vg also satisfies
det Vp(m) = m? ™1, (1.3)

for some p > 1 with m = (my,...,mz) . Then F is an affinity of a NST family (Theorem 3.2).

It is noteworthy that this NST characterization (Theorem 3.2) appears to be a complete
one for all p > 1. Indeed, it includes two cases: normal gamma with p = 2 ([18]) and normal
Poisson with p = 1 ([27]) using two different approaches of proof which are analytical and
measure theory, respectively. Also, this type of characterization through Property (1.1) and the
generalized variance function (1.3) is connected to some particular cases of the Monge-Ampere
equation ([9]) which are referred and widely discussed in the previous papers. See [23] for the
Gaussian model with det Vg(m) = 1, [17] for the Poisson-Gaussian models and, finally, [10]
for the multinomial model. In fact, according to the mean parametrization of NEF, one can
re-write both equations (1.1) and (1.3) as

det K”(8(m)) = m& 1, (1.4)

The left member of (1.4) depends on the unknown (cumulant) function K and the right one
is fixed for the model parameter p > 1 and the dimension k£ € {1,2,...}. Another complete
characterization of the NST models has been done through their variance functions in [20] with
some associated polynomial functions. Analog works can be reproduced for [26] and, also, in
the multivariate geometric ([14]) and discrete ([15]) dispersion models, respectively.
Concerning some potentials of applied statistical aspects of NST, we first have the general-
ized variance property (1.3) which led to interesting estimators of det Vg (m) through explicit
but biased maximum likelihood estimators in general and, also, uniformly minimum variance
and unbiased estimates. For that, we can refer to [2, 4, 21, 22]. Its special use under Gaus-
sianity (i.e., det Vg(m) = 1) has been made via different approaches; see, e.g., Iliopoulos [11]
and Jafari [12] with some references cited therein. Note that the likelihood from observations
on (X1, Xo,..., X)) of the NST models shows clearly by (1.2) that X; is a sufficient statistic
for a variability measure such as the generalized variance. The second statistical aspect of
the NST models may be derived from its flexibility compared to the classical normal model,
as already indicated in [4] and improved here. Indeed, consider that only the normal terms
(Z3y...,Zy) in (1.2) are observed, then X; is an unobserved random effect. The case where
(X1,Xs,..., X)) is normal leads to an analysis of variance with a repeated measures factor
(within-subjects independent variable), for which the concept of sphericity (i.e., the equality of
variances of the differences between treatment levels) is assumed; that is known as compound
symmetry repeated measurements. Using the proposed NST models provides an extension that
could be useful as an alternative; see, e.g., Lee and Thompson [25] for a description of this issue
from a completely different angle (of generalized hierarchical models with random effects) from
ours. Additionally, the proposed NST models can be extended to regression models with covari-
ates such that one can handle a multivariate response vector; see, e.g., Bonat and Jgrgensen [3].
The application potential of the NST models holds also for MST models [19]. The disturbance
that the NST models introduced in the standard multivariate normal model will eventually

propagate to all other components. Finally, some Bayesian approaches can be considered in the
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sense of Consonni et al. [7], also Kokonendji and Nisa [21].

The rest of the paper is organized in two parts according to the announced NST character-
ization (1.4). Since the NST property of generalized variance functions (1.3) is already given
in [4, Theorem 3.3], Section 2 establishes Equations (1.1) that we shall call the Monge-Ampere
property of the NST models (Theorem 2.4). We also point out the continuity property of
det K;jp with respect to p > 1. Its univariate case (Proposition 2.2) appears to be new for the
stable Tweedie models on the positive real line. Section 3 states and finally proves Theorem 3.2
of the NST characterization (1.4) via (1.1) and (1.3) with the assumption of steepness.

2 Monge—Ampere Property of NST Models

We first establish the Monge-Ampeére property (1.1) for the univariate stable Tweedie models,
before showing the same property for all the multivariate NST models.

2.1  Univariate Stable Tweedie Models

Let us briefly review the complete univariate stable Tweedie models through their cumulant

functions, which also characterize the generating measures of the families (e.g., [1]).

Definition 2.1 Lett >0 and p € (—00,0]U[1,00). Denote by pu,+ = 3" the t-th convolution
power of a o-finite positive measure p,. The cumulant function of any univariate stable Tweedie
NEF F,; = F(up,s) = {P(0; pp)(dx); 0 € O(pup,i)}, generated by pyp.:, is given by K, ,(0) =
tK,,(0) with

exp(h), forp=1,
K, (0) = { —log(—9), forp=2, (2.1)
{1/2-p)H—-(p— 1)o}yEP/0=P) forp#1,2

for all 0 in their respective canonical domains ©(u,) with support S, of distributions:

R’ forp:o’ 1, R7 fOTpSO7
0, c0), orp <0, N, orp=1,

O () = 0,0<) forv and S, = Jorp
(—00,0), for1 < p<2, [0, 00), forl<p<2,
(—O0,0], fOTp>2 (0700)7 fOTpZQ.

Letting X be a Tweedie random variable denoted by T'w,(6,t), its probability density (or

mass) function can be indicated in terms of
P(z;0,t,p) = ap(x;t) exp{zd — K, ,(0)}1s, (),

with ¢ > 0, p ¢ (0,1) the power Tweedie index determining the distribution, 6 € O(pp.), 1g
the indicator function of any given event F, and a,(x;t) the normalizing function detailed as
follows. Denoting by I'(-) the classical gamma function and o := (p —2)/(p — 1) = a(p) the
stability index, we successively have

1 i (—z)F(at)* ' T(1 + ka~1)

) — i (— -1
ap(z;t) = (o (@D 0Tk 1 1) sin(—kra™ " )1g(z) forp <0,

1 Z (p_ 1)akx—ka

@ = p RO (ko) Tk 5 1) o> forl<p<2,
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1 = (p— akt(a DED(1 + ak) ko
(z;t) = kz::l 2)exok (1 + k) (=1)%sin(—kma)lyso forp > 2,
(27t) =2 exp(—2?/2)1g(z), for p=0,
T+ 1)} (o), for p=1,
ap(z;t) =

(/)Y 2= D1/} s, for p=2,
(2ma®t) 12 exp{—1/(22) }1 >0, for p=3.

For t = 1 one has p, 1 := i, and the (so-called unit) variance function is V,(m) = m? for all m
in the mean domain

p=0,

(0,00), p#0.

Therefore, it is clear that the extreme stable models corresponding to p < 0 are not steep, and
they will not be a member anymore of this work from now.
We can now prove the Monge—Ampere property (1.1) for the univariate stable Tweedie

models (Definition 2.1 with ¢ = 1) which are steep and have positive mean domain.

Proposition 2.2 For p > 1 the second derivative of K,,, on the interior of ©(u,) satisfies
(i) K, (0) = K., (0) and K,,,(-) >0 forp=1,
(i) K, (0) ={(2 —p)K,,, (0)}/2P) and K, (-)>0 for1 <p<2,
(ili) K, () = exp{2K,,,(0)} and K., (-) >0 forp =2,
(iv) K, (0) = [1/{-(p —2)K,, (0)}]7P/ =2 and K,, () <0 for p > 2; and, furthermore,
(v) the function p — K| is continuous for p € (1,00).
Remark 2.3 The function p — Kﬂp is not continuous to the right of p = 1, because the
corresponding compound Poisson-gamma distributions (1 < p < 2) are not discrete. But they

are semicontinuous (i.e., they have a mass at zero and positive continuous otherwise).

Proof of Proposition 2.2 From (2.1), we respectively have the following five parts.

(i) For p = 1, it is obvious because of K, (6) = exp(0).

(if) For 1 < p < 2, one has K, (0) = {1/(2 — p)}{—(p — 1)§}~7)/(=P) which is equivalent
tof ={1/(1 -p)H2—-p)K,, (0 )}(1 P)/(2=P) with ©,, = (—00,0). The second derivative of
K,,, leads to the desired result with K, (0) > 0.

(iii) For p = 2, it is trivial from K, (0) = —log(—0) < 0 = —exp{—K,,, (0)} with ©,, =
(—00,0).

(iv) For p > 2, from K, (0) = {-1/(p — 2)}{—(p — 1)0}2~P)/(1=P) one can write § =
{1/0-p)H{2—-p)K,, (0 )}(1 P)/(2=P) with ©,,, = (—00,0]. Then the direct calculation of K
gives the result with K, () <O0.

(v) It is obvious for p € (1,2) U (2,00). One also has the continuity at p = 2 by using (2.1),
for instance for the right 21 of p = 2:

lim K (0) = lim [1/{—(2—p)K,,(0)}] /@~
p—2+ p—2+

= lim {—(p— 1)9}—(2—P)/(1—p)]—p/(2—p)
p—2+

= lim {—(p— 1o}~/
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= K;L; (). O
2.2 Multivariate NST Models

Let t > 0 and p > 1. From (1.2) and Definition 2.1, consider the o-finite measure v, ; = v
on R* defined by v, ;(dx) = p, ¢ (d1) H?:g 10,2, (dz;). The NST models are multivariate NEF

F,.=F(vp,.), generated by v, with cumulant functions

Kl’p,t(o) = tKup (0) = tKup (9(0))> (2-2)
for g(0) =61 + (63 + -+ +62)/2 and @ = (61,...,0;)" in the canonical domain
O(vy,) = O(,) = {8 € R 9(6) € O(1p)}- (2.3)

The set F),; = {P(0;p,t); 6 € O(v,)} of probability distributions P(8;p,t)(dx) = exp{0x—
Ko, (0)}vp,(dx) has the mean domain Mp,, := K|, (O(vp+)) = Mp,; its variance function

and generalized variance function are, respectively,

Vg, ,(m) = tPmP~? .mm" + Diag,,(0,m,, ..., m)
and
det Vg, ,(m) = AT A
Table 1 depicts a summary for ¢ = 1 with v, := v, such that S, denotes the support of

distribution(s). We also include two particular cases in italics (p = 3/2 and p = 3).

Distribution(s) D S,
Normal Poisson p=1 N x RF?
Normal compound Poisson-gamma | 1 <p <2 | [0,00) x RF™!
Normal noncentral gamma p=23/2 [0, 00) x RF ™!
Normal gamma p=2 (0,00) x RF1
Normal positive stable p>2 (0,00) x RF1
Normal inverse Gaussian p=3 (0,00) x RF1

Table 1 Summary of the NST models with p > 1, Mg, = (0,00) x R*"" and S, ([4])

Here is the Monge-Ampere property (1.1) for the NST models, with the similar comment
of Remark 2.3 that we omit.

eorem 2.4 or p > 1, the Hessian determinant of K, on the interior o v,) satisfies
Th F 1, the H d K., h f ©(v,

(i) det K, (0) = {K,, 0} and K, (-) >0 forp=1,

(i) det K3, (0) = {(2 —p)K,, (0)}PHE=1/C=P) gnd K, (-) >0 for 1 <p <2,

(ili) det K (6) = exp{(k + 1)K, (0)} and K, (-) >0 forp=2,
(iv) detK;, (0) = [1/{—(p — 2)K,, (0)}PHE=D/(=2) gnd K, (-) < 0 for p > 2; and,
furthermore,

(v) the function p — det K;jp is continuous for p > 1.

In order to prove this theorem and also for many calculations of determinants below, we

need the following Schur representation of determinant in this simplified form:
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Lemma 2.5 Let A # 0 be a scalar, a € RF=1 a vector and A a given (k— 1) x (k— 1) matriz.
Then

by T
det [* % ] = Adet(A — Aaal).
a A

Proof of Theorem 2.4 From (2.2) with ¢t = 1 and all p > 1 one has the Hessian
Ky (0) = K}/ (9(0))-9'(0)9'(0)" + K], (9(0)) - " (6),
with ¢/(8) = (1,6s,...,6;) " and ¢”(6) = Diag, (0,1,...,1); that is
KZP(O) = Kf:p (9(0))(1,04,...,0,)(1,0,..., Gk)T + KLP (9(0)) Diag, (0,1,...,1).
Using Lemma 2.5 with A = K/ (9(0)), a= K, (9(0)) (02, ..., 0x) " and
A=K] (9(0)(62,...,00)(02,....06) " + K], (9(8)) Tr1,

one here obtains A — A"laa' = K, (9(0)) - Ir—1 and therefore

det K (0) = K, (9(0)) det[K], (9(8))Tx-1]
= K} (9(0)) {K],, (9(0)}* . (2.4)

Now, we check each part of the announced results by using (2.4) and Proposition 2.2.

(i) For p = 1, the result is trivial and K, (8) > 0.

(i) For 1 < p < 2, the desired result is obtained as

det K, (6) = {(2 —p) K, (9(0))}"/ V(2 = p) K, (9(8))} <D/ P
={(2-p)K,, (0)}P+k-1/2=p)

with K, (8) > 0.

(iii) For p = 2, one easily expresses

det K} (8) = exp{2K,, (9(0))Hexp{K,, (9(0) 1" = exp{(k + 1)K, (6)}.
(iv) For p > 2, it follows that
det Ky (8) = [1/{~(p — 2)K,, (9(6))}] P+ D/ =2
= [1/{~(p — 2K, (9)}] -1/ =2,

with K, (8) <0.

(v) For p € (1,2) U (2,00), the function p — det Kj, is obviously continuous. At p = 2 one

can directly obtain by undergraduate calculations

lim detKy, (8) = lim {(2 - p)K,, (g(6))}PTF-1/C=)

p—2~ p—2~
= lim {—(p— 1)9(9)}(1’+k*1)/(1*p)
p
= {—g(e)}_(k+1)

= exp{(k + 1)K,,(0)}
= det K, (0)
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and also

lim det K/ (6) = 1ix;1+[1/{—(p_ 2)K,, (g(e))}](P+k71)/(p72)

p—2t

- pl—i>I£1+ /A=~ 1)9(0)”@4_}6_1)/@_1)

= {—g()} "+
=exp{(k+1)K,,(0)}
=det K, (0). O
We here thank the anonymous referee for pointing out that, from (2.4), the formula
det K”(0) = K" (g(0)){K"(9(0))}"

is true for any distribution of X7, not necessarily the Tweedie ones.

3 Characterization Result of NST Models
3.1 Result and Final Remarks

Before showing the main result with some concluding remarks, we first compile three classical
operations of basis, affinity and convolution between two connected NEFs (e.g., [4, 24]). They
exhibit the closeness in type of a given NEF through the variance function and generalized

variance function.

Proposition 3.1 Let u and [ be two o-finite positive measures on R* such that F = F(u),
F = F(fi) and m € M.

(i) If there exists (a,b) € RF x R such that fi(dx) = exp{(a,x) + b}p(dx), then F = F :
O(p) = O(pn) —a and Ki(0) = K, (0 +a) +b; form = m € Mg, Vi(m) = Vg(m) and
det Vi (m) = det Vg(m).

(i) If o = ¢ * p is the image measure of p by the affine transformation p(x) = Ax + b,
where A is a k x k non-degenerate matriz and b € R, then: ©(p) = ATO(pn) and Ky (0) =
K, (AT0)+b'0; form=Am+Db € (M), Vi(m) = AVp(p ' (m))A" and det Vi(m) =
(det A)? det Vg (m).

(iii) If @ = p*t is the t-th convolution power of w for t > 0, then: (1) = O(u) and
K (0) = tK,,(8); for m = tm € tMp, Vz(m) = tVg(t"'m) and det Vi(m) = t* det Vy(m).

Part (iii) of Proposition 3.1 allows to consider ¢ = 1 for the following characterization
theorem of the NST family. Here is the characterization result of NST.

Theorem 3.2 Letp>1andk € {1,2,...} be fived. Consider a steep NEF F on [0, 00) x RF~1
governed by its cumulant function K on ® C R* such that (1.1) and (1.3) hold, where (1.1)

comes in

(H1) det K" (0) = {K(0)}* and K(-) >0 forp=1,

(H2) det K"(8) = {(2 — p)K(8)}PT+=1/C=P) gnd K(-) >0 for 1 <p <2,
(H3) det K" (0) = exp{(k+ 1)K(0)} and K(-) > 0 for p =2,

(H4) det K" (8) = [1/{—(p — 2)K(0)}]*+tF=D/(r=2) gnd K(-) < 0 for p > 2.

Then F is an NST family governed by v, of Table 1.

For the proof of Theorem 3.2 we will omit the univariate case (kK = 1) because of its

triviality, even if it is new as a converse of Theorem 2.1. In general, for £ > 1 solving only
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det K” = f(K) for known f is finding the solutions of differential equation, a much harder
problem. Hence, adding a given form of generalized variance function must help to the solutions,
under supplementary conditions.

For p = 1 in Theorem 3.2, we can also refer to [27, Theorems 4.1 and 4.2]) using the
method of measure theory as in [17]. Here we shall use an alternative method, says analytical,
and already used for p = 2 in [18, Theorem 2.1]. A challenging proof will be for the MST
models where its generalized variance functions, replacing (1.3) of NST, can be written as
follows: det V(m) = m{' m%* ... mj*, for given £ € {0,1,... .k} and ¢s € R, s = 1,2,...,¢; see,
e.g., [4, 19].

3.2 Proof of Theorem 3.2

We first give in details the proof for p > 2. For that, we successively establish the following five
lemmas before concluding the proof.

The first one is a reformulation of assumptions leading clearly to K(6) < 0 for all 8 € ©
such that M = K'(0©).

Lemma 3.3 Letp > 2 and k € {2,3,...} be fived. Consider a steep NEF F on [0,00) x RF™1
governed by its cumulant function K on ® C R such that (H4) of Theorem 3.2 and (1.3) hold.
Then

K@Om)) =—(p-2)""m; "2 meM:=(0,00)x RF 1.

Proof Since det K”(0(m)) = det V(m), Assumption (H4) of Theorem 3.2 combined to (1.3)
gives the desired result from

14— (p — DK (B(am) Y /2 = g
The mean domain M := (0, 00) x R*~1 is deduced from the steepness property of F. O
Lemma 3.4 From Lemma 3.3 and denoting Vg(m) = (V;;(m)); j=1..x the variance function
of F, then
Vlj(m) :mﬁ)—lmj, Vi=1,...,k.

Proof Since one classically has m = K'(0) and '(m) = {Vg(m)} !, the differentiation of
K(@(m))=—(p— 2)_1m17(p72) of Lemma 3.3 with respect to m gives

m{Vg(m)} 'u= m}_p(l, 0,...,0)u, YueRF

In particular for u = Vg(m)e; where (e;);=1,.. & is the canonical basis of R¥, the desired result
is thus obtained. O

The following lemma introduces the basical cumulant function K in terms of canonical

parameter @ = (01,0a,...,0;)".

Lemma 3.5 Under assumptions of Lemma 3.4, there is a function h : @1 C R¥=1 — (—o0,0)

such that, up to additive constant,
K(0) = —(p—2) "' [=(p = D{01 + h(0s, ..., 00) )] P~2/ "D

on O = {OeRk;Ql—i—h(@Q,‘.‘,@k) <0}
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Proof Departing from Lemma 3.3 which shows the cumulant function K in terms of the only
first component my of the mean vector m = (mq,mo,... ,mk)T, we successively investigate
K through integration with respect to the first component 6; of the canonical parameter 8 =
(01,02,...,00)7T.

From Lemma 3.4 one has Vi1 (m) = mf, that involves D? K(0) = {D;K(0)}?. By integra-

tion with respect to 6y, there exists a function h : R*~! — (—o0,0) such that
D1K(8) = [—(p— 1){01 + h(0a,...,0,)}] /@D, (3.1)

One deduces 61 + h(f2,...,60,) < 0 because D1K(0) = m; > 0 and p — 1 > 0. Thus, for
particular @ = (0,6y,...,0;)" one has 0+ h(fy,...,0;) < 0 and, then, h(fs,...,0;) < 0.
The derivative of D1 K () with respect to 6; gives

D} K(6) = (p__hll()e{zél'::(ke)j 1'157((1))}, Vi=2,....k (3.2)

and by Lemma 3.4 one obtains besides

D} K(0) = {D:K(0)}''D;K(0), Vj=2,....k (3.3)

with D;K(0) = m; and D};K(6(m)) = V;(m) for i,j = 1,...,k. Combining (3.2) and (3.3)

h
one has —h'(0s,...,0,)D1K(0)

(p—1{01 4 h(ba2,...,0k)}

{D1K(0)}'"'D;K(8) =
therefore,
DK(6) = h'(0s, ..., 0k)[—(p — {01 + h(Bs,...,06)}] /7Y,
for all j = 2,...,k; and, by integration with respect to 6; one gets
K(0) = —(p—2)"'[=(p = V{01 + h(ba,....0)}] "2/ 7D 1 b(0), (34)

where b is a real function to be determined.

Hence, the derivative of (3.4) with respect to 61 gives
DiK(0) = [~(p — D){01 + h(ba,...,60)}] 7V +6/(6y),

to compare with (3.1) one deduces b'(0;) = 0 therefore b(f;) = b a real constant. Then, from
both K(0) of Lemma 3.3 and of (3.4) one obtains

~(0=2) 7 =0 = DG+ O, 0N b= —(p = 2) "t T,

with my = D1K(0) above, therefore b = 0. Finally, the expression (3.4) with b = 0 leads to the
announced result. O
Lemma 3.6 From Lemma 3.5, one has the following assertions:

(i) D}, K(8) = mf.

(i) D} K(0) =m) 'm;, Vi =2,... k.

(iii) D%K(G) = mf_Qmimj +mahi (02, ..., 0k), Vi, j € {2,...,k}, with m; == D;K(8) for
allj=1,2,... k.
Proof Parts (i) and (ii) come from Lemma 3.4. Concerning Part (iii) the first partial derivative

of K(0), from Lemma 3.5, with respect to 6; gives
DK(0) = hi(0s,....00)[—(p — 1){01 + h(bs,...,01)} VP = m,
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and, then, the second one can be written successively as

DZK(0) = h(02,...,00)1(02, ..., 0k) [~ (p — 1){01 + h(Ba,...,00)}] P/ @~V
+ (02, 0k)[=(p = V{01 + h(0a, ..., 0,)}] /P
= mimj[—(p — 1){91 + h(92, ey ek)}]i(pia/(pil)
+ R (02, Ok)[—(p — 1){01 + h(B2, ..., 0} /7D
= m’fomimj +myhi; (62, ..., 0k)
for all 7,5 = 2,...,k. Hence, the lemma is proven. O
Lemma 3.7 The function h : ®; C R¥~! — (—00,0) of Lemma 3.5 satisfies in succession
the following properties:
(i) h is a convex function.
(i) det B (02, ..., 0k) is a real constant with respect to (6a,...,0k).
(iii) A"(Oa,...,0k) = X1 s a (k — 1) x (k — 1) symmetric matriz and not depending on
Hj, Vj S {27,]6}
Proof (i) Let v = (v1,v{) be the generating measure of F. From Lemma 3.5 and since
(02,...,0k) — K(0,02,...,0) = Kye(ba,...,0) is the cumulant function of v{, the function
(02, k) = Koe (0, ... 04) = —(p = 2) 7" [=(p = Dh(Bs, ..., 0,)] P72/ 7D

is therefore convex. This implies that (6a,...,05) — [—(p — 2)K(0,6s,...0;)] P~/ P~ —
—(p—=1)h(bs,...,0;) is also convex. Therefore h is convex.

(ii) From Lemma 3.6 and Lemma 2.5 we can write
det K" (6) = det[D};K(8)]; j=1,..k = Adet(A — X 'aa'),

with A =m}, a= mf_l(mg, co.ymy) " and A =mjPaal + m1hi;(02,...,0k). Therefore,

1 1
det K”(0) = mY det (pala—r +mihi(02,...,0k) — aaT>

my mY
=m T det By (0, .., Or).
Since det K”(0) must be equal to merk*l, we deduce that det h;’j(ﬂg, ...,0;) = 1 not depending

on §;, for all j € {2,...,k}.
(iii) It is deduced from Parts (i) and (ii) and the result of basic Monge—Ampere equation. [J

Theorem 3.8 (Jérgens-Calabi-Pogorelov [5, 13, 28]) Let K be a convex function on R* of
class €2 such that det K”(0) = 1. Then K" is a constant.

Theorem 3.8 is used in the sense of Cheng and Yau [6] through the convexity and the
analytical property of h on ®; C R¥~! which is extended on the whole RF~1,

In order to conclude the proof of Theorem 3.2 for p > 2, it suffices to show that the family
F of Lemmas 3.3-3.7 belongs to the NST family, up to linear transformation (Part (ii) with
b = 0 of Proposition 3.1). Indeed, substituting k" (2, ...,0;) = Xj_1 of Part (iii) of Lemma

3.7 into Part (iii) of Lemma 3.6, the variance function of F is deduced from Lemma 3.6 as

Vg(m) = [D}K(0(m))]; j—1,...
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B my mf_l(mg,...,mk)
mfﬁl(mQ, co,mg) T my P (ma, ... yme)  (ma, ... ,mg) +mi S
p—2 0 0;——1

=my mm' +m, ;
Op—1 X1
where 0/, is the null vector of R¥~1. Applying Cholesky’s decomposition, there is a triangular
matrix T such that 3,_; = TT'. Denote F the image of the NEF F by linear transformation
x +— Bx of R* with B = (0:71 (:Ejll), where T~! is the (k — 1) x (k — 1) inverse matrix of
T. Then, by Formula (54.14) of Kotz et al. [24] and Part (ii) of Proposition 3.1, one can
successively verify

Vi(m) :=BVy (B 'm) B’
p—2 -1 1, \T 0 02—1 T
=B{m{7" B " m)(B"'m) +my B
0., TT'
0 0
=m?>mm" +mB BT
0,.; TT'
1 o] 0 0 1 0,
:Tn11;72rnrn'l'_’_,n,L1 k—1 k_—|l— k—l_l
0p_1 T-! 0,1 TT 0p_1 (TT)

=m{ mm’ + m;Diagy(0,1,...,1).

Finally, the NST characterization through variance functions in [20, Theorem 3.1] allows to
conclude the proof of Theorem 3.2 for p > 2.

The remainder proof of Theorem 3.2 for 1 < p < 2 is similar to the previous case (p > 2)
through the following two points around of Lemma 3.5. (A) p = 1: we have to consider
K(0) = exp(01)h(02, . ..,0;), for ® = {0 € R*; h(62,...,0;) > 0} with h > 0 and K(8(m)) >
0. (B) p € (1,2): that will be K(8) = (2 —p) " [~(p — 1){01 + h(s,...,0:) )P~/ P=1)  for
© = {6 € R¥ 0, + h(ba,...,0k) <0} with h < 0 and K(6(m)) > 0.
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