
 





 



Acta Mathematica Sinica, English Series

Nov., 2020, Vol. 36, No. 11, pp. 1232–1244

Published online: December 15, 2020

https://doi.org/10.1007/s10114-020-8377-6

http://www.ActaMath.com

Acta Mathematica Sinica, 
English Series
© Springer-Verlag GmbH Germany & 
      The Editorial Office of  AMS  2020

A Complete Characterization of Multivariate Normal Stable Tweedie

Models through a Monge–Ampère Property

Célestin C. KOKONENDJI
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16, Route de Gray - 25030 Besançon Cedex, France
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Abstract Extending normal gamma and normal inverse Gaussian models, multivariate normal stable

Tweedie (NST) models are composed by a fixed univariate stable Tweedie variable having a positive

value domain, and the remaining random variables given the fixed one are real independent Gaussian

variables with the same variance equal to the fixed component. Within the framework of multivariate

exponential families, the NST models are recently classified by their covariance matrices V(m) depend-

ing on the mean vector m. In this paper, we prove the characterization of all the NST models through

their determinants of V(m), also called generalized variance functions, which are power of only one

component of m. This result is established under the NST assumptions of Monge–Ampère property

and steepness. It completes the two special cases of NST, namely normal Poisson and normal gamma

models. As a matter of fact, it provides explicit solutions of particular Monge–Ampère equations in

differential geometry.

Keywords Covariance matrix, generalized variance function, Monge–Ampère equation, multivariate

exponential family, steepness
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1 Introduction and Motivations

The classical form of the Monge–Ampère equations can be written as

detK′′ = f in Θ,

where Θ ⊆ R
k is some open set, K : Θ → R is an unknown smooth function, K′′ =

(D2
ijK)i,j=1,...,k denotes the Hessian matrix of K with D the partial differential operator, and
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f is a given positive function (see, e.g., [9]). It arises in several mathematical problems from
analysis and geometry. However, explicit solutions remain generally challenging problems. In
particular for f = 1, the proofs of the basic Monge–Ampère equation such as “any strictly con-
vex smooth function K in R

k such that detK′′ = 1 must be a quadratic form” were progressive,
different, and according to the dimension: Jörgens [13] for dimension k = 2 (see also [16] for an
easy proof), Calabi [5] for k = 3, 4, 5, and Pogorelov [28] for k ≥ 6. See Cheng and Yau [6] for
a more analytic proof, along the lines of affine geometry, and, for example, Xiong and Bao [30]
for another use.

Here, we are interested in the following form of the Monge–Ampère equations:

detK′′ =

⎧
⎪⎪⎨

⎪⎪⎩

a(Kνp
)b, for 1 ≤ p < 2,

exp{(k + 1)Kνp
}, for p = 2,

a(−Kνp
)−b, for p > 2,

(1.1)

where K is an unknown cumulant function or log-Laplace transform, to be determined, p ≥ 1 is
a given constant such that there exist a = a(p) and b = b(p, k) > 0, and Kνp

is a given cumulant
function on the same domain Θνp

= Θ for any σ-finite positive (or probability) measure νp on
R

k. Let us recall that in the framework of the probability model F = F(μ) = {Pθ,μ(dx) :=
exp[x�θ − Kμ(θ)]μ(dx); θ ∈ Θμ}, named natural exponential family (NEF) generated by
μ ∈ M(Rk) not concentrated on an affine subset of R

k, if X is a random vector distributed as
Pθ,μ then Eθ(X) = K′

μ(θ) = (DiKμ(θ))i=1,...,k and Varθ(X) = K′′
μ(θ). Since Kμ : Θ → R is

known to be strictly convex, the function m(θ) = K′
μ(θ) is a one-to-one transformation from

Θμ onto MF := K′
μ(Θμ) and thus m = m(θ) provides an alternative parametrization of the

family F = {P(m,F);m ∈ MF}, called the mean parametrization. Note that MF depends
only on F, and not on the choice of the generating measure μ of F. The covariance matrix
of P(m,F) can be written as a function of the mean parameter m, VF(m) = K′′

μ(θ), called
the variance function of F. Also, the differential of the inverse function of K′

μ defined by
m �→ θ(m) := (K′

μ)−1(m) is θ′(m) := [Di(K′
μ)−1(m)]i=1,...,k = [VF(m)]−1. Together with

the mean domain MF, VF characterizes F within the class of all NEFs. See [24, Chap. 54].
However, the so-called generalized variance function detVF(m) = detK′′

μ(θ(m)) does not
characterize the NEF F = F(μ); and, it is necessary to solve individually the corresponding
Monge–Ampère equation.

A normal stable Tweedie (NST) family with power parameter p ≥ 1 is a k-variate NEF on
[0,∞) × R

k−1 generated by the distribution of

(X1, Z2

√
X1, . . . , Zk

√
X1), (1.2)

where Z2, . . . , Zk are iid random variables with standard normal distribution N (0, 1) indepen-
dent of X1 whose distribution belongs to the Tweedie [29] NEF on the positive real line with
variance function γmp, γ > 0; see, e.g., [1] and the references cited therein. The representa-
tion (1.2) is extended to the so-called multiple stable Tweedie (MST) models, where X1 and
the Zj ’s are independent and each of them follows a given Tweedie NEF with p1, pj ≥ 1. See,
e.g., [4, 8, 19, 26]. The main aim of this paper is the following NST characterization. Con-
sider a steep NEF (i.e., the mean domain is equal to the interior of the closed convex hull of
the distribution support) F on [0,∞)× R

k−1 governed by a cumulant function or Log-Laplace
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transform K(θ) = log
∫

exp(θ�x)ν(dx) such that (1.1) holds for νp, p ≥ 1, generator the NST
NEF. Following [4] its variance function VF also satisfies

detVF(m) = mp+k−1
1 , (1.3)

for some p ≥ 1 with m = (m1, . . . , mk)�. Then F is an affinity of a NST family (Theorem 3.2).
It is noteworthy that this NST characterization (Theorem 3.2) appears to be a complete

one for all p ≥ 1. Indeed, it includes two cases: normal gamma with p = 2 ([18]) and normal
Poisson with p = 1 ([27]) using two different approaches of proof which are analytical and
measure theory, respectively. Also, this type of characterization through Property (1.1) and the
generalized variance function (1.3) is connected to some particular cases of the Monge–Ampère
equation ([9]) which are referred and widely discussed in the previous papers. See [23] for the
Gaussian model with detVF(m) = 1, [17] for the Poisson–Gaussian models and, finally, [10]
for the multinomial model. In fact, according to the mean parametrization of NEF, one can
re-write both equations (1.1) and (1.3) as

detK′′(θ(m)) = mp+k−1
1 . (1.4)

The left member of (1.4) depends on the unknown (cumulant) function K and the right one
is fixed for the model parameter p ≥ 1 and the dimension k ∈ {1, 2, . . .}. Another complete
characterization of the NST models has been done through their variance functions in [20] with
some associated polynomial functions. Analog works can be reproduced for [26] and, also, in
the multivariate geometric ([14]) and discrete ([15]) dispersion models, respectively.

Concerning some potentials of applied statistical aspects of NST, we first have the general-
ized variance property (1.3) which led to interesting estimators of detVF(m) through explicit
but biased maximum likelihood estimators in general and, also, uniformly minimum variance
and unbiased estimates. For that, we can refer to [2, 4, 21, 22]. Its special use under Gaus-
sianity (i.e., detVF(m) = 1) has been made via different approaches; see, e.g., Iliopoulos [11]
and Jafari [12] with some references cited therein. Note that the likelihood from observations
on (X1, X2, . . . , Xk) of the NST models shows clearly by (1.2) that X1 is a sufficient statistic
for a variability measure such as the generalized variance. The second statistical aspect of
the NST models may be derived from its flexibility compared to the classical normal model,
as already indicated in [4] and improved here. Indeed, consider that only the normal terms
(Z2, . . . , Zk) in (1.2) are observed, then X1 is an unobserved random effect. The case where
(X1, X2, . . . , Xk) is normal leads to an analysis of variance with a repeated measures factor
(within-subjects independent variable), for which the concept of sphericity (i.e., the equality of
variances of the differences between treatment levels) is assumed; that is known as compound
symmetry repeated measurements. Using the proposed NST models provides an extension that
could be useful as an alternative; see, e.g., Lee and Thompson [25] for a description of this issue
from a completely different angle (of generalized hierarchical models with random effects) from
ours. Additionally, the proposed NST models can be extended to regression models with covari-
ates such that one can handle a multivariate response vector; see, e.g., Bonat and Jørgensen [3].
The application potential of the NST models holds also for MST models [19]. The disturbance
that the NST models introduced in the standard multivariate normal model will eventually
propagate to all other components. Finally, some Bayesian approaches can be considered in the
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sense of Consonni et al. [7], also Kokonendji and Nisa [21].
The rest of the paper is organized in two parts according to the announced NST character-

ization (1.4). Since the NST property of generalized variance functions (1.3) is already given
in [4, Theorem 3.3], Section 2 establishes Equations (1.1) that we shall call the Monge–Ampère
property of the NST models (Theorem 2.4). We also point out the continuity property of
detK′′

νp
with respect to p > 1. Its univariate case (Proposition 2.2) appears to be new for the

stable Tweedie models on the positive real line. Section 3 states and finally proves Theorem 3.2
of the NST characterization (1.4) via (1.1) and (1.3) with the assumption of steepness.

2 Monge–Ampère Property of NST Models

We first establish the Monge–Ampère property (1.1) for the univariate stable Tweedie models,
before showing the same property for all the multivariate NST models.

2.1 Univariate Stable Tweedie Models

Let us briefly review the complete univariate stable Tweedie models through their cumulant
functions, which also characterize the generating measures of the families (e.g., [1]).

Definition 2.1 Let t > 0 and p ∈ (−∞, 0]∪ [1,∞). Denote by μp,t = μ∗t
p the t-th convolution

power of a σ-finite positive measure μp. The cumulant function of any univariate stable Tweedie
NEF Fp,t = F (μp,t) = {P (θ; μp,t)(dx); θ ∈ Θ(μp,t)}, generated by μp,t, is given by Kμp,t

(θ) =
tKμp

(θ) with

Kμp
(θ) =

⎧
⎪⎪⎨

⎪⎪⎩

exp(θ), for p = 1,

− log(−θ), for p = 2,

{1/(2 − p)}{−(p − 1)θ}(2−p)/(1−p), for p 
= 1, 2

(2.1)

for all θ in their respective canonical domains Θ(μp) with support Sp of distributions:

Θ(μp) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

R, for p = 0, 1,

[0,∞), for p < 0,

(−∞, 0), for 1 < p ≤ 2,

(−∞, 0], for p > 2

and Sp =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

R, for p ≤ 0,

N, for p = 1,

[0,∞) , for 1 < p < 2,

(0,∞), for p ≥ 2.

Letting X be a Tweedie random variable denoted by Twp(θ, t), its probability density (or
mass) function can be indicated in terms of

P (x; θ, t, p) = ap(x; t) exp{xθ − Kμp,t
(θ)}1Sp

(x),

with t > 0, p /∈ (0, 1) the power Tweedie index determining the distribution, θ ∈ Θ(μp,t), 1E

the indicator function of any given event E, and ap(x; t) the normalizing function detailed as
follows. Denoting by Γ( · ) the classical gamma function and α := (p − 2)/(p − 1) = α(p) the
stability index, we successively have

ap(x; t) =
1

πx

∞∑

k=1

(−x)k(αt)kα−1
Γ(1 + kα−1)

(α − 1){(α−1)α−1k}Γ(k + 1)
sin(−kπα−1)1R(x) for p < 0,

ap(x; t) = 1x=0 +
1
x

∞∑

k=1

(p − 1)αkx−kα

(2 − p)kt(1−α)kΓ(−kα)Γ(k + 1)
1x>0 for 1 < p < 2,
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ap(x; t) =
1

πx

∞∑

k=1

(p − 1)αkt(α−1)kΓ(1 + αk)
(p − 2)kxαkΓ(1 + k)

(−1)k sin(−kπα)1x>0 for p > 2,

ap(x; t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2πt)−1/2 exp(−x2/2)1R(x), for p = 0,

{Γ(x + 1)}−11N(x), for p = 1,

(1/t)1/tx−1+1/t{Γ(1/t)}−11x>0, for p = 2,

(2πx3t)−1/2 exp{−1/(2x)}1x>0, for p = 3.

For t = 1 one has μp,1 := μp and the (so-called unit) variance function is Vp(m) = mp for all m

in the mean domain

Mp := K ′
μp

(Θ(μp)) =

⎧
⎨

⎩

R, p = 0,

(0,∞), p 
= 0.

Therefore, it is clear that the extreme stable models corresponding to p < 0 are not steep, and
they will not be a member anymore of this work from now.

We can now prove the Monge–Ampère property (1.1) for the univariate stable Tweedie
models (Definition 2.1 with t = 1) which are steep and have positive mean domain.

Proposition 2.2 For p ≥ 1 the second derivative of Kμp
on the interior of Θ(μp) satisfies

(i) K ′′
μp

(θ) = Kμp
(θ) and Kμp

( · ) > 0 for p = 1,
(ii) K ′′

μp
(θ) = {(2 − p)Kμp

(θ)}p/(2−p) and Kμp
( · ) > 0 for 1 < p < 2,

(iii) K ′′
μp

(θ) = exp{2Kμp
(θ)} and Kμp

( · ) > 0 for p = 2,
(iv) K ′′

μp
(θ) = [1/{−(p − 2)Kμp

(θ)}]−p/(p−2) and Kμp
( · ) < 0 for p > 2; and, furthermore,

(v) the function p �→ K ′′
μp

is continuous for p ∈ (1,∞).

Remark 2.3 The function p �→ K ′′
μp

is not continuous to the right of p = 1, because the
corresponding compound Poisson-gamma distributions (1 < p < 2) are not discrete. But they
are semicontinuous (i.e., they have a mass at zero and positive continuous otherwise).

Proof of Proposition 2.2 From (2.1), we respectively have the following five parts.
(i) For p = 1, it is obvious because of Kμp

(θ) = exp(θ).
(ii) For 1 < p < 2, one has Kμp

(θ) = {1/(2− p)}{−(p− 1)θ}(2−p)/(1−p) which is equivalent
to θ = {1/(1 − p)}{(2 − p)Kμp

(θ)}(1−p)/(2−p) with Θμp
= (−∞, 0). The second derivative of

Kμp
leads to the desired result with Kμp

(θ) > 0.
(iii) For p = 2, it is trivial from Kμp

(θ) = − log(−θ) ⇔ θ = − exp{−Kμp
(θ)} with Θμp

=
(−∞, 0).

(iv) For p > 2, from Kμp
(θ) = {−1/(p − 2)}{−(p − 1)θ}(2−p)/(1−p) one can write θ =

{1/(1− p)}{(2− p)Kμp
(θ)}(1−p)/(2−p) with Θμp

= (−∞, 0]. Then the direct calculation of K ′′
μp

gives the result with Kμp
(θ) < 0.

(v) It is obvious for p ∈ (1, 2)∪ (2,∞). One also has the continuity at p = 2 by using (2.1),
for instance for the right 2+ of p = 2:

lim
p→2+

K ′′
μp

(θ) = lim
p→2+

[1/{−(2 − p)Kμp
(θ)}]−p/(p−2)

= lim
p→2+

[{−(p − 1)θ}−(2−p)/(1−p)]−p/(2−p)

= lim
p→2+

[{−(p − 1)θ}−1]−p/(1−p)
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= (1/θ)2

= K ′′
μ2

(θ). �

2.2 Multivariate NST Models

Let t > 0 and p ≥ 1. From (1.2) and Definition 2.1, consider the σ-finite measure νp,t = ν∗t
p

on R
k defined by νp,t(dx) = μp,t(dx1)

∏k
j=2 μ0,x1(dxj). The NST models are multivariate NEF

Fp,t = F(νp,t), generated by νp,t with cumulant functions

Kνp,t
(θ) = tKνp

(θ) = tKμp
(g(θ)), (2.2)

for g(θ) = θ1 + (θ2
2 + · · · + θ2

k)/2 and θ = (θ1, . . . , θk)� in the canonical domain

Θ(νp,t) = Θ(νp) = {θ ∈ R
k; g(θ) ∈ Θ(μp)}. (2.3)

The set Fp,t = {P(θ; p, t); θ ∈ Θ(νp,t)} of probability distributions P(θ; p, t)(dx) = exp{θ�x−
Kνp,t

(θ)}νp,t(dx) has the mean domain MFp,t
:= K′

νp,t
(Θ(νp,t)) = MFp

; its variance function
and generalized variance function are, respectively,

VFp,t
(m) = t1−pmp−2

1 · mm� + Diagk(0, m1, . . . , m1)

and
detVFp,t

(m) = t1−pmp+k−1
1 .

Table 1 depicts a summary for t = 1 with νp,1 := νp such that Sp denotes the support of
distribution(s). We also include two particular cases in italics (p = 3/2 and p = 3).

Distribution(s) p Sp

Normal Poisson p = 1 N × R
k−1

Normal compound Poisson-gamma 1 < p < 2 [0,∞) × R
k−1

Normal noncentral gamma p = 3/2 [0,∞) × R
k−1

Normal gamma p = 2 (0,∞) × R
k−1

Normal positive stable p > 2 (0,∞) × R
k−1

Normal inverse Gaussian p = 3 (0,∞) × R
k−1

Table 1 Summary of the NST models with p ≥ 1, MFp = (0,∞) × R
k−1 and Sp ([4])

Here is the Monge–Ampère property (1.1) for the NST models, with the similar comment
of Remark 2.3 that we omit.

Theorem 2.4 For p ≥ 1, the Hessian determinant of Kνp
on the interior of Θ(νp) satisfies

(i) detK′′
νp

(θ) = {Kνp
(θ)}k and Kνp

( · ) > 0 for p = 1,
(ii) detK′′

νp
(θ) = {(2 − p)Kνp

(θ)}(p+k−1)/(2−p) and Kνp
( · ) > 0 for 1 < p < 2,

(iii) detK′′
νp

(θ) = exp{(k + 1)Kνp
(θ)} and Kνp

( · ) > 0 for p = 2,
(iv) detK′′

νp
(θ) = [1/{−(p − 2)Kνp

(θ)}](p+k−1)/(p−2) and Kνp
( · ) < 0 for p > 2; and,

furthermore,
(v) the function p �→ detK′′

νp
is continuous for p > 1.

In order to prove this theorem and also for many calculations of determinants below, we
need the following Schur representation of determinant in this simplified form:
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Lemma 2.5 Let λ 
= 0 be a scalar, a ∈ R
k−1 a vector and A a given (k− 1)× (k− 1) matrix.

Then

det

⎛

⎝
λ a�

a A

⎞

⎠ = λ det(A − λ−1aa�).

Proof of Theorem 2.4 From (2.2) with t = 1 and all p ≥ 1 one has the Hessian

K′′
νp

(θ) = K ′′
μp

(g(θ)) · g′(θ)g′(θ)� + K ′
μp

(g(θ)) · g′′(θ),

with g′(θ) = (1, θ2, . . . , θk)� and g′′(θ) = Diagk (0, 1, . . . , 1); that is

K′′
νp

(θ) = K ′′
μp

(g(θ)) (1, θ2, . . . , θk) (1, θ2, . . . , θk)� + K ′
μp

(g(θ))Diagk (0, 1, . . . , 1) .

Using Lemma 2.5 with λ = K ′′
μp

(g(θ)), a = K ′′
μp

(g(θ)) (θ2, . . . , θk)� and

A = K ′′
μp

(g(θ)) · (θ2, . . . , θk)(θ2, . . . , θk)� + K ′
μp

(g(θ)) · Ik−1,

one here obtains A − λ−1aa� = K ′
μp

(g(θ)) · Ik−1 and therefore

detK′′
νp

(θ) = K ′′
μp

(g(θ)) det[K ′
μp

(g(θ)) Ik−1]

= K ′′
μp

(g(θ)) {K ′
μp

(g(θ))}k−1. (2.4)

Now, we check each part of the announced results by using (2.4) and Proposition 2.2.
(i) For p = 1, the result is trivial and Kνp

(θ) > 0.
(ii) For 1 < p < 2, the desired result is obtained as

detK′′
νp

(θ) = {(2 − p)Kμp
(g(θ))}p/(2−p){(2 − p)Kμp

(g(θ))}(k−1)/(2−p)

= {(2 − p)Kνp
(θ)}(p+k−1)/(2−p),

with Kνp
(θ) > 0.

(iii) For p = 2, one easily expresses

detK′′
νp

(θ) = exp{2Kμp
(g(θ))}[exp{Kμp

(g(θ))}]k−1 = exp{(k + 1)Kνp
(θ)}.

(iv) For p > 2, it follows that

detK′′
νp

(θ) = [1/{−(p − 2)Kμp
(g(θ))}](p+k−1)/(p−2)

= [1/{−(p − 2)Kνp
(θ)}](p+k−1)/(p−2),

with Kνp
(θ) < 0.

(v) For p ∈ (1, 2) ∪ (2,∞), the function p �→ detK′′
νp

is obviously continuous. At p = 2 one
can directly obtain by undergraduate calculations

lim
p→2−

detK′′
νp

(θ) = lim
p→2−

{(2 − p)Kμp
(g(θ))}(p+k−1)/(2−p)

= lim
p→2−

{−(p − 1)g(θ)}(p+k−1)/(1−p)

= {−g(θ)}−(k+1)

= exp{(k + 1)Kν2(θ)}
= detK′′

ν2
(θ)
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and also

lim
p→2+

detK′′
νp

(θ) = lim
p→2+

[1/{−(p − 2)Kμp
(g(θ))}](p+k−1)/(p−2)

= lim
p→2+

[1/{−(p − 1)g(θ)}](p+k−1)/(p−1)

= {−g(θ)}−(k+1)

= exp{(k + 1)Kν2(θ)}
= detK′′

ν2
(θ). �

We here thank the anonymous referee for pointing out that, from (2.4), the formula

detK′′(θ) = K ′′(g(θ)){K ′(g(θ))}k−1

is true for any distribution of X1, not necessarily the Tweedie ones.

3 Characterization Result of NST Models

3.1 Result and Final Remarks

Before showing the main result with some concluding remarks, we first compile three classical
operations of basis, affinity and convolution between two connected NEFs (e.g., [4, 24]). They
exhibit the closeness in type of a given NEF through the variance function and generalized
variance function.

Proposition 3.1 Let μ and μ̃ be two σ-finite positive measures on R
k such that F = F(μ),

F̃ = F(μ̃) and m ∈ MF.
(i) If there exists (a, b) ∈ R

k × R such that μ̃(dx) = exp{〈a,x〉 + b}μ(dx), then F = F̃ :
Θ(μ̃) = Θ(μ) − a and Kμ̃(θ) = Kμ(θ + a) + b; for m̃ = m ∈ MF, VF̃(m̃) = VF(m) and
detVF̃(m̃) = detVF(m).

(ii)If μ̃ = ϕ ∗ μ is the image measure of μ by the affine transformation ϕ(x) = Ax + b,
where A is a k × k non-degenerate matrix and b ∈ R

k, then : Θ(μ̃) = A�Θ(μ) and Kμ̃(θ) =
Kμ(A�θ) + b�θ; for m̃ = Am + b ∈ ϕ(M), VF̃(m̃) = AVF(ϕ−1(m))A� and detVF̃(m̃) =
(detA)2 detVF(m).

(iii) If μ̃ = μ∗t is the t-th convolution power of μ for t > 0, then : Θ(μ̃) = Θ(μ) and
Kμ̃(θ) = tKμ(θ); for m̃ = tm ∈ tMF, VF̃(m̃) = tVF(t−1m) and detVF̃(m̃) = tk detVF(m).

Part (iii) of Proposition 3.1 allows to consider t = 1 for the following characterization
theorem of the NST family. Here is the characterization result of NST.

Theorem 3.2 Let p ≥ 1 and k ∈ {1, 2, . . .} be fixed. Consider a steep NEF F on [0,∞)×R
k−1

governed by its cumulant function K on Θ ⊆ R
k such that (1.1) and (1.3) hold, where (1.1)

comes in
(H1) detK′′(θ) = {K(θ)}k and K( · ) > 0 for p = 1,
(H2) detK′′(θ) = {(2 − p)K(θ)}(p+k−1)/(2−p) and K( · ) > 0 for 1 < p < 2,
(H3) detK′′(θ) = exp{(k + 1)K(θ)} and K( · ) > 0 for p = 2,
(H4) detK′′(θ) = [1/{−(p − 2)K(θ)}](p+k−1)/(p−2) and K( · ) < 0 for p > 2.

Then F is an NST family governed by νp of Table 1.

For the proof of Theorem 3.2 we will omit the univariate case (k = 1) because of its
triviality, even if it is new as a converse of Theorem 2.1. In general, for k > 1 solving only
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detK′′ = f(K) for known f is finding the solutions of differential equation, a much harder
problem. Hence, adding a given form of generalized variance function must help to the solutions,
under supplementary conditions.

For p = 1 in Theorem 3.2, we can also refer to [27, Theorems 4.1 and 4.2]) using the
method of measure theory as in [17]. Here we shall use an alternative method, says analytical,
and already used for p = 2 in [18, Theorem 2.1]. A challenging proof will be for the MST
models where its generalized variance functions, replacing (1.3) of NST, can be written as
follows: detV(m) = mq1

1 mq2
2 . . . mq�

� , for given � ∈ {0, 1, . . . , k} and qs ∈ R, s = 1, 2, . . . , �; see,
e.g., [4, 19].

3.2 Proof of Theorem 3.2

We first give in details the proof for p > 2. For that, we successively establish the following five
lemmas before concluding the proof.

The first one is a reformulation of assumptions leading clearly to K(θ) < 0 for all θ ∈ Θ
such that M = K′(Θ).

Lemma 3.3 Let p > 2 and k ∈ {2, 3, . . .} be fixed. Consider a steep NEF F on [0,∞)×R
k−1

governed by its cumulant function K on Θ ⊆ R
k such that (H4) of Theorem 3.2 and (1.3) hold.

Then

K(θ(m)) = −(p − 2)−1m
−(p−2)
1 , m ∈ M := (0,∞) × R

k−1.

Proof Since detK′′(θ(m)) = detV(m), Assumption (H4) of Theorem 3.2 combined to (1.3)
gives the desired result from

[1/{−(p − 2)K(θ(m))}](p+k−1)/(p−2) = mp+k−1
1 .

The mean domain M := (0,∞) × R
k−1 is deduced from the steepness property of F. �

Lemma 3.4 From Lemma 3.3 and denoting VF(m) = (Vij(m))i,j=1,...,k the variance function
of F, then

V1j(m) = mp−1
1 mj , ∀j = 1, . . . , k.

Proof Since one classically has m = K′(θ) and θ′(m) = {VF(m)}−1, the differentiation of
K(θ(m)) = −(p − 2)−1m

−(p−2)
1 of Lemma 3.3 with respect to m gives

m{VF(m)}−1u = m1−p
1 (1, 0, . . . , 0)u, ∀u ∈ R

k.

In particular for u = VF(m)ej where (ej)j=1,...,k is the canonical basis of R
k, the desired result

is thus obtained. �
The following lemma introduces the basical cumulant function K in terms of canonical

parameter θ = (θ1, θ2, . . . , θk)�.

Lemma 3.5 Under assumptions of Lemma 3.4, there is a function h : Θ1 ⊆ R
k−1 → (−∞, 0)

such that, up to additive constant,

K(θ) = −(p − 2)−1[−(p − 1){θ1 + h(θ2, . . . , θk)}](p−2)/(p−1)

on Θ =
{
θ ∈ R

k; θ1 + h(θ2, . . . , θk) < 0
}
.
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Proof Departing from Lemma 3.3 which shows the cumulant function K in terms of the only
first component m1 of the mean vector m = (m1, m2, . . . , mk)�, we successively investigate
K through integration with respect to the first component θ1 of the canonical parameter θ =
(θ1, θ2, . . . , θk)�.

From Lemma 3.4 one has V11(m) = mp
1, that involves D2

11K(θ) = {D1K(θ)}p. By integra-
tion with respect to θ1, there exists a function h : R

k−1 → (−∞, 0) such that

D1K(θ) = [−(p − 1){θ1 + h(θ2, . . . , θk)}]−1/(p−1). (3.1)

One deduces θ1 + h(θ2, . . . , θk) < 0 because D1K(θ) = m1 > 0 and p − 1 > 0. Thus, for
particular θ = (0, θ2, . . . , θk)� one has 0 + h(θ2, . . . , θk) < 0 and, then, h(θ2, . . . , θk) < 0.

The derivative of D1K(θ) with respect to θj gives

D2
1jK(θ) =

−h′(θ2, . . . , θk)D1K(θ)
(p − 1){θ1 + h(θ2, . . . , θk)} , ∀j = 2, . . . , k, (3.2)

and by Lemma 3.4 one obtains besides

D2
1jK(θ) = {D1K(θ)}p−1DjK(θ), ∀j = 2, . . . , k (3.3)

with DjK(θ) = mj and D2
ijK(θ(m)) = Vij(m) for i, j = 1, . . . , k. Combining (3.2) and (3.3)

one has
{D1K(θ)}p−1DjK(θ) =

−h′(θ2, . . . , θk)D1K(θ)
(p − 1){θ1 + h(θ2, . . . , θk)} ,

therefore,
DjK(θ) = h′(θ2, . . . , θk)[−(p − 1){θ1 + h(θ2, . . . , θk)}]−1/(p−1),

for all j = 2, . . . , k; and, by integration with respect to θj one gets

K(θ) = −(p − 2)−1[−(p − 1){θ1 + h(θ2, . . . , θk)}](p−2)/(p−1) + b(θ1), (3.4)

where b is a real function to be determined.
Hence, the derivative of (3.4) with respect to θ1 gives

D1K(θ) = [−(p − 1){θ1 + h(θ2, . . . , θk)}]−1/(p−1) + b′(θ1),

to compare with (3.1) one deduces b′(θ1) = 0 therefore b(θ1) = b a real constant. Then, from
both K(θ) of Lemma 3.3 and of (3.4) one obtains

−(p − 2)−1[−(p − 1){θ1 + h(θ2, . . . , θk)}](p−2)/(p−1) + b = −(p − 2)−1m
−(p−2)
1 ,

with m1 = D1K(θ) above, therefore b = 0. Finally, the expression (3.4) with b = 0 leads to the
announced result. �

Lemma 3.6 From Lemma 3.5, one has the following assertions:
(i) D2

11K(θ) = mp
1.

(ii) D2
1jK(θ) = mp−1

1 mj, ∀j = 2, . . . , k.
(iii) D2

ijK(θ) = mp−2
1 mimj + m1h

′′
ij(θ2, . . . , θk), ∀i, j ∈ {2, . . . , k}, with mj := DjK(θ) for

all j = 1, 2, . . . , k.

Proof Parts (i) and (ii) come from Lemma 3.4. Concerning Part (iii) the first partial derivative
of K(θ), from Lemma 3.5, with respect to θi gives

DiK(θ) = h′
i(θ2, . . . , θk)[−(p − 1){θ1 + h(θ2, . . . , θk)}]−1/(p−1) =: mi
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and, then, the second one can be written successively as

D2
ijK(θ) = h′

i(θ2, . . . , θk)h′
j(θ2, . . . , θk)[−(p − 1){θ1 + h(θ2, . . . , θk)}]−p/(p−1)

+ h′′
ij(θ2, . . . , θk)[−(p − 1){θ1 + h(θ2, . . . , θk)}]−1/(p−1)

= mimj [−(p − 1){θ1 + h(θ2, . . . , θk)}]−(p−2)/(p−1)

+ h′′
ij(θ2, . . . , θk)[−(p − 1){θ1 + h(θ2, . . . , θk)}]−1/(p−1)

= mp−2
1 mimj + m1h

′′
ij(θ2, . . . , θk)

for all i, j = 2, . . . , k. Hence, the lemma is proven. �

Lemma 3.7 The function h : Θ1 ⊆ R
k−1 → (−∞, 0) of Lemma 3.5 satisfies in succession

the following properties:
(i) h is a convex function.
(ii) det h′′(θ2, . . . , θk) is a real constant with respect to (θ2, . . . , θk).
(iii) h′′(θ2, . . . , θk) = Σk−1 is a (k − 1) × (k − 1) symmetric matrix and not depending on

θj, ∀j ∈ {2, . . . , k}.
Proof (i) Let ν = (ν1, ν

c
1) be the generating measure of F. From Lemma 3.5 and since

(θ2, . . . , θk) �→ K(0, θ2, . . . , θk) =: Kνc
1
(θ2, . . . , θk) is the cumulant function of νc

1, the function

(θ2, . . . , θk) �→ Kνc
1
(θ2, . . . θk) = −(p − 2)−1 [−(p − 1)h(θ2, . . . , θk)](p−2)/(p−1)

is therefore convex. This implies that (θ2, . . . , θk) �→ [−(p − 2)K(0, θ2, . . . θk)](p−1)/(p−2) =
−(p − 1)h(θ2, . . . , θk) is also convex. Therefore h is convex.

(ii) From Lemma 3.6 and Lemma 2.5 we can write

detK′′(θ) = det[D2
ijK(θ)]i,j=1,...,k = λ det(A − λ−1aa�),

with λ = mp
1, a = mp−1

1 (m2, . . . , mk)� and A = m−p
1 aa� + m1h

′′
ij(θ2, . . . , θk). Therefore,

detK′′(θ) = mp
1 det

(
1

mp
1

aa� + m1h
′′
ij(θ2, . . . , θk) − 1

mp
1

aa�
)

= mp+k−1
1 deth′′

ij(θ2, . . . , θk).

Since detK′′(θ) must be equal to mp+k−1
1 , we deduce that deth′′

ij(θ2, . . . , θk) = 1 not depending
on θj , for all j ∈ {2, . . . , k}.

(iii) It is deduced from Parts (i) and (ii) and the result of basic Monge–Ampère equation. �

Theorem 3.8 (Jörgens–Calabi–Pogorelov [5, 13, 28]) Let K be a convex function on R
k of

class C 2 such that detK′′(θ) = 1. Then K′′ is a constant.

Theorem 3.8 is used in the sense of Cheng and Yau [6] through the convexity and the
analytical property of h on Θ1 ⊆ R

k−1, which is extended on the whole R
k−1.

In order to conclude the proof of Theorem 3.2 for p > 2, it suffices to show that the family
F of Lemmas 3.3–3.7 belongs to the NST family, up to linear transformation (Part (ii) with
b = 0 of Proposition 3.1). Indeed, substituting h′′(θ2, . . . , θk) = Σk−1 of Part (iii) of Lemma
3.7 into Part (iii) of Lemma 3.6, the variance function of F is deduced from Lemma 3.6 as

VF(m) = [D2
ijK(θ(m))]i,j=1,...,k
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=

⎛

⎝
mp

1 mp−1
1 (m2, . . . , mk)

mp−1
1 (m2, . . . , mk)� m−p

1 (m2, . . . , mk)�(m2, . . . , mk) + m1Σk−1

⎞

⎠

= mp−2
1 mm� + m1

⎛

⎝
0 0�

k−1

0k−1 Σk−1

⎞

⎠ ,

where 0�
k−1 is the null vector of R

k−1. Applying Cholesky’s decomposition, there is a triangular
matrix T such that Σk−1 = TT�. Denote F̃ the image of the NEF F by linear transformation
x �→ Bx of R

k with B =
(

1 0�
k−1

0k−1 T−1

)
, where T−1 is the (k − 1) × (k − 1) inverse matrix of

T. Then, by Formula (54.14) of Kotz et al. [24] and Part (ii) of Proposition 3.1, one can
successively verify

VF̃(m̃) := BVF

(
B−1m

)
B�

= B

⎧
⎨

⎩
mp−2

1 (B−1m)(B−1m)� + m1

⎛

⎝
0 0�

k−1

0k−1 TT�

⎞

⎠

⎫
⎬

⎭
B�

= mp−2
1 mm� + m1B

⎛

⎝
0 0�

k−1

0k−1 TT�

⎞

⎠B�

= mp−2
1 mm� + m1

⎛

⎝
1 0�

k−1

0k−1 T−1

⎞

⎠

⎛

⎝
0 0�

k−1

0k−1 TT�

⎞

⎠

⎛

⎝
1 0�

k−1

0k−1

(
T�)−1

⎞

⎠

= mp−2
1 mm� + m1Diagk(0, 1, . . . , 1).

Finally, the NST characterization through variance functions in [20, Theorem 3.1] allows to
conclude the proof of Theorem 3.2 for p > 2.

The remainder proof of Theorem 3.2 for 1 ≤ p < 2 is similar to the previous case (p > 2)
through the following two points around of Lemma 3.5. (A) p = 1: we have to consider
K(θ) = exp(θ1)h(θ2, . . . , θk), for Θ =

{
θ ∈ R

k; h(θ2, . . . , θk) > 0
}

with h > 0 and K(θ(m)) >

0. (B) p ∈ (1, 2): that will be K(θ) = (2 − p)−1[−(p − 1){θ1 + h(θ2, . . . , θk)}](p−2)/(p−1), for
Θ =

{
θ ∈ R

k; θ1 + h(θ2, . . . , θk) < 0
}

with h < 0 and K(θ(m)) > 0.
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