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Abstract: The postharvest processing factors including cherry processing methods highly influence
the final quality of coffee beverages, especially in the composition of several coffee metabolites such as
glucose, fructose, the amino acid (glutamic acid), and chlorogenic acids (CGA) as well as trigonelline
contents. In this research, UV spectroscopy combined with chemometrics was used to classify a
ground roasted Lampung robusta specialty coffee according to differences in the cherry processing
methods. A total of 360 samples of Lampung robusta specialty coffee with 1 g of weight for each sample
from three different cherry processing methods were prepared as samples: 100 samples of pure dry
coffee (DRY), 100 samples of pure semi-dry coffee (SMD), 100 samples of pure wet coffee (WET) and
60 samples of adulterated coffee (ADT) (SMD coffee was adulterated with DRY and WET coffee).
All samples were extracted using a standard protocol as explained by previous works. A low-cost
benchtop UV-visible spectrometer (Genesys™ 10S UV-Vis, Thermo Scientific, Waltham, MA, USA)
was utilized to obtain UV spectral data in the interval of 190–400 nm using the fast scanning mode.
Using the first three principal components (PCs) with a total of 93% of explained variance, there was
a clear separation between samples. The samples were clustered into four possible groups according
to differences in cherry processing methods: dry, semi-dry, wet, and adulterated. Four supervised
classification methods, partial least squares–discriminant analysis (PLS-DA), principal component
analysis–linear discriminant analysis (PCA-LDA), linear discriminant analysis (LDA) and support
vector machine classification (SVMC) were selected to classify the Lampung robusta specialty coffee
according to differences in the cherry processing methods. PCA-LDA is the best classification method
with 91.7% classification accuracy in prediction. PLS-DA, LDA and SVMC give an accuracy of 56.7%,
80.0% and 85.0%, respectively. The present research suggested that UV spectroscopy combining with
chemometrics will be highly useful in Lampung robusta specialty coffee authentication.

Keywords: UV spectroscopy; PLS-DA; PCA-LDA; LDA; SVMC; dry processing; wet processing;
semi-dry processing; Lampung specialty coffee

1. Introduction

Coffee (Coffea sp.) is a widely consumed beverage with two popular varieties being
planted worldwide: arabica (Coffea arabica) with 57% of global coffee production and
robusta coffee (Coffea canephora) with 43% of global coffee production [1]. According to the
USDA (United States Department of Agriculture) [2], in 2019/2020 Indonesia shared 6.10%
of world coffee production with a total production of 0.642 million tons. In Indonesia,
coffee beans, mostly robusta coffee, were mainly produced in six important provinces:
South Sumatera, Lampung, Bengkulu, North Sumatera, East Java, and South Sulawesi.

In Lampung, three different robusta coffee cherry processing methods are used: dry
or natural (DRY), semi-dry (SMD), and wet or washed processing (WET). In dry process-
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ing, bean processing including cherry sortation (removing defective and immature fruit),
cherry drying (usually using open sun drying for 3–9 days), hulling or peeling, green
bean sortation (removing a defective green bean), and packing. In wet processing, bean
processing includes cherry sortation, pulping, fermentation (12–48 h equipped with a
controlled water flow), washing, drying, peeling and polishing, green bean sortation, and
packing [3–5]. Semi-dry processing is a relatively new processing that combines the best
aspects of the dry and wet processes. In semi-dry processing, bean processing includes
cherry sortation, pulping (without removing the mucilage), drying, peeling and polishing,
green bean sortation, and packing [6].

The postharvest processing factors including cherry processing methods highly influ-
ence the final quality of coffee beverages, especially in the composition of several coffee
metabolites such as glucose, fructose, the amino acid (glutamic acid), and chlorogenic
acids (CGA) as well as trigonelline contents. For example, in general, coffees with wet
processing methods have higher acidity and full aroma as a result of fermentation [7]. The
glucose and fructose contents with dry processing are higher than the wet one [5]. It is
noted that the final content of glucose and fructose was reduced drastically (up to 80–90%)
in wet processing coffee. In the term of caffeine content, several works have shown that
caffeine contents are not significantly different between dry and wet processing [5]. CGA
contents in wet processing coffee were significantly higher than those processed by the
semi-dry method [8]. In contrast, trigonelline was found to be decreased by wet processing.
According to Bytof et al. [9], bean processing influences the amino acid contents. In an
individual compound, during dry processing, glutamic acid decreases rapidly. During
the roasting process, coffee cherry processing was also reported to influence the formation
of furfuryl alcohol, a carcinogen compound (Group 2B), with dry processing showing a
lower production of furfuryl alcohol as opposed to the wet processing [10]. In terms of
cup quality, it was reported that the wet processed coffee was regarded as having a better
quality compared to the dry [8]. However, semi-dry processed coffee is now becoming
more popular with the most expensive coffees, especially for espresso coffee [11].

Several methods have been reported to discriminate between natural arabica, washed
arabica, and robusta varieties using NIR spectroscopy and electronic devices (e-nose and e-
tongue) with a satisfactory result (the percentage of correctly classified samples was almost
100% for green and roasted coffee) [12]. Flambeau et al. [13] utilized e-nose/e-tongue
combined with principal component analysis (PCA) and discriminant factorial analysis
(DFA) to discriminate ground roasted coffee with different cultivar, origin, and processing
with an acceptable result. Those reported works involved a relatively expensive device to
perform the analysis.

A relatively affordable analytical method based on UV spectroscopy is preferred
to discriminate Lampung robusta coffee according to its cherry processing methods. UV
spectroscopy has been used for specialty coffee authentication, especially for ground
roasted coffee. Suhandy and Yulia [14–17] studied the application of UV spectroscopy
and chemometrics for authentication of Luwak coffee, peaberry coffee, several Indonesian
specialty coffees with a geographic indication (GIs) and discriminating Gayo wine and
normal coffee.

However, there is no report on the use of UV spectroscopy for discrimination between
dry, semi-dry, and wet processing methods and their adulteration. Therefore, this study
aimed to evaluate the practical application of UV spectroscopy and several classification
methods for classification of Lampung robusta coffee according to differences in cherry
processing methods. Four classifications of PLS-DA (partial least squares–discriminant
analysis), PCA-LDA (principal component analysis–linear discriminant analysis), LDA
(linear discriminant analysis), and SVMC (support vector machines classification) were
tested and its comparative performance was evaluated.



Agriculture 2021, 11, 109 3 of 11

2. Materials and Methods
2.1. Samples

A total of 360 samples of Lampung robusta coffee with 1 g of weight for each sample
from three different cherry processing methods were prepared as samples: 100 samples of
pure dry coffee (DRY), 100 samples of pure semi-dry coffee (SMD), 100 samples of pure
wet coffee (WET) and 60 samples of adulterated coffee (ADT) (SMD coffee was adulterated
with DRY and WET coffee). The samples were collected from the same harvest season in
Sumber Jaya coffee plantation, West Lampung, Lampung (5◦00′28.5” S 104◦28′37.4” E).
The samples were belonging to premium grade (first grade) by maintaining the number of
defective beans as low as 11 scores according to Indonesian National Standard for coffee
bean (ISN No. 01-2907:2008). The composition of pure and adulterated samples was shown
in Table 1 along with its standard deviation.

Table 1. Composition of pure and adulterated samples with three different cherry processing methods.

Samples Samples Code DRY (g) WET (g) SMD (g) Number of Samples

DRY DRY1–DRY100 1 ± 0.0001 0 0 100
WET WET1–WET100 0 1 ± 0.0001 0 100
SMD SMD1–SMD100 0 0 1 ± 0.0001 100

ADT

ADT1–ADT10 0.05 ± 0.0001 0 0.95 ± 0.0003 10
ADT11–ADT20 0.05 ± 0.0003 0.05 ± 0.0003 0.90 ± 0.0002 10
ADT21–ADT30 0.075 ± 0.0003 0.075 ± 0.0002 0.85 ± 0.0003 10
ADT31–ADT50 0.1 ± 0.0001 0.1 ± 0.0002 0.80 ± 0.0002 20
ADT51–ADT60 0.125 ± 0.0002 0.125 ± 0.0002 0.75 ± 0.0002 10

It has been well reported that the quality of coffee flavor was highly affected by
roasting conditions [18,19]. For this reason, in this research, all samples were roasted in the
same condition: 200 ◦C for 20 min using a portable roasting machine. All samples have a
homogenous particle size of 0.297 mm by grinding and sieving using 50 mesh [20].

2.2. Coffee Extraction using Distilled Water

All samples were extracted using a protocol as explained by previous works [14–17].
For each sample, 50 mL of hot distilled water (98 ◦C) was added and then well stirred for
10 min using CiBlanc magnetic stirrer. The extracted samples were filtered and diluted
with distilled water with the proportion 1:20 mL. About 3 mL of diluted samples were
prepared for spectral measurement.

2.3. Spectral Measurement using UV-Visible Spectrometer

A low-cost benchtop UV-visible spectrometer (Genesys™ 10S UV-Vis, Thermo Sci-
entific, Waltham, MA, USA) was utilized to obtain UV spectral data in the interval of
190–400 nm using fast scanning mode. Reference was measured using a distilled water.
The absorbance data was used for further analysis [21].

2.4. Chemometrics

PCA (principal component analysis) was used to perform unsupervised pattern
recognition. The calculation of PCA using the following parameters: 10 number of principal
components (PCs) and leave-one-out cross validation. Four supervised classifications were
performed using PLS-DA, PCA-LDA, LDA, and SVMC. The reliability of each classification
model was validated using validation procedure. PLS-DA works based on a PLS regression
algorithm which searches for latent variables (LVs) with a maximum covariance with the
Y-variables. It was chosen because it has been satisfactorily applied in the field of food
analysis, as mentioned in previous works [22,23]. LDA and PCA-LDA are popular classical
statistical methods for feature extraction and dimension reduction and mostly employed
among many supervised pattern recognition methods [24]. In LDA and PCA-LDA, the
variance between the categories to be maximized and the variance within the categories
to be minimized [25]. The main drawback for LDA and PCA-LDA is only well working
when the number of variables is fewer than the number of samples. It was mentioned by
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Harvey et al. [26] that for LDA and PCA-LDA, in order to avoid model over-fitting, it is
required that the number of samples have to be at least twice as many as the number of
variables. SVM is one of the machine-learning methods that can be operated with relatively
small datasets. It has recently become popular and widely used and investigated because
of its ability in prediction for both, classification and regression [27]. Two SVMC types are
available in the Unscrambler: type 1 (C-SVMC) and type 2 (nu-SVMC). In this study, the
SVM classification type 2 was used as this type minimizes the error function. The nu value
(lower bound on correct classified support vectors and an upper bound on misclassified
samples) was set to 0.5 (default value), and the linear function kernel was applied as the
optimal method. To select the appropriate gamma value (γ), a grid search was used. A
detailed explanation of those methods can be found in several reported works [28–31]. The
accuracy of each classification methods was calculated using the following equation [32]:

Accuracy (%) =
Number of correct classification

Number of total samples
× 100% (1)

2.5. Software

All chemometrics were performed using the Unscrambler ver. 9.8 and ver. 10.4
(CAMO, Oslo, Norway).

3. Results and Discussion
3.1. Spectral Data of Coffee Samples with Different Cherry Processing

Figure 1 shows the original spectral data of all samples in the interval of 190–400 nm
obtained directly from spectral acquisition system. As reported by Shawky and Selim [33],
the typical feature of original spectra is rich in unrelated information such as background
information and systematic noise coming from the influences of light scattering, different
in path length, sample particle size, and other factors. In general, the obtained original
spectral data were overlapped and it was hard to discriminate the spectral data according
to differences in cherry processing methods. Spectral data with high noise levels were
identified at the beginning of wavelengths in the interval of 190–230 nm. The source of
such noise might be coming from the low lamp intensities in that interval used in the
spectral acquisition. The spectral data with very low absorbance were identified after a
wavelength of 350 nm. For this reason, spectral data in the interval of 230–350 nm with
relatively containing low noise levels were used for further analysis.
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Figure 1. Original spectral data of all samples with different cherry processing methods in the
interval of 190–400 nm.

To improve the quality of original spectral data, three spectral pre-treatments were
applied simultaneously: Savitzky–Golay smoothing with smoothing points: 5 segments
(SGS), standard normal variate (SNV), and Savitzky–Golay first derivative with a second-
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order polynomial and a window size of 5 points (SG 1d). According to Santos et al. [34], SGS
is effectively improving the signal-noise ratio (SNR) while SNV is similar to multiplicative
signal correction (MSC). It can minimize the effects of light scattering. SG 1d is used to
correct baseline offsets and to enhance small spectral differences [33,34]. Due to similarity in
cherry processing methods—especially for the wet and semi-dry method—it was expected
that the spectral difference in coffee samples due to differences in cherry processing
methods was small. This is the main reason to use SG 1d: to enhance those small spectral
differences. However, at the same time, as a consequence of derivation, the noises were
also enhanced. To avoid this, the spectra were first smoothed using SGS pre-treatment as
recommended by previous work [33,35]. Instead of selecting the best pre-treatments, in
order to optimize the effect of spectral pre-treatment, the combination of several spectral
pre-treatment was often used. Therefore, in this present study we utilized three sequentially
spectral pre-treatments: SGS, SNV and SG 1d (SGS + SNV + SG 1d). Our approach
was previously used by Shawky and Selim [33] and Zhang et al. [35]. Figure 2 shows
spectral data of all samples after pre-treatments using combination of SGS, SNV and
SG 1d in the interval of 230–350 nm. Several wavelength peaks with high absorbance
intensities were identified as an artifact of spectral pre-treatments at 270 and 315 nm
(positive absorbance) and 290 and 340 nm (negative absorbance). Our spectral features
were in line with previously reported work by Souto et al. [36].
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Figure 2. Combined pre-treated spectral data of all samples with different in cherry processing
methods in the interval of 230–350 nm.

3.2. Principal Component Analysis (PCA)

Figure 3 shows the scores plot of the first three PCs (PC1 × PC2 × PC3) from PCA
analysis calculated for all samples using the combined pre-treated spectral data in the
interval of 230–350 nm. The cumulative percent variance (CPV) for 10 PCs in calibration
and validation are presented in Table 2. The first three PCs could explain 93% of the total
variances of spectral data which meets the general requirements of CPV > 70–85% for PCA
analysis as mentioned by Hu et al. [37]. Using these three PCs, there was a clear separation
between samples. The samples were clustered into four possible groups according to
differences in cherry processing methods: dry, wet, semi-dry, and adulterated. The most of
dry coffee samples were clustered in the negative of PC1 (PC1 < 0). The adulterated coffee
samples were mostly located in the middle part of PC1 and PC2 (close to 0 both for PC1
and PC2). The most of wet and semi-dry coffee samples were located in the positive of
PC1 (PC1 > 0). However, some of the wet and semi-dry coffee samples were overlapped
considering the similarity of the cherry processing methods between the two, as reported
by Duarte et al. [8].
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Figure 3. Scores plot of PC1, PC2 and PC3 from PCA analysis in the interval of 230–350 nm of
combined pre-treated spectral data.

Table 2. Number of principal components and its cumulative percent variance (CPV) chosen for
principal component analysis (PCA) using combined pre-treated spectral data in the interval of
230–350 nm.

Principal Components (PCs) Cumulative Percent Variance (%)

Calibration Validation

PC1 62.474 61.569
PC2 82.972 81.596
PC3 93.018 92.312
PC4 96.275 95.200
PC5 97.734 96.867
PC6 98.634 98.309
PC7 99.065 98.697
PC8 99.464 99.340
PC9 99.661 99.587

PC10 99.756 99.704

Figure 4 shows the contribution of each wavelength in the interval of 230–350 nm
for separating the coffee samples according to different in cherry processing methods.
There are six contributive wavelengths with high x-loadings identified at 255, 270, 290,
310, 315 and 320 nm. Those wavelengths are associated with the absorbance of several
important chemical compounds in ground roasted coffee [36]. In previous work, Yulia
and Suhandy [38] reported four influential wavelengths at 263, 297, 330 and 350 nm for
discrimination between fresh and expired Lampung robusta coffee.



Agriculture 2021, 11, 109 7 of 11
Agriculture 2021, 11, x FOR PEER REVIEW 7 of 11 
 

 

 
Figure 4. Plot of x-loadings versus wavelength from PCA analysis in the interval of 230–350 nm of 
combined pre-treated spectral data. 

3.3. Supervised Classification Results 
For supervised classification purposes, samples were divided randomly into two 

groups: 83.3% of samples for calibration and validation set (300 samples) or training set 
and the remaining 16.7% for prediction or test set (60 samples). For PLS-DA, a classifica-
tion model was developed using pre-treated spectral data using all wavelengths in the 
interval of 230–350 nm. The PLS-DA model has 9 latent variables (LVs) with a classifica-
tion accuracy of 67.60% for calibration. PLS-DA model was validated using the leave-one-
out cross validation. The typical analytical information from PLS-DA was overlapped and 
more interference problem which resulted in lower accuracy in classification [39]. Using 
full-spectrum, the accuracy was improved by using SVM classification. The SVM model 
was developed using type 2 (nu-SVM classification) as this type minimizes the error func-
tion and was validated using 10-fold cross-validation. The linear kernel type was selected 
as the best model with the following parameters: nu = 0.5 and γ = 1 which were adjusted 
through a grid search function. It resulted in a training accuracy of 88.67% and validation 
accuracy of 83.33%. To improve classification accuracy, two classification methods with 
fewer variables were also investigated. 

In general, LDA and PCA-LDA is belong to supervised classification technique 
where the number of variables is smaller than the number of samples. In this study, the 
variable selection for LDA and PCA-LDA was performed in different way. For the LDA 
classification model, 6 wavelengths with high x-loadings from PCA results were selected 
as input variables: 255, 270, 290, 310, 315 and 320 nm. The developed LDA model has 
81.0% of accuracy. The classification accuracy was improved comparing to PLS-DA but 
not for SVM classification. LDA has fewer variables comparing to PLS-DA. However, 
LDA with 6 wavelengths may still suffer a collinearity problem. For PCA-LDA, the clas-
sification model was developed using the PCA sample scores on 10 principal components 
(PC1 to PC10) in the range of 230–350 nm of the modified spectral data as input variables. 
The PCA-LDA model was developed using a training sample set (total 300 samples). Dur-
ing the PCA-LDA training, the calibration set was composed of 180 samples (including 51 
dry, 50 wet, 49 semi-dry and 30 adulterated samples). The model was verified with the 
validation set of 120 samples (including 33 dry, 33 wet, 34 semi-dry and 20 adulterated 
samples) after the establishment of the PCA-LDA model. Figure 5 shows the PCA-LDA 
model with 93.33% of accuracy. As expected, it is noted that variables selection using PCA 
scores was appropriate to improve classification accuracy. The typical feature of PCs data 

Figure 4. Plot of x-loadings versus wavelength from PCA analysis in the interval of 230–350 nm of
combined pre-treated spectral data.

3.3. Supervised Classification Results

For supervised classification purposes, samples were divided randomly into two
groups: 83.3% of samples for calibration and validation set (300 samples) or training set
and the remaining 16.7% for prediction or test set (60 samples). For PLS-DA, a classification
model was developed using pre-treated spectral data using all wavelengths in the interval
of 230–350 nm. The PLS-DA model has 9 latent variables (LVs) with a classification
accuracy of 67.60% for calibration. PLS-DA model was validated using the leave-one-
out cross validation. The typical analytical information from PLS-DA was overlapped
and more interference problem which resulted in lower accuracy in classification [39].
Using full-spectrum, the accuracy was improved by using SVM classification. The SVM
model was developed using type 2 (nu-SVM classification) as this type minimizes the
error function and was validated using 10-fold cross-validation. The linear kernel type
was selected as the best model with the following parameters: nu = 0.5 and γ = 1 which
were adjusted through a grid search function. It resulted in a training accuracy of 88.67%
and validation accuracy of 83.33%. To improve classification accuracy, two classification
methods with fewer variables were also investigated.

In general, LDA and PCA-LDA is belong to supervised classification technique where
the number of variables is smaller than the number of samples. In this study, the variable
selection for LDA and PCA-LDA was performed in different way. For the LDA classi-
fication model, 6 wavelengths with high x-loadings from PCA results were selected as
input variables: 255, 270, 290, 310, 315 and 320 nm. The developed LDA model has 81.0%
of accuracy. The classification accuracy was improved comparing to PLS-DA but not for
SVM classification. LDA has fewer variables comparing to PLS-DA. However, LDA with
6 wavelengths may still suffer a collinearity problem. For PCA-LDA, the classification
model was developed using the PCA sample scores on 10 principal components (PC1 to
PC10) in the range of 230–350 nm of the modified spectral data as input variables. The
PCA-LDA model was developed using a training sample set (total 300 samples). During
the PCA-LDA training, the calibration set was composed of 180 samples (including 51 dry,
50 wet, 49 semi-dry and 30 adulterated samples). The model was verified with the valida-
tion set of 120 samples (including 33 dry, 33 wet, 34 semi-dry and 20 adulterated samples)
after the establishment of the PCA-LDA model. Figure 5 shows the PCA-LDA model
with 93.33% of accuracy. As expected, it is noted that variables selection using PCA scores
was appropriate to improve classification accuracy. The typical feature of PCs data is
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uncorrelated. This is the main reason for the significant improvement of classification
using the PCA-LDA. There was a clear separation of the most samples according to differ-
ences in cherry processing methods. However, as seen in Figure 5, some of wet, semi-dry
and adulterated samples are still overlapped and fail to be discriminated by using the
developed PCA-LDA model. In this model, 7 wet samples were misclassified as semi-dry,
6 semi-dry samples were misclassified as wet, 2 semi-dry samples were misclassified as
adulterated and 5 adulterated samples were misclassified as semi-dry samples resulted in
93.33% of accuracy.
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developed using 10 PCs.

To evaluate the performance of the developed classification models, a prediction
was performed using 60 unknown samples in the prediction sample set which had not
been used in the model training: 16 dry processing samples, 17 wet processing samples,
17 semi-dry processing samples, and 10 adulterated samples. The superiority of the PCA-
LDA model was observed in the prediction result. As demonstrated in Table 3, PCA-LDA
resulted in the highest accuracy rate of 91.7%. In PCA-LDA, all prediction samples of dry
and wet processing were properly classified into their respective classes. For semi-dry
samples, four samples were misclassified as wet class. For adulterated samples, only one
sample was misclassified as a semi-dry class.

Table 3. Confusion matrix for classification results using different classifiers in prediction set.

Classifiers Samples Actual Accuracy Rate
DRY WET SMD ADT

PLS-DA Predicted

DRY 10 4 3 1

56.7%WET 6 8 0 0
SMD 0 5 9 2
ADT 0 0 5 7

SVMC Predicted

DRY 16 0 0 0

85.0%WET 0 15 5 0
SMD 0 2 12 2
ADT 0 0 0 8

LDA Predicted

DRY 16 0 0 0

80.0%WET 0 12 5 1
SMD 0 5 12 1
ADT 0 0 0 8

PCA-LDA Predicted

DRY 16 0 0 0

91.7%WET 0 17 4 0
SMD 0 0 13 1
ADT 0 0 0 9
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In previous works, several reports also reported the effective improvement of classifi-
cation results using PCA-LDA. Dankowska et al. [40] used synchronous fluorescence and
UV-Vis spectra combining with PCA-LDA to discriminate between arabica and robusta
coffee with various mixtures. Khuwijitjaru et al. [41] reported the highest classification
accuracy of 97.5% using PCA-LDA with smoothing pre-treatment of NIR spectral data
for the discrimination of green robusta coffee. Diniz et al. [39] used several classification
methods for tea classification with different geographical and varieties. It was reported
that PCA-LDA significantly gave acceptable results with 92% and 100% accuracy rate.

4. Conclusions

A classification of Lampung robusta specialty coffee with different cherry processing
methods using UV spectroscopy and chemometrics was proposed. It has been demon-
strated that the spectral data of dry, wet, semi-dry and adulterated coffee were overlapped.
A full spectrum-based classification using PLS-DA with highly-correlated variables resulted
in low-classification accuracy. Using fewer uncorrelated variables based on PCA-LDA
resulted in the best classification accuracy of 93.33% in the calibration and 91.7% in the
prediction. In terms of the number of variables, it can be concluded that the LDA and
PCA-LDA models with fewer variables tend to produce a more robust classification model.
In terms of the delta accuracy between training and prediction (delta accuracy = accuracy
in training−accuracy in prediction), the LDA and PCA-LDA models also resulted in a
smaller delta accuracy of 1% and 1.63% compared to the SVMC and PLS-DA models. The
proposed analytical method based on UV spectroscopy provides a simpler method with
water extraction (chemical free) and a more affordable device for authentication of Lampung
robusta specialty coffee according to differences in the cherry processing methods.
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