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Abstract. Cluster analysis is a multivariate technique for grouping observations into clusters 

based on the observed values of several variables for each individual. The existence of outliers 

in the data can heavily influence standard clustering methods, i.e. the outliers will cause the 

standard clustering results to be not optimal. Therefore, it is necessary to use a robust 

clustering method. Trimmed clustering is one of robust clustering methods which is non-

hierarchical and known for its good performance in cluster analysis when data contain outlier. 

The purpose of this study is to classify 34 provinces in Indonesia based on the 2019 Human 

Development Index (HDI) indicators and see the achievements of human development in each 

province. The results of this study indicate that there are three optimal clusters. The first cluster 

consists of 17 provinces with good HDI criteria, the second cluster consists of 9 provinces with 

a fairly good HDI, and the third cluster consists of 7 provinces with the lowest HDI criteria. 

Keyword: robust, trimmed cluster analysis, human development index 

1. Introduction 

The basic idea of human development is to position humans as the true assets of the nation and create 

growth in the economic, social, political, cultural and environmental fields that encourage the 

improvement of people's welfare. Based on this thinking, the main goal of human development is to be 

able to create an environment that allows people to have a long life, be healthy, and lead a productive 

life [1]. 

Achievement of human development is a summary measure of average achievement in key 

dimensions of human development namely: a long and healthy life, being knowledgeable and have a 

decent standard of living. The Human Development Index (HDI) is an index used to see human 

development in a long term. Human development in Indonesia continues to progress. In 2019, 

Indonesia's HDI reached 71.92. This figure increased by 0.53 points or grew by 0.74 percent compared 

to 2018 [2]. Based on this enhancement, it is necessary to group Indonesian provinces to find the 
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provinces with the same characteristics and also differences between the groups of provinces. The 

result can be used as a basis for the government to determine specific policies or programs that 

suitable for each group. 
One of the statistical methods that can be used for grouping objects is cluster analysis. According 

to Härdle & Simar [3], cluster analysis is a multivariate technique which has the main objective to 

group objects so that diversity within a cluster is minimum while between clusters is maximum. 

Cluster analysis is based on a distance matrix representing a similarity measure, and the most 

commonly used measure is Euclidean distances. There is assumption that must be fulfilled when using 

Euclidean distances for cluster analysis, i.e. all variables are uncorrelated, and this assumption is 

frequently ignored. An effective procedure that can be used in dealing with the correlation between the 

variables is by performing a principal component analysis (PCA) before calculating the Euclidean 

distances, one can see e.g. [4-7] for the use of PCA for clustering in various researches. 

PCA is a multivariate technique which aims to reduce the dimensions of data (i.e. the number of 

the original variables) in order to obtain new variables (i.e. principal components) which are not 

correlated and contain most of the information of the original variables [8]. Principal components are 

new variables that are constructed as linear combinations of the original variables. These combinations 

are done in such a way that these new variables are uncorrelated and most of the information within 

the initial variables is stored into the first components. Even though the k-dimensional data give k 

principal components but PCA tries to put maximum possible information in the first ones.  

Deviations from theoretical assumptions together with the presence of certain amount of outlying 

observations are common in many practical statistical applications. In this case, a robust procedure is 

needed. Robustness in statistics refers to stable behavior of methodology under small changes of data 

or models. Robustness is a desirable property for general statistical methodology and it has been 

studied by many authors. Some examples of robustness study can be seen in e.g. [9-12]. A small 

percentage of outliers can have a large impact on many statistical techniques. This is also the case 

when applying cluster analysis methods, where those troubles could lead to unsatisfactory clustering 

results. Therefore, in the case of the existence of outliers and correlation among variables, performing 

robust procedures of PCA and cluster analysis are highly recommended. 

Let X = (𝑋1 𝑋2  … 𝑋𝑘)′ has a multivariate distribution with mean vector 𝝁 and covariance matrix 𝚺 

having eigen vectors 𝒂𝑗, 𝑗 =1, 2, …, k. The principal components are linear combinations of the k 

original variables which can be expressed as follows [8]: 

 𝑃𝐶𝑗 = 𝑎1𝑗𝑋1 + 𝑎2𝑗𝑋2 + ⋯ + 𝑎𝑘𝑗𝑋𝑘 = 𝒂𝒋
′𝑿.                                                  (1) 

 

The covariance matrix 𝚺 is known to be very sensitive to the presence of outliers. In many 

situations, outliers cannot be removed from data for some reasons such as the information they contain 

and the complicated procedure for outlier detection. To overcome this, a robust estimate of 𝚺 is needed 

namely by replacing the classical sample covariance matrix S with a robust estimator. The use of 

robust covariance matrix estimate for the principal component constructing is the same as performing 

a robust PCA, see e.g. [13] for details. 

One of the robust methods for covariance matrices is the Minimum Covariance Determinant 

(MCD). According to Rousseeuw & Van Driessen [14], the MCD estimator is a pair (�̅�𝑀𝐶𝐷, 𝑺𝑀𝐶𝐷), 

where �̅�𝑀𝐶𝐷 is the mean vector and 𝑺𝑀𝐶𝐷 is the covariance matrix that minimizes the determinant 

value of the sample covariance matrix S in a subsample containing exactly h members of n 

observations, i.e.  

𝑺𝑀𝐶𝐷 = min{det(𝑺𝒋)} , 𝑗 = 1, … , (
𝑛
ℎ

).                                    (2) 

The standard value of h is [(n+k+1)/2] where n is the sample size and k is the number of variables in 

the data. 

For robust cluster analysis, we used trimmed cluster technique called TCLUST [15-16]. TCLUST 

is a method in statistical clustering technique which is based on modification of trimmed k-means 
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clustering algorithm [17]. According to García-Escudero et.al. [18], the algorithm of TCLUST can be 

described as follow: 

1. Randomly select starting values for the centers 𝒎𝒋
𝟎’s, the covariace matrices 𝑺𝒋

𝟎’s and the weights 

of the grup 𝒑𝒋
𝟎’s for 𝑗 = 1, … , 𝑘. 

2. From the 𝜽𝒍 = (𝑝1
𝑙 , … , 𝑝𝑘

𝑙 , 𝑚1
𝑙 , … , 𝑚𝑘

𝑙 , 𝑆1
𝑙 , … , 𝑆𝑘

𝑙 ) returned by the previous iterations: 

➢ Obtain 𝑑𝑖 = 𝐷(𝑥𝑖, 𝜃𝑙) for the observation {𝑥1, … , 𝑥𝑛} and keep the set 𝐻 having the [𝑛(1 −
𝛼)] observations with largest 𝑑𝑖’s where 𝐷(𝑥𝑖, 𝜃𝑙) = max{𝐷1(𝑥𝑖, 𝜃𝑙), … , 𝐷𝑘(𝑥𝑖, 𝜃𝑙)} and 

𝐷𝑗(𝑥𝑖, 𝜃𝑙) = 𝜋𝑗𝑓(𝑥; 𝝁𝒋, 𝜮𝒋) with 𝜋𝑗 - the group weight and 𝑓(𝑥; 𝝁𝒋, 𝜮𝒋) is the probability 

density function (p.d.f.) of k-variate normal distribution. 

➢ Split 𝐻 into 𝐻 = {𝐻1, … , 𝐻𝑘} with 𝐻𝑗 = {𝑥𝑖 ∈ 𝐻 ∶ 𝐷𝑗(𝑥𝑖, 𝜃𝑙) = 𝐷(𝑥𝑖, 𝜃𝑙)}. 

➢ Obtain the number of data points 𝑛𝑗 in 𝐻𝑗 and their sample mean and sample covariance 

matrix, 𝒎𝒋 and 𝑺𝒋, 𝑗 = 1, … , 𝑘. 

➢ Consider the singular-value decomposition of 𝑺𝒋 = 𝑼𝒋
′𝑫𝒋𝑼𝒋 where 𝑼𝒋 is a orthogonal matrix 

and 𝑫𝒋 = 𝑑𝑖𝑎𝑔(Λ𝑗) is a diagonal matrix (with diagonal elements given by the vector 𝚲). If 

the full vector of eigenvalues 𝚲 =  (Λ1, … ,  Λ𝑘) does not satisfy the eigenvalues-ratio (ER) 

restriction, obtain (for instance) through Dyksra’s algorithm [19-21] a new vector �̃� =

(Λ̃1, … , Λ̃𝑘) obeying the eigen restriction and with ‖�̃� − 𝚲−1‖
2
 being as smaller as possible. 

(𝚲−1 denotes the vector made up by the inverse of the elements of the vector 𝚲). Notice that 

the eigen restriction for 𝚲 corresponds exactly to the same eigen restriction applied to 𝚲−1. 

➢ Update 𝜃𝑙+1 by using: 

• 𝒑𝒋
𝒍+𝟏  ↩ 𝑛𝑗/[𝑛(1 − 𝛼)], 

• 𝒎𝒋
𝒍+𝟏  ↩ 𝒎𝒋, 

• 𝑺𝒋
𝒍+𝟏  ↩ 𝑼𝒋

′�̃�𝒋𝑼𝒋 and �̃�𝒋 = 𝑑𝑖𝑎𝑔(Λ̃𝑗)−1 

3. Perform F iterations of the process described in step 2 (moderate values for F are usually enough) 

and compute the evaluation function 𝐿(𝜃𝐹; 𝑃𝑛) using 𝜃 ⟼ 𝐿(𝜃, 𝑃) ≔ 𝐸𝑝[∑ 𝑧𝑗(. ; 𝜃) log 𝐷𝑗
𝑘
𝑗=1 ], 

4. Start from step 1 several times, keeping the solutions leading to minimal values of 𝐿(𝜃𝐹 , 𝑃𝑛) and 

fully iterate them to choose the best one. 

 

For more details and discussion on the trimmed cluster algorithm, one can see [15-18].  

 

2. Methodology 

The 2019 HDI data published by Central Bureau of Statistics of Indonesia consists of n=34 provinces. 

The variables used in the analysis are: life expectancy of birth in 2019 (LE), expected years of 

schooling of 7-year-old children (EYS), mean years of schooling of the population aged 25 years and 

over (AYS), and average spending per capita adjusted at the provincial level (ASC). The indicator 

variables used to compose the HDI index in Indonesia were adopted from the HDI indicators 

recognized by United Nations Development Program (UNDP). 

The analysis was performed using R software, the analysis procedure can be described as follow:  

➢ HDI data screening to detect the presence of outliers by using Mahalanobis distance 

𝑫(𝒙𝒊)𝑴𝑪𝑫 = √(𝒙𝒊 − �̅�𝑴𝑪𝑫)𝑺𝑴𝑪𝑫
−𝟏 (𝒙𝒊 − �̅�𝑴𝑪𝑫) for i=1, 2, …, 34;  

➢ checking the correlation between variables LE, EYS, AYS and ASC;  

➢ conducting robust principal component analysis using covariance matrix 𝑺𝑴𝑪𝑫;  
➢ performing robust clustering based on the robust principal component scores obtained using 

TCLUST;  

➢ determining the optimal clusters of the provinces.  
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3. Result and Discussion  

The first step in this research is assessing the presence of outliers in the data so that the analysis results 

obtained are correct. Outlier detection from the HDI data in 2019 is based on the robust squared 

Mahalanobis distance for 34 provinces in Indonesia as follows. 

 

 
Figure 1. Outlier detection 

 

In Figure 1, three provinces were identified as outliers. The suspected provinces are presented in 

the following table. 

 

Table 1. List of Outliers 

 Province LE EYS AYS ASC 

DKI Jakarta 72.79 12.97 11.06 18527 

D.I Yogyakarta 74.92 15.58 9.38 14394 

Papua 65.65 11.05 6.65 7336 

 

In Table 1, DKI Jakarta and D.I Yogyakarta have very high values of the HDI indicators while 

Papua has the lowest HDI indicators in 2019. Furthermore, checking the correlation between variables 

is also considered important so that the characteristics of the clusters that are formed are optimal. 

The following is the table of correlation matrix of data which shows correlation coefficients 

between variables. Based on Table 2, it can be seen that there are fairly small correlations between 

variables, which is between 0.2 and 0.5. To obtain independent variables for the cluster analysis, 

principal component analysis was performed. 

 

Table 2. Correlation Matrix 

  LE EYS AYS ASC 

LE 1.00000 0.25544 0.40547 0.58957 

EYS 0.25544 1.00000 0.47532 0.17042 

AYS 0.40547 0.47532 1.00000 0.58356 

ASC 0.58957 0.17042 0.58356 1.00000 

 

Because of the correlation and outlier problems, we used a robust method when performing PCA 

by using MCD mean vector �̅�𝑀𝐶𝐷 and covariance matrix 𝑺𝑀𝐶𝐷. 
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Determining the number of clusters to be formed can be done by looking at how the data spread 

and cluster. For that we looked at the scatter plots of the first and second principal components 

obtained from PCA. To ensure that the scatter plots of the components contain sufficient information 

to represent the original variables, we examined the proportions of their variances. T he variance of 

each principal component (PC) is equivalent to the eigenvalue of the covariance matrix 𝑺𝑀𝐶𝐷. We 

obtain the eigen values of covariance matrix 𝑺𝑀𝐶𝐷 were: 0.78220, 0.75539, 0.26012 and 0.18735, the 

corresponding proportion of variance of each PC is shown in Table 3.  

 

Table 3. The proportion of variance of principal components 

Eigen Value  
Variance 

proportion 

Cumulative variance 

proportion 

0.78220 0.39404 0.39404 

0.75539 0.38053 0.77457 

0.26012 0.13104 0.90561 

0.18735 0.09438 0.99999 

 

The variance of first PC (PC1) is 0.78220 which explains 39.40% of total variance, the variance of 

the second PC (PC2) is 0.75539 and explains 38.05% of total variance. Thus, PC1 and PC2 are 

deemed sufficient to represent the data structure with a cumulative variance of 77.45%. However, this 

research requires 100% information to represent the data structure in the next analysis so that the 

results obtained are optimal. So this study uses all principal component scores, namely the PC1-PC4 

score. The following is the plotting of the principal component scores (Figure 2) to see the spread of 

the data based on the first and the second principal component scores. Based on the spread of the data 

we suspected that they are divided into three clusters. 

 

 
Figure 2. Principal Component Plot 

 

Furthermore, for cluster analysis, this study also uses a robust method, namely trimmed clustering. 

The robust cluster analysis used is based on the principal component scores that have been obtained. 

According Md.Jedi & Adnan [17], most complex problem when applying non-hierarchical cluster 

analysis is to choose the number of clusters, k. It is certain that we must choose the initial number of 

cluster, but we did not really know what the best number of clusters that is supposed to be in the data. 

The same principal also applies to the trimming size, where we did not know exactly the true outlying 

level. Garcia-Escudero et.al. [18] introduced some classification trimmed likelihood curves as useful 

curve for choosing the number of clusters k. The k-th trimmed likelihood function is defined as: 
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𝛼 ⟼ ℓ𝑐
Π(𝛼, 𝑘) for 𝛼 ∈ [0,1) 

 

with ℓ𝑐
Π(𝛼, 𝑘) = ∑ ∑ log 𝑓(𝑥𝑖; 𝜇𝑗, Σ𝑗)𝑖∈𝑅𝑗

𝑘
𝑗=1 . This curve function is allowed to measure Δ𝑐

Π(𝛼, 𝑘) =

ℓ𝑐
Π(𝛼, 𝑘 + 1) − ℓ𝑐

Π(𝛼, 𝑘) where Δ𝑐
Π(𝛼, 𝑘) shouls be close to 0. Figure 3 shows the classification 

trimmed likelihood curve Δ𝑐
Π(𝛼, 𝑘) when k=1,2,3,4 and 𝛼 range is [0, 0.2] and c=50. Because in Figure 

3 it can be seen that no significant increase occurs when increasing k from 3 to 4 and it is supported by 

the results of the principal component plot in Figure 2, then for this data case, the optimal number of 

clusters will be selected as 3 clusters with α = 0.05, which means 5 % of trimmed data is data that is 

not part of the cluster formed. 

 
Figure 3. Classification trimmed likelihood curves ℓ𝑐

Π(𝛼, 𝑘) when k=1,2,3,4 and 𝛼 range in [0, 0.2] 

and c=50 

 
Figure 4. Classification Trimmed Plot 

 

After trimmed cluster analysis on the principal component scores, two outliers namely DKI Jakarta 

and D.I Yogyakarta, were considered to have their own clusters. While the members of the three 

clusters are presented in Table 4. 

Table 4. Cluster Members 

Cluster Provinces 

1 
Riau, Jambi, South Sumatra, Lampung, Bangka Belitung Island, Riau Island, 

West Java, Central Java, East Java, Banten, Bali, Central Kalimantan, South 
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Kalimantan, East Kalimantan, North Kalimantan, North Sulawesi, South Sulawesi 

2 
Aceh, North Sumatra, West Sumatra, Bengkulu, Central Sulawesi, Southeast 

Sulawesi, Maluku, North Maluku 

3 NTB, NTT, West Kalimantan, Gorontalo, West Sulawesi, West Papua, Papua 

Table 5. Cluster Centre ( �̅�(𝑥)𝑘) 

Cluster LE EYS AYS ASC 

1 71.178 12.825 8.568 11656.1 

2 68.817 13.664 9.094 9727.6 

3 66.856 12.665 7.377 8890.7 

 

Cluster 1 is a group of provinces with life expectancy of birth in 2019 (LE) of approximately 71.2 

years, the expected years of schooling of 7-year-old children (EYS) of approximately 12.8 years, mean 

years of schooling of the population aged 25 years and over (AYS) of 8.6 years, and average spending 

per capita adjusted at the provincial level (ASC) of IDR 11656.1. Cluster 2 is a group of provinces 

with LE approximately of 68.8 years, EYS of approximately 13.6 years, AYS of about 9 years and 

ASC of IDR 9727.6. Cluster 3 is a group of provinces with LE of about 66.8 years, EYS of about 12.6 

years, AYS of about 7.4 years and ASC of IDR 8890.7.  

To determine the variables that must be paid more attention to in each cluster so that the HDI 

achievement in the following year can be increased, it is necessary to carry out an analysis of the 

description in each cluster by calculating the average value of each indicator variable forming the 

2019 HDI, namely LE (�̅�𝐿𝐸 = 69.64), EYS (�̅�𝐸𝑌𝑆 = 13.01), AYS (�̅�𝐴𝑌𝑆 = 8.44), ASC (�̅�𝐴𝑆𝐶 =
10569). Then these values are compared with the cluster center (�̅�(𝑥)𝑘) shown in Table 5.  

If we get �̅�(𝑥)𝑘 ≤ �̅�𝑥 where x is the observed variables (LE, EYS, AYS, ASC), it can be interpreted 

that the average value of the variables in the cluster is low or classified as "Bad" so that the observed 

variable must be further increased in each province. Conversely, if we get �̅�(𝑥)𝑘 ≥  �̅�𝑥 then the 

average value of the variables in the cluster can be said as "Good" in the HDI forming indicators. 

Details are presented in the following table: 

 

Table 6. Cluster Characteristics 

Cluster LE EYS AYS ASC 

1 Good Bad Good Good 

2 Bad Good Good Bad 

3 Bad Bad Bad Bad 

 

Table 6 shows that the members in Cluster 1 have fairly good HDI indicator characteristics on life 

expectancy of birth in 2019, mean years of schooling of the population aged 25 years and over, and 

average spending per capita adjusted at the provincial level, and obtained a low average score for 

expected years of schooling of 7-year- old children.  

Cluster 2 members have fairly good HDI indicator characteristics on expected years of schooling of 

7-year- old children, and mean years of schooling of the population aged 25 years and over, and 

obtained a low average score for life expectancy of birth in 2019 and average spending per capita 

adjusted at the provincial level. 

Furthermore, members in cluster 3 are provinces that have very low HDI indicator characteristics. 

This is because the average of observed variables LE, EYS, AYS, ASC in the cluster center less than 

the actual average value. Thus, the provinces in Cluster 3 need more attention so that life expectancy 

of babies born in 2019, expected years of schooling of 7-year-old children, mean years of schooling of 

the population aged 25 years and over, and average spending per capita adjusted at the provincial level 

can be increased. 
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4. Conclusion 

In this paper, we applied the robust principal component trimmed clustering for grouping Indonesian 

provinces based on HDI indicators. Based on the cluster analysis on the data using robust principal 

component trimmed clustering, the optimum number of clusters for the Indonesian provinces based on 

HDI indicators is three clusters.  

 

5. References 

 

[1] United Nations Development Programme (UNDP) 1990 Human Development Report (New 

York: UNDP) 

[2] Badan Pusat Statistik (BPS) 2020 Indeks Pembangunan Manusia 2019 (Jakarta: BPS) 

[3] Härdle W K and Simar L 2019 Applied Multivariate Statistical Analysis 5th Edition. (New York: 

Springer) 

[4] Rahman A S and Rahman A 2020 Application of principal component analysis and cluster 

analysis in regional flood frequency analysis: a case study in New South Wales, Australia. Water 

12 781 

[5] Koij F S and Saba J 2015 Using cluster analysis and principal component analysis to group lines 

and determine important traits in white bean Procedia Environ. Sci. 29 38 – 40 

[6] Penkova T G 2017 Principal component analysis and cluster analysis for evaluating the natural 

and anthropogenic territory safety. Procedia Comput. Sci. 112 99–108 

[7] Suzana M, Zulkifli Y, Marhalil M, Rajanaidu N and Ong-Abdullah M 2020 Principal component 

and cluster analyses on Tanzania oil palm Elaeis Guineensis Jacq. germplasm. J. Oil Palm Res. 

32 (1) 24-33 

[8] Johnson R A and Wichern D W 2018 Applied Multivariate Statistical Analysis 6th Edition (New 

Jersey: Pearson Prentice Hall) 

[9] Herawati N and Nisa 2017 A robust procedure for GEE model Far East J. Math.Sci.102 645-654 

[10] Nisa K and Herawati N 2017 Robust generalized estimating equation when data contain outliers 

Int. S. Interdisc. Sci. Tech. INSIST 02 (01) 1-5 

[11] Olive J O 2017 Robust Multivariate Analysis 1st Edition (New York: Springer) 

[12] Ortner I Filzmoser P and Croux C 2020 Robust and sparse multigroup classification by the 

optimal scoring approach Data Min. Knowl. Dis.34 723-741 

[13] Nisa K, Herawati N, Setiawan E and Nusyirwan 2006 Robust principal component analysis using 

the minimum covariance determinant estimator Proc. ICMNS 789-792  

[14] Rousseeuw P J and Van Driessen K 1999 A fast algorithm for the minimum covariance 

determinant estimator Technometrics 41 (3) 212-223 

[15] García-Escudero L A, Gordaliza A Matrán C and Mayo-Iskar A 2011 Exporing the number of 

groups in robust model-based clustering Preprint available at http://www.eio.uva.es/ 

infor/personas/langel.html 

[16] Gallegos M T and Ritter G 2005 A robust method for cluster analysis Ann. Stat. 33 (1) 347–380 

[17] Md.Jedi M A and Adnan R 2012 TCLUST: Trimming approach of robust clustering method Mal. 

J. Fund. Appl. Sci 8 (5) 253-258 

[18] García-Escudero L A, Gordaliza A Matrán C and Mayo-Iskar A 2008 A general trimming 

approach to robust cluster analysis Ann.Stat. 36 (3) 1324-1345 

[19] Akram M, Habib A and Alcantud J C R 2020 An optimization study based on Dijkstra algorithm 

for a network with trapezoidal picture fuzzy numbers. Neural Comput. Applic. 

https://doi.org/10.1007/s00521-020-05034-y 

[20] Mukhlif F and Saif A 2020 Comparative study on Bellman-Ford and Dijkstra algorithms, Int. 

Conf. Comm. Electric Comp. Net. (ICCECN 2020) Kuala Lumpur Malaysia 1 – 2 February 2020  

[21] Gbadamosi O A and Aremu D R 2020 Design of a modified Dijkstra’s algorithm for finding 

alternate routes for shortest-path problems with huge costs Int. Conf. Math. Comp. Eng. Comp. 

Sci. (ICMCECS) Lagos Nigeria 1-6 doi: 10.1109/ICMCECS47690.2020. 240873 

 


