

<u>Termodinamika</u>

EDISI 2

AGUS HARYANTO

Termodinamika

EDISI 2

Termodinamika

EDISI 2

AGUS HARYANTO

Sy Innosain

TERMODINAMIKA Edisi 2

oleh Agus Haryanto

Hak Cipta © 2016 pada penulis

\$ Innosain

Ruko Jambusari 7A Yogyakarta 55283

Telp: 0274-889398; 882262 Fax: 0274-889057; E-mail: info@innosain.com

Hak Cipta dilindungi undang-undang. Dilarang memperbanyak atau memindahkan sebagian atau seluruh isi buku ini dalam bentuk apa pun, secara elektronis maupun mekanis, termasuk memfotokopi, merekam, atau dengan teknik perekaman lainnya, tanpa izin tertulis dari penerbit.

Tajuk Entri Utama: Haryanto, Agus
TERMODINAMIKA Edisi 2/Agus haryanto
- Edisi Kedua. Cet. Ke-1. - Yogyakarta: Innosain, 2016
 xviii + 474 hlm.; 25 cm

Bibliografi.: 412 - 413 ISBN : 978-602-6542-10-6 E-ISBN : 978-602-6542-11-3

1. Termodinamika I. Judul

536.7

Semua informasi tentang buku ini, silahkan scan QR Code di cover belakang buku ini

TIGA KUNCI SUKSES:

Kerja keras, kerjasama, ikhlas

TANTANGAN:

Buku yang tebal selalu dimulai dari huruf pertama di halaman pertama. Perjalanan seribu mil harus dimulai dari langkah pertama. Sekarang!

MOTTO:

Bacalah dengan menyebut nama Tuhanmu Allah akan meninggikan orang yang berilmu beberapa derajat Sesungguhnya, setelah kesusahan ada kemudahan

MANTRA:

- MANTRA 1: Man jada wa jada (Barang siapa bersungguh-sungguh akan sukses)
- MANTRA 2: Berlelah-lelahlah dalam usaha. Nikmatnya akan terasakan kemudian
- MANTRA 3: Barang siapa menghendaki kemuliaan, akan bekerja sampai jauh malam

DOA:

Robbi zidni ilman warzuqni fahman

NASEHAT:

Ilmu itu bagaikan nur, cahaya. Dan cahaya tidak bisa datang dan ada di tempat yang gelap. Karena itu bersihkan hati dan kepalamu, supaya cahaya itu bisa datang, menyentuh dan menerangi kalbu.

PERSEMBAHAN

Untuk yang tercinta isteri:
Yuliati
dan anak-anakku tersayang:
Muhammad Reza Fachrezy
Pratiwi Rahma Dea Valentina
Laily Farahdina Putri

KATA PENGANTAR

Puji dan syukur dipanjatkan ke hadirat Tuhan yang Maha Kuasa, yang telah melimpahkan berkat, rahmat, dan karunia berupa ilmu dan kesehatan sehingga penulis dapat menyelesaikan dan menghadirkan karya ini ke hadapan para pembaca.

Termodinamika merupakan ilmu dasar yang sangat penting bagi para sarjana teknik pada umumnya, termasuk bidang ilmu keteknikan pertanian (agricultural engineering). Oleh karena itu, Termodinamika merupakan salah satu mata kuliah wajib bagi mahasiswa program Sarjana (S1) di program-program studi keteknikan, seperti teknik mesin, teknik kimia, teknik sipil, teknik listrik, teknik pertanian dan sebagainya. Beberapa aspek atau praktek yang memerlukan pengetahuan dasar Termodinamika di antaranya adalah kinerja motor bakar (baik motor bakar-dalam maupun motor listrik), pengerasan perkakas, penanganan hasil pertanian seperti pengeringan, pendinginan, pembekuan, penyimpanan, penukar panas, penyegaran udara, dan lain-lain. Ilmu ini juga penting untuk memahami kinerja perangkat elektronika dan pembangkitan listrik.

Buku ini ditulis dengan tujuan untuk memudahkan proses pembelajaran mata kuliah Termodinamika. Pengalaman mengajar mata kuliah ini lebih dari 10 tahun menunjukkan bahwa para mahasiswa mengalami kesulitan untuk menggunakan buku pegangan berbahasa Inggris. Selain jumlahnya yang tidak memadai di perpustakaan, tingkat penguasaan bahasa Inggris mahasiswa juga menjadi masalah.

x Termodinamika

Sebelumnya, saya telah membuat buku untuk Mata Kuliah Transfer Panas. Buku itu ternyata sangat membantu dalam proses pembelajaran. Belajar dari pengalaman itu, maka buku ini dipersiapkan dengan tujuan yang sama.

Materi yang diberikan dalam buku ini meliputi konsep dasar termodinamika, suhu dan tekanan, substansi murni dan sifat-sifatnya, tabel sifat, persamaan keadaan, panas dan kerja, hukum pertama, hukum kedua, siklus Carnot, entropi dan derivasi persamaan-persamaan termodinamika. Aplikasi secara khusus diberikan dalam buku ini pada psikrometri yang bermanfaat dalam banyak aplikasi yang melibatkan campuran udara-uap air, seperti pengeringan hasil pertanian, penyegaran udara, dan menara pendingin. Analisis termodinamika untuk mesin bakar-dalam merupakan aplikasi lain yang juga dibahas dalam buku ini.

Catatan-catatan kuliah sebenarnya sudah dimulai sejak lama, tetapi penyusunannya menjadi sebuah buku memerlukan kerja keras tersendiri. Meskipun tenaga dan fikiran sudah dicurahkan untuk mempersiapkan buku ini sebaikbaiknya, tetapi kami menyadari masih banyak kekurangannya. Seperti pepatah China kuno yang mengatakan bahwa perjalanan seribu mill harus dimulai dari langkah pertama. Sekarang! Jadi, ini merupakan langkah awal yang akan disusul dengan langkah-langkah berikutnya untuk terus memperbaiki buku ini.

Edisi pertama buku ini diterbitkan oleh Penerbit Universitas Lampung (2011). Pada edisi revisi ini selain dilakukan perbaikan dan penyempurnaan juga ditambahkan dua bab baru mengenai aplikasi termodinamika dalam kehidupan sehari-hari. Pertama adalah Psikrometrik yang diberikan pada Bab 8, dan kedua adalah Analisis Termodinamika Motor Bakar yang diberikan pada Bab 14.

Terima kasih dan penghargaan disampaikan kepada istri dan anak-anak tercinta: Yuliati Muh. Reza Fachrezi, Pratiwi Rahmadea Valentina, dan Laily Farahdina Putri. Mereka telah meberikan dukungan yang berharga bagi penyelesaian buku ini. Penyusunan draft awal buku ini memperoleh dukungan finansial dari Fakultas Pertanian, Universitas Lampung. Terima kasih dan penghargaan disampaikan kepada Prof. Dr. Ir. Wan Abbas Zakaria, M.S. dan Prof. Dr. Ir. Irwan Sukri Banua, M.S (berturut-turut Dekan Fakultas Pertanian, Universitas Lampung periode 2012-2015 dan 2016-2019). Publikasi buku ini difasilitasi oleh Lembaga Penelitian dan Pengabdian Masyarakat (LPPM), Universitas Lampung. Kepada Dr. Warsono (Ketua LPPM periode 2016-2019) disampaikan penghargaan dan terima kasih yang tulus. Terima kasih dan penghargaan disampaikan kepada para

mahasiswa saya di Jurusan Teknik Pertanian yang telah memberikan *feedback* luar biasa bagi penyempurnaan buku ini.

Semoga bermanfaat.

BL, IX-MMXVI AH

DAFTAR ISI

KAIA	PENG	SANTAR	IX
DAFTA	AR ISI		xiii
BAB 1	KON	1	
	1.1	Termodinamika dan Energi	2
	1.2	Dimensi dan Satuan	3
	1.3	Sistem dan Lingkungan	6
	1.4	Energi Sistem	8
	1.5	Keadaan dan Keseimbangan	9
	1.6	Sifat-Sifat Sistem	10
	1.7	Postulat Keadaan	11
	1.8	Proses dan Siklus	12
	1.9	Teknik Pemecahan Masalah	13
	1.0	Ringkasan	16
	Soal-	-Soal Latihan	17
BAB 2	TEK	ANANDAN SUHU	21
	2.1	Tekanan	21
	2.2	Suhu dan Hukum 0 (NoI) Termodinamika	29
	2.3	Ringkasan	31
	Soal-	-Soal Latihan	32

xiv Termodinamika

BAB 3	PER	UBAHAN FASE	37
	3.1	Substansi Murni	37
	3.2	Fase-Fase Substansi Murni	38
	3.3	Perubahan Fase Substansi Murni	40
	3.4	Diagram Proses Perubahan Fase	43
	3.5	Ringkasan	51
	Soal	-Soal Latihan	51
BAB 4	TAB	BEL TERMODINAMIKA	53
	4.1	Tabel-Tabel Sifat	53
	4.2	Campuran Cair-Uap Jenuh	57
	4.3	Tabel Uap Superpanas	61
	4.4	Tabel Cair Terkompresi	63
	4.5	Ringkasan	65
	Soal	-Soal Latihan	65
BAB 5	PER	71	
	5.1	Persamaan Keadaan Gas-Ideal	72
	5.2	Faktor Kompresibilitas	76
	5.3	Bentuk Lain Persamaan Keadaan	81
	5.4	Ringkasan	86
	Soal	-Soal Latihan	88
BAB 6	PAN	IAS DAN KERJA	93
	6.1	Kesetaraan Panas dan Kerja	93
	6.2	Panas Atau Kalor	95
	6.3	Kerja	97
	6.4	Bentuk Energi Mekanis	103
	6.5	Ringkasan	120
	Soal	-Soal Latihan	121

Daftar Isi xv

BAB 7	HUK	UM PERTAMA TERMODINAMIKA	127
	7.1	Hukum I Termodinamika	128
	7.2	Ringkasan	142
	Soal-	soal Latihan	143
BAB 8	PSIK	ROMETRIK (APLIKASI 1)	151
	8.1	Campuran Udara-Uap Air	151
	8.2	Suhu Jenuh Adiabatik dan Suhu Bola Basah	157
	8.3	Chart Psikrometrik	161
	8.4	Proses Penyegaran Udara (Air-Conditioning)	180
	8.5	Ringkasan	188
	Soal-	soal Latihan	189
BAB 9	PAN	AS JENIS	195
	9.1	Kapasitaspanas dan Panas Jenis	195
	9.2	Energi Dakhil, Enthalpi, dan Panas Jenis Gas Ideal	200
	9.3	Panas Spesifik Gas Ideal	204
	9.4	Energi Internal, Enthalpi, dan Panas Spesifik	
		Benda Padat dan Cair	209
	9.5	Ringkasan	212
	Soal-	soal Latihan	213
BAB 10	HUK	UM KEDUA TERMODINAMIKA	215
	10.1	Pendahuluan	215
	10.2	Reservoir Energi Termal	217
	10.3	Mesin Kalor	219
	10.4	Hukum II: Pernyataan Kelvin-Plank	225
	10-5	Refrigerator	226
	10.6	Pompa Kalor	230
	10.7	Hukum II: Pernyataan Clausius	230
	10.8	Ringkasan	232
	Soal-	Soal Latihan	233
BAB 11	SIKL	US CARNOT	239
	11.1	Proses Reversibel dan Ireversibel	240
	11.2	Siklus Carnot	246

xvi Termodinamika

	11.3	Kaedah Carnot	250
	11.4	Mesin Kalor Carnot	252
	11.5	Refrigerator dan Pompa Kalor Carnot	256
	11.6	Ringkasan	260
	Soal-S	Goal Latihan	261
BAB 12	ENTE	ROPI	273
	12.1	Pertidaksamaan Clausius	274
	12.2	Entropi	276
	12.3	Prinsip Kenaikan-Entropi	279
	12.4	Perubahan Entropi Substansi Murni	284
	12.5	Proses Isentropik	288
	12.6	Diagram Sifat yang Meliputi Entropi	290
	12.7	Rumus T Ds	295
	12.8	Perubahan Entropi Benda Padat dan Cair	297
	12.9	Perubahan Entropi Gas Ideal	299
	12.10	Proses Isentropik Gas Ideal	303
		Ringkasan	308
	Soal-S	Soal Latihan	311
BAB 13	DERI	VASI MATEMATIS SIFAT TERMODINAMIKA	321
	13.1	Tinjauan Singkat Derivatif	322
	13.2	Persamaan Maxwell	332
	13.3	Persamaan Clapeyron	334
	13.4	Persamaan Umum untuk D u , H , D s , C_v , dan C_p	339
	13.5	Perubahan Enthalpi (Dh), Energi Dakhil (Du),	
		dan Entropi (Ds) Gas Nyata	348
	13.6	Ringkasan	355
	Soal-s	oal Latihan	358
BAB 14	TERN	MODINAMIKA MOTOR BAKAR-DALAM	
	(APLI	KASI II)	363
	14.1	Motor Bakar	364
	14-2	Komponen Motor Bakar-Dalam	365
	14.3	Siklus Carnot Dalam Rekayasa	367

LAMPIRAN		415	
DAFTAR PUS	STAKA	413	
Soal-s	soal Latihan	404	402
14.13	Ringkasan	402	
14.12	Efisieni Siklus Otto vs. Siklus Diesel	402	
14.11	Siklus Dual	400	
14.10	Siklus Diesel	392	
14.9	Siklus Otto	383	
14.8	Perubahan Pada Proses Politropik	382	
14.7	Siklus Daya Ideal	378	
14.6	Siklus Termodinamika vs. Siklus Mekanis	378	
14.5	Prinsip Kerja Motor Bakar-Dalam	371	
14.4	Asumsi Standard Udara	370	

Daftar Isi

xvii

-00000-