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Introduction
Water gas shift (WGS) reaction is an established industrial 

technology in which water (H2O) in the form of steam reacts with 
carbon monoxide (CO) to produce hydrogen (H2) and carbon 
dionoxide (CO2). The reaction is presented in Equation 1 [1-3].

CO + H2O ⇌ H2 + CO2 ∆G298 = - 41.2 kJ/mol; ∆G298 = -28.6 kJ/mol  (1)

Recently, the WGS reaction has attracted new interest due to 
development on fuel cell technology. Carbon monoxide existed in the 
synthesis gas produced via steam reforming of hydrocarbons (e.g., 
natural gas, petroleum, or renewable resources) and gasification of coal 
or biomass poisons the catalyst used in fuel cell. The benefit of using 
WGS reaction is that it reduces CO concentration while producing 
extra H2 which is fuel for hydrogen-fuel-cells. 

To produce high purity hydrogen at the highest possible CO 
conversions, two-stage adiabatic reactors with cooling in between 
are used: a high temperature shift (HTS) reactor operating at 320–
450oC with a catalyst based on iron oxide structurally promoted with 
chromium oxide (Fe2O3-Cr2O3), and a low temperature shift (LTS) 
reactor operating at a temperature range of 200–250oC with copper-zinc 
oxide supported on alumina (Cu-ZnO/Al2O3) catalyst [4-6]. Typical 
designs of HTS WGS reactors with Fe2O3-Cr2O3 catalyst reduces CO 
content from 8–10% to about 3–5% CO, while a LTS reactor with Cu-
ZnO/Al2O3 catalysts further decreases the CO level to less than 1%. 

It is well known that nickel catalysts are familiar for steam reforming 
of natural gas. However, Ni also plays an important role for the water 
gas shift reaction. For example, Willms  [7] reported that Ni was a good 
catalyst to produce hydrogen either through WGS reaction or steam 
reforming process. Cooper [8] also noted that Ni, which forms a part 
of the anode composition, facilitates the WGS reaction to take place 
on the surface of the anode of solid oxide fuel cells. The existence of 
Ni in CeO2-supported bimetallic Ni-Rh catalyst was reported to help 
converting CO into CO2 and H2 by WGS reaction [9]. Chu et al. [10] 
observed that Ni/ceria had higher activity for WGS reaction than Fe/
ceria did. Nickel catalysts, however, seemed to be good for HTS reaction 

than for the LTS one [10]. Li et al. [11] investigated the use of ceria-
lantana supported catalysts for the WGS reaction at gas hourly space 
velocity (GHSV) 8000 and 80000 h-1 and temperature ranges of 150 to 
550oC. It was found that Ni-Ce(La)Ox catalyst was much superior than 
the support itself, i.e., Ce(La)Ox. It was also observed that at around 
350°C, the activity of Ni-loaded catalyst surpassed the activity of Cu-
loaded one [11]. In the previous works [12,13] we have demonstrated 
that nickel catalysts showed a good performance for the WGS especially 
at high temperature (450°C). Our recent report presented that Ni 
catalysts were not stable at low temperature (250°C), [14] This paper 
reports the performance of nickel catalysts for high temperature WGS 
reaction. The experiment was carried out at temperatures 450°C with 
CO-to-steam (CO/S) molar ratio of 1:3. Effects of different supports, 
metal loading, GHSV, and dopant materials were investigated. In order 
to evaluate the prepared catalysts, we also compared with a commercial 
high temperature WGS catalyst. 

Method
The catalysts preparation had been described in our previous work 

[14]. Nine nickel catalysts with different oxides support are presented 
in Table 1.  

The catalysts were tested using rig and method as described in 
earlier work [14]. In this work, reaction were conducted at temperature 
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at 450°C with a CO flowrate of 15 ccm, steam flowrate of 0.04 ml/min 
and catalyst loading of 0.05 g diluted in 1.5 g of fused SiO2 (Sigma 
Aldrich). A commercial high temperature WGS catalyst, Shift Max 120, 
was supplied from Süd Chemie. The commercial catalyst had a tablet 
form and is designed for the high temperature shift WGS reaction 
working at 450°C. The composition of this commercial catalyst is 
presented in Table 2.

The catalyst was crushed and sieved to have a particles size range 
of 20-60 mesh to be analogous to the other tested catalysts. According 
to the company manual [15], the catalyst must be reduced using syngas 
at a speed velocity greater than 200 Nm3/h and at a temperature not 
exceeding 175 oC. In this experiment, the catalyst was reduced in situ 
at 160°C for 7 hours using 15 ccm of gas mixture and 0.15 cm3/min of 
steam. The composition of gas mixture for reduction step is presented 
in Table 3. The catalyst was tested at 450oC with a CO flowrate of 75 
ccm and a steam flowrate of 0.2 cm3/min.

Catalyst performance is demonstrated by catalyst activity, H2 yield 
(vol.%), and H2 selectivity. The catalyst activity is presented as CO 
conversion (XCO) and defined as:

XCO = 
[ ] [ ]

100%
[ ]
in out

in

CO CO
CO
−

×                                    (2)

Hydrogen selectivity (SH2) is defined as follows:

SH2 = 2

2 max

[ ]
100%

[ ]
yieldH

H
×                   (3)

in which [H2]max is the maximum H2 yield based on thermodynamic 
equilibrium at the respected temperature and CO/S ratio.

Results and Discussion
Effect of support

Figure 1 demonstrated the effect of different supports on the 
catalyst performance in term of catalyst activity (XCO), H2 yield, and 
H2 selectivity (SH2). It can be observed that at high temperature all 
catalysts showed a good performance. Four catalysts including Ni/
CeO2-Al2O3 (powder), Ni/CeO2, Ni/CeYO5, and Ni/CeO2-Gd exhibited 
very good activity. Except for Ni/CeO2-Gd, the other three catalysts 
also demonstrated extremely high H2 yield and good stability over 12 
h. As can be observed from Figure 2, Ni/CeO2-Gd also took longer time 
to be stable. Two catalysts, Ni/CeO2-Al2O3 (powder) and Ni/CeO2, had 
H2 selectivity >70%.

In general, ceria promoted nickel catalyst supported on alumina 
powder demonstrated the best performance for HTS WGS reaction. 
At CO/S ratio 1:3, the catalyst had an average activity of 95%, H2 yield 
of 52% (v/v), and H2 selectivity of 73%. At the same conditions, the 
equilibrium CO conversion is 94% with H2 yield of 50%. The differences 
may be resulted from the accuracy of flowrate reading which, in fact, 
fluctuated from the setting point. Our results, with an acceptable error, 
suggest that the performance of Ni/CeO2-Al2O3 catalyst was very active 
for HTS WGS reaction and achieved equilibrium CO conversion even 
at very little loading (0.05 g).

Catalyst Composition BET cm2/g
Ni/CeO2 4% Ni; 96% CeO2 80.79
Ni/Al2O3  powder 4% Ni; 96% Al2O3 3.79
Ni/Al2O3  monolith 4% Ni; 96% Al2O3 1.53
Ni/CeZrO4 4% Ni; 96% CeO2-ZrO2 102.00
Ni/CeYO5 4% Ni; 96% CeO2-Y 100.50
Ni/CeO2-Gd 4% Ni; 76.8% CeO2; 19.2% Gd 119.30
Ni/CeO2-Sekar Mirah 4% Ni; 81.6% CeO2; 14.4% Sm 425.00
Ni/CeO2-Al2O3  monolith 4% Ni; 3% CeO2; 93% Al2O3 6.44
Ni/CeO2-Al2O3  powder 4% Ni; 3% CeO2; 93% Al2O3 9.01

Table 1: The composition of prepared nickel-based catalysts and its BET surface 
area.

Compound Fraction
Iron (III) oxide 80-95
Chromium (III) oxide 5-10
Copper oxide 1-5
Graphite 1-5
Chromium (IV) oxide <5

Table 2:  Composition (in weight percent) of Shift Max 120.

Compound Formula Fraction
Acetylene C2H2 2.94
Ethane C2H6 2.85
Ethylene C2H4 2.98
Methyl acetylene C3H4 3.07
Propane C3H8 2.85
Propylene C3H6 3.11
Carbon dioxide CO2 10.30
Methane CH4 10.20
Carbon monoxide CO 25.00
Hydrogen H2 29.80
Nitrogen N2 balance

Table 3: Gas composition (in volume percent) used for reduction of Shift Max 120.

Figure 1: Average performance of Ni catalysts for WGS reaction at 450 oC 
(Condition: catalyst loading 0.05 gram, CO/steam molar ratio 1:3, GHSV ≈ 
200 L.h-1.

1
catg −

). Note: H2 yield is expressed in volume wise.
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Figure 2: Catalyst stability at 450 oC for about 12 hours. (Condition: catalyst 
loading 0.05 gram, CO/steam molar ratio 1:3, GHSV ≈ 200 L.h-1. 1
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0

20

40

60

80

100

0 100 200 300 400 500 600 700 800
Time on stream (min)

XC
O

 (%
)

Ni/CeO2 Ni/Al2O3 (P) Ni/Al2O3 (M)

Ni/CeZrO4 Ni/CeY5 Ni/CeO2-Gd

Ni/CeO2-Sm Ni/CeO2-Al2O3 (M) Ni/CeO2-Al2O3 (P)



Citation: Haryanto A, Fernando SD, Filip To SD, Steele PH, Pordesimo L, et al. (2011) High Temperature Water Gas Shift Reaction over Nickel Catalysts 
for Hydrogen Production: Effect of Supports, GHSV, Metal Loading, and Dopant Materials. J Thermodyn Catal 2:106. doi:10.4172/2153-
0645.1000106

Page 3 of 5

Volume 2 • Issue 1 • 1000106
J Thermodyn Catal
ISSN: 2157-7544 JTC, an open access journal 

It can also be observed that catalysts without ceria (Ni/Al2O3, 
either powder or monolith) had the lowest H2 yield, CO conversion, 
and H2 selectivity compared to those supported on or promoted with 
ceria. This observation provides evidence that the presence of ceria is 
advantageous for WGS catalysts. The beneficial role of ceria for WGS 
catalyst has been reported, among others, by Hilaire et al. [16], Gorte 
and Zhao [17], and Swartz et al. [18].

Most catalysts, however, also produced unwanted CH4. The 
evolution of CH4 formation during WGS reaction is presented as 
follows:

CO + 3H2 ⇌ CH4 + H2O ∆H298 = -206 kJ/mol ∆G298 = -142.2 kJ   (4)

CO2  + 4H2  ⇌ CH4 + 2H2O ∆H298 = -165 kJ/mol ∆G298 = -113.7 kJ   (5)

2CO + 2H2  ⇌ CH4 + CO2 ∆H298 = -247 kJ/mol ∆G298 = -170.8 kJ      (6)

Tanaka and Iizuka [19] suggested that after water gas shift 
reaction, the formation of CH4 occur through the hydrogenation of 
carbonaceous species formed by the dissociation of CO or CO2 [19]. All 
of the aforementioned methanation routes require H2. Therefore, the 
higher the CH4 yield, the lower the H2 yield will be.

Figure 3 shows that monolith alumina supported catalysts (with 
or without ceria promotion) produced the highest CH4 yield, around 5 
vol.% in average. This was another indication of the drawback of using 
monolith alumina as a support for Ni catalyst.

Effect of GHSV
Gas Hourly Space Velocity (GHSV) is defined as the ratio of the 

volumetric flow rate of reactants at standard conditions (25°C and 1 
atm) to the total catalyst volume [20,21]. If the quantities of catalyst 
and reactants are in the same units, e.g. for monolith catalyst, GHSV is 
frequently expressed in h-l (inverse time). For a granule catalyst, GHSV 
is frequently expressed in ml (gcat.h)-l. A higher GHSV implies a shorter 
time that the reactants are in contact with catalyst. 

Figure 4 shows the effect of GHSV on the performance of 4%Ni/
CeO2-Al2O3. It was revealed that increasing GHSV from 200 to 1000 
resulted in the decreasing catalyst performance. A noticeable decrease 
in CO conversion as the GHSV increase was also observed for the 
Au/CeO2 catalyst [22] and the Au/TiO2 catalyst [23]. Typical GHSV 
value for HT or LT WGS reaction is 4000 h-1 [24] but for on-board 
fuel processing the U.S. Department of Energy targets at least 30,000 
h-1 [25,26]. Due to the inverse relationship between GHSV and space 
time, it is clear that CO conversion will increase with the increasing 
space time. Our results, as presented by Figure 4 provide evidence for 
this proposition.

Effect of Ni loading

From the above discussion, it can be concluded that Ni/CeO2-Al2O3 
powder is the best catalyst for the WGS reaction at high temperature 
(450°C). We were interested in investigating the effect of Ni loading 
on the catalyst performance. For this purpose, we tested the Ni/CeO2-
Al2O3 powder catalyst with a different Ni loading ranging from 1 to 
8% (w/w). In this test, we also increased the flowrate five times while 
keeping the other conditions the same. The results are presented in 
Figure 5.

It can be observed that increasing Ni loading results in a 
considerable increase of the catalyst performance. Catalyst activity 
increases from 24% at a Ni loading of 1%; to 54% at a Ni loading of 4%; 
and to 76% at a Ni loading of 8%. Similarly, H2 yield increases from 
15% to 36% and to 44% at Ni loadings of 1%, 2%, and 8% respectively. 
Hydrogen selectivity also increases from 15% to 55% and to 82% at Ni 
loadings of 1%, 2%, and 8%, respectively. Again, we observed here that 
the high H2 yields are followed by higher CH4 production. 

Effect of dopant

Figure 6 demonstrates the effect of the addition of slight amounts 
of a dopant to the Ni/CeO2-Al2O3 powder catalyst.  The dopants used 
here include Co, Cr, Mo, and Ru.  These materials were selected because 
they have been tried as promoters to improve other catalystic reactions. 
Andreev et al. [22] for example, studied the effect of addition of CoO (5 
wt. %) on the activity of Fe–Cr catalysts [27]. Chromium is well known 
as promoter in commercial iron-based catalysts for high temperature 
WGS reaction. Meanwhile, the addition of Ru was reported to have a 

Figure 3: Average CH4 yield for different catalysts at 450 oC (Condition: 
catalyst loading 0.05 gram, CO/steam molar ratio 1:3, GHSV ≈ 200 L.h-1.
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Figure 4: Effect of GHSV on the performance of 4%Ni/CeO2-Al2O3 at a 
temperature of 450 °C and CO/S molar ratio 1:3.
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promoting effect on the activity and enhanced the redox effect of the 
iron oxide catalysts for the WGS reaction [28,29]. Molybdenum and Co 
are also well known dopants in sulfur-resistant WGS catalysts [30,31]. 

In our experiment, the loading of the dopant was 1% of the nickel 
loading and was loaded after the catalyst had been dried. Chromium 
nitrate nonahydrate (Cr(NO3)3.9H2O), cobalt nitrate hexahydrate 
(Co(NO3)2.6H2O), ruthenium (III) nitrosyl nitrate (HN4O10Ru) –
all from Sigma Aldrich– and ammonium molybdate tetrahydrate 
((NH4)6Mo7O24.4H2O) from Fisher Chemicals, were used as precursors 
for Cr, Co, Ru, and Mo, respectively. The catalysts were tested with 
reaction conditions of: temperature 450°C, CO flowrate 75 ccm, H2O 
flowrate 0.2 cm3/min, and catalyst loading 50 mg diluted with 1.5 gram 
inert silica. The results are presented in Figure 6.

It can be observed that Co- and Cr-doped catalysts substantially 
improve the catalyst performance in terms of activity, H2 yield, H2 
selectivity, and CH4 yield, compared to that of undoped one/s. The 
undoped, Co-doped, and Cr-doped Ni catalysts had activity values of 
48.8, 84.7, and 77.8%, respectively; hydrogen yields of 36.3, 48.9, and 
45.8 vol.%, respectively; and hydrogen selectivity values of 60.6, 98.3, 
and 77.8%, respectively. The addition of Ru dopant resulted in a higher 
CO conversion (59.7%) than that of the undoped catalyst. However, H2 
yield (38.6 vol.%) and H2 selectivity (61.9%) of Ru-doped catalyst were 
comparable to that of the undoped one. The addition of Mo, on the 
other hand, resulted in a lower performance than that of the undoped 
one. This could be attributed to the poisoning effect of Mo on the nickel 
catalyst. The negative effect of the presence of Mo on other catalysts 
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(Reaction conditions:  temperature 450oC, CO/steam molar ratio 1:3, catalyst  
loading 50 mg diluted with 1.5 gram inert silica, GHSV ≈ 1000 L/g cat).
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Figure 7: Performance of commercial catalyst Shift Max 120. Reaction 
condition: temperature 450 oC, CO/steam molar ratio 1:3, catalyst loading 50 
mg diluted with 1.5 gram inert silica, GHSV ≈ 1000 L/gcat).

was also reported by Zhao and Gorte [32], for example, ceria supported 
palladium [32].

Comparison with commercial catalyst

Figure 7 reveals the performance of the commercial catalyst 
Shift Max 120 (Süd Chemie). The catalyst is designed for the high 
temperature shift WGS reaction working at 450°C with composition 
as presented in Table 2. 

It was observed that the commercial catalyst was very stable and 
was not selective towards CH4 production. However, Ni/CeO2-Al2O3 
catalysts, irrespective of being doped or undoped, proved to be much 
active for the HT WGS reaction compared to the commercial catalyst 
at identical conditions. The activity of the undoped Ni/CeO2-Al2O3 at 
450 oC was 60% with a H2 yield of 40 vol.% and SH2 of 60%. Using Cr 
dopant, the activity of  the catalyst was increased to be more than 80% 
with a H2 yield of 50 vol.%  and a H2 selectivity almost 100% (Figure 6). 
At the same conditions, the activity of the commercial catalyst was 36% 
with a H2 yield and SH2 of 20 vol.% and 18%, respectively.

Conclusions
Based on the discussion above, it can be concluded that ceria-

promoted Ni catalyst supported on alumina powder (Ni/CeO2-Al2O3) 
demonstrated the best performance for the WGS reaction at high 
temperature (450oC). The addition of a small amount of Cr or Co as 
a dopant considerably increased the performance of Ni/CeO2-Al2O3 
catalyst.  Compared to a commercial catalyst for high temperature shift 
WGS, both doped and undoped Ni/CeO2-Al2O3 catalysts demonstrated 
higher activity, H2 yield and H2 selectivity. The importance of this work 
is that Ni catalyst developed is non-pyrophoric. The other important 
feature is that there is no need to reduce the catalysts prior to use.
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