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Abstract

In this paper, we investigate the effect of operation parameters
to dynamic of dependent variables for catalytic oxidation reaction
using reverse flow reactor (RFR). Here, we consider a 1-D pseudo-
homogeneous model for RFR with cooling through the wall and
periodically perturbed feed gas. By using finite difference method
to the model, we construct numerical schemes. The simulations are
conducted for various values of period of gas feeding, switching time,

cooling capacity and superficial velocity.
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1. Introduction

Methane is the second largest greenhouse gas whose global warming

tential reaches about 20 times greater than carbon dioxide and it becomes
a wasted energy resource if not used. Methane includes the gas whose
low and unstable concentration, 'aabout 1 vol%, and constitutes the most
arduous hydrocarbons to react whose adiabatic combustion temperature
is about 1900°C in the traditional combustion mode [1]. Therefore, auto-
thermal operation is hard to achieve a valuable without pre-heating the feed.
Thus, conversion of methane to carbon dioxide will give two advantages:
reduction of global warming effect and utilization of the heat output from
the reaction to pre-heat the feed. On the other hand, a catalyst is required
to accelerate the conversion and to carry out stable combustion for low

concentrations.

One method d in methane combustion is catalytic reverse flow
reactor (RFR). It was first proposed by nk-Kamenetskii [2] and was
reviewed by Matros and Bunimovich [3]. RFR is a packed-bed reactor in
which the flow direction is periodically reversed to trap a hot zone within the
reactor. If we comp RFR with a direct flow adiabatic reactor, then
reactions using RFR may be run and proceed at lower temperature and

higher conversions.

There are some methods in previous research to investigate dynamics
of feed gas in RFR. In [4-17], there are three methods to investigate this
problem. They are experimental, analytical and numerical or computational
approaches. The last two methods are usually considered mathematical

mocﬁ that describe the dynamics of feed gas dynamics in RFR.
13
Various models were pro d to describe the dynamic behavior

RFR. For example: Khinast et al. [4] and Salomons et al. [5] have used
a one-dimensional pseudo-homogeneous model, while [6] proposed a

one-dimensional heterogeneous model, and [7] used a two-dimensional
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heterogeneous model. In those models, temperature and concentration of

feed gas were assumed to be constant along time.

In [11, 12], the authors proposed an analytical approach to solve singular
perturbation problem that derived from 1-D pseudo-homogeneous model at
steady state condition under some assumptions. By using same model but at
unsteady state condition, an analytical solution using homotopy perturbation
method was studied [16]. Furthermore, Wibowo et al. [15] have reported
solution unique existence of mathematical model of reverse flow reactor
especially in the parabolic and hyperbolic equations.

Meanwhile studies of feed gas dynamics in RFR through numerical
simulation approaches were reported in [8, 10, 14]. Budhi et al. have
investigated RFR stability for constant and oscillating feed concentration
[10]. With the same topic, Nuryaman et al. [14] have studied the impact of
changes in operating parameter values to RFR dynamics for fixed feed gas

temperature with periodic concentration like square-wave function.

In this paper, we explore the previous research in [14] by considering
temperature is constant and concentration of feed gas which is periodically
perturbed like trigonometry function. Here we consider one-dimensional
pseudo-homogeneous model that describes cooled RFR behavior. By
numerical simulation approach, we analyze the parameter sensitivity to RFR
stability.

Here, we organize this paper as follows: A mathematical model for the
amic of methane temperature and concentration and numerical scheme
are described in Section 2. Next, in Section 3, numerical simulations are
presented to describe the dynamic behavior of feed gas in reverse flow

reactor. In the last section, conclusions are presented.
2. Mathematical Modeling and Numerical Scheme

In mathematical modeling of the RFR, we adopt 1-D pseudo-
homogeneous model for the cooling RFR consisting of one panel in Khinast
et al. [4] as follows:
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where g(T) = which corresponds to reaction rate.

In equations (1)-(2), T = T(z, t) and C = C(z, t), respectively, denote the
temperature (K) and concentration (mol/L) of feed gas at position z and

time ¢. Beside that, equations system (1)-(2) be equipped with boundary

conditions for flow to the right as follows:
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In equations (3) and (4), parameters 7;, denote inlet temperature
and C;, correspond to inlet gas concentration which enter into RFR from
left/right side of reactor. In this article, we assume that its temperature is
constant along time and its concentration is periodically perturbed function
like C;, P A + esinwt, where o corresponding with period for every time

interval before the flow direction is reversed.

To describe the dynamic behavior of methane in reverse flow reactor,
we use numerical approach since the model is in nonlinear form. Many
numerical methods can be used to simulate the behavior of methane which
is modeled by equations (1)-(4). Examples include finite difference method,
finite volume method, Runge-Kutta method and gthers. Here we used finite
difference method with forward difference for derivative with respect to

time variable and central difference for second derivative and backward
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difference for first derivative with respect to space variable. So we get

numerical schemes as below:
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Here 7} =T(z;,t,), Cj =C(z;,t,), Az =I/N, and Ar=1t/N, with
N. and N, denote the partition numlﬁof spatial and time coordinate,

respectively. Parameter values that were used in our simulations are given in

Table 1.
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Table 1. Parameter values, [4]

Parameters Value Descriptions
] 0.69 void fraction
(Pi‘p }_s 904.55kIm K ! volumetric heat capacity of solid
(pe p ]'g 0.508kIm K ! volumetric heat capacity of gas
Mg 5.64kwm 'K effective axial heat conductivity
u 0.3ms™ Superficial gas velocity
Usy 0.1377kWm 'K Heat transfer coefficient at reactor wall
Ay 272m™! Specific reactor wall surface
Tc 323K Coolant temperature
(—AH) 802000kJ/kmol Heat of reaction
D 6.52x10°m’%"! Gas diffusion coefficient
E, 9.629 x 10*KkJ/kmol/K Activation energy
R 8.3145kJ/kmol/K Universal gas constant
ke 734 x107s™! Frequency factor
ke 0.115ms™! Mass-transfer coefficient
ay 2000m ™! Specific particle surface area
n 1 Effectiveness factor
{ 0.26m Reactor length
ty 60s Switching time

In this section, we show some numerical simulations to analyze the
sensitivity of operating parameters by means the effect of changing the

parameter values on RFR stability or the continuation of the oxidation

process.

3. Results

Parameter sensitivity analysis of feed gas period

At first case for constant feed gas, the behaviors of two dependent

variables T and C are shown in Figure 1. Furthermore, if we investigate up to

six times reversed, we have Figure 2.
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Figure 2. Temperature and concentration behavior of feed gas for various

time values t with 4 = 0.25, € = 0.05 and ® = 0 after six times reversed.

From Figure 2, when the feed gas flow is reversed several times, the
highest temperature is in the reactor center position. This is caused around
the end of the reactor where the feed gas enters, the temperature is still low
so that only a small amount of feed gas reacts. While around the end of the
reactor where the remaining feed gas or the reaction product comes out, the

temperature drops again due to the same thing as in the start up conditions.
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In the next step, we simulate the impact of changing the period

parameter o which is shown in Figure 3 as follows.
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Figure 3. Temperature and concentration behavior of feed gas for various

time values ¢ with 4 = 0.25, g = 0.05 after six times reversed. Left figure,

for @ = 5n and right figure ® = %

In the case of feed gas being disturbed periodically, the parameters of the
feed gas period affect the presence of waveforms in the plot of feed gas. The
centration of the feed gas which oscillates periodically has little effect on
the temperature dynamics of the feed gas in the reactor. The existence of
waveforms on the dynamics plot of feed gas concentration occurs for a large
period. The similar conditions to constant feed gas concentrations occur
when the feed gas period is small. In general, the size of the feed gas period
does not make the reactor go out. This is indicated by the dynamic plot shape
of the feed gas temperature in the reactor as shown in Figure 3.

Parameter sensitivity analysis of switching time

Switching time is one of important factors in RFR operation. Figure 4

and Figure 5 show the effect of switching time to dynamics of feed gas along
RFR.




(1] 008 04 018 02 028

e

008 0.1

01 5
z(Reactor length, m)

0z

Parameter Sensitivity Analysis on Mathematical Model ... 39
¥ 800 —rellt ¥ 80 —_—r,
g i g —p
2 soo —_— E 00 "z
% S é —_—
£ 400 — ::. ang —

5 5 L 008 1 0.8 02 08
% i i 7|;‘:u Iu:ﬂ‘: L] i o - z{Reactor langh, m)
i = ¥
s’ e —el S‘ 04 —t,
T —r %03 —
S ] § i 2
et — £ —p
s — L S—
£ 0 20
: z

riReacior ength, mj

Figure 4. Temperature and concentration behavior of feed gas for various

time values ¢ with 4 = 0.25, ¢ = 0.05, ty = 20s after six times reversed.

Left figure, for @ = 5n and right figure ® = %
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Figure 5. Temperature and concentration behavior of feed gas for various

values ¢ value with 4 = 0.25, ¢ = 0.05, tr = 120s after six times reversed.
Left figure, for ® = 5n and right figure ® = %

The choice of the duration of reversal (switching time) is very influential
on the stability of the RFR in operation. From Figure 4 and Figure 5, it is

indicated that the reversal time that is too short (case ty = 20s) or too long
(case ty = 120s) will make the RFR go out. This situation is shown by the

dynamics of temperature which decreases closer to the feed gas temperature.
It shows that there is no reaction in the reactor. This result is in agreement
with the results that reported in [10] and [17].
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Parameter sensitivity analysis of superficial gas velocity

The effects of superficial gas velocity value to behavior of feed gas
along RFR are shown in Figure 6 and Figure 7. When in the operation of the
RFR, the feed gas flow velocity is small, it is indicated that the reactor will
eventually go out. A slow feed gas flow rate will cause more feed gas to act
in the reactor end position where the feed gas enters. Thus, getting to the
end of the reactor, there is no additional heat from the reaction product.
Simultaneously, the contribution of reactor cooling continues. As a result,
over time the overall temperature becomes low and eventually goes out. The
opposite condition occurs when the feed gas flow rate is increased as shown

m Figure 7.
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Figure 6. Temperature and concentration behavior of feed gas for various
time values t with 4 = 0.25, € = 0.05, u = 0.1 after six times reversed. Left

figure, for @ = 5 and right figure © = %
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4. Conclusion

RFR stability investigations have been shown for the oxidation process

with periodically disturbed feed gas. The parameter sensitivity analysis

process through a numerical approﬁwas carried out to see the effect of

the feed gas period, switching time and superficial gas velocity. The results

of the analysis showed that the choice of switching time and superficial gas

velocity greatly influences the sustainability and stability of RFR operations.
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