Insektisida
Organik Sintetik dan Biorasional

Rosma Hasibuan

plantaxia
Insektisida; Organik Sintetik dan Bioasional, oleh Rosna Hasibuan
Hak Cipta © 2015 pada penulis

plantaxia

Ruko Jambusari 7A Yogyakarta 55283
Telp: 0274-889398, Fax: 0274-889057
E-mail: info@grahalimu.co.id

Hak Cipta dilindungi undang-undang. Dilarang memperbanyak atau memindahkan sebagian atau seluruh isi buku ini dalam bentuk apa pun, secara elektronis maupun mekanis, termasuk memfotokopi, merekam, atau dengan teknik perekaman lainnya, tanpa izin tertulis dari penerbit.

ISBN: - - - -
Cetakan Pertama, tahun 2015
KATA PENGANTAR

Insektisida adalah bahan kimia beracun yang dapat digunakan untuk mengendalikan dan membasmi berbagai jenis serangga hama yang menyerang tanaman dan yang membahayakan kesehatan manusia. Sampai sekarang, perkembangan pembuatan insektisida dan penggunaannya masih tetap meningkat, dengan ditemukannya jenis-jenis insektisida baru. **Insektisida organik sintetik** merupakan jenis insektisida yang mengalami perkembangan yang paling pesat sejalan dengan perkembangan industri insektisida. Namun pada saat yang bersamaan, penggunaan insektisida sintetik di bidang pertanian maupun kesehatan masih tetap mengundang kontroversi, karena dampak negatif yang ditimbulkannya. Salah satu jenis insektisida yang ramah lingkungan adalah **insektisida biorasional** yaitu jenis insektisida yang bahan aktifnya bersumber dari alam. Indonesia sebagai negara agraris mempunyai potensi untuk mengembangkan insektisida biorasional karena kekayaan sumber daya yang dimilikinya.

Bandar Lampung, Mei 2015

Prof. Dr. Ir. Rosma Hasibuan, M.Sc.
DAFTAR ISI

<table>
<thead>
<tr>
<th>Bab</th>
<th>Hal</th>
</tr>
</thead>
<tbody>
<tr>
<td>KATA PENGANTAR</td>
<td>iii</td>
</tr>
<tr>
<td>DAFTAR ISI</td>
<td>iv</td>
</tr>
<tr>
<td>DAFTAR TABEL</td>
<td>vii</td>
</tr>
<tr>
<td>DAFTAR GAMBAR</td>
<td>viii</td>
</tr>
</tbody>
</table>

I PENGENALA PESTISIDA

1.1. Pengertian dan Peraturan Pestisida | 1
1.2 Sejarah dan Peranan Pestisida | 3
1.3 Keunggulan Pestisida | 12
1.4 Kelemahan Pestisida | 14
1.5 Batas Maksimum Residu Pestisida | 21
1.6 Peranan Pestisida dalam Program PHT dan Perdagangan global | 27
1.7 Daftar Pustaka Bab I | 33

II PENGENALAN DAN TOKSISITAS INSEKTISIDA

2.1 Pengertian dan Peranan Insektisida | 39
2.2. Toksisitas Insektisida | 43
2.2.1 Pengertian Toksisitas Insektisida | 43
2.2.2 Pengujian Daya Racun Insektisida | 50
2.2.3 Penentuan Daya Racun Insektisida | 53
2.3 Toksisitas Insektisida pada Mamalia | 60
2.4 Daftar Pustaka Bab II | 62

III INSEKTISIDA ORGANIK SINTETIK

3.1 Insektisida Klor Hidrokarbon (Organoklorin) | 65
3.1.1 Karakteristik dan Jenisnya ... 65
3.1.2 DDT dan Analognya .. 66
3.1.3 Benzen Heksaklorida (BHC) .. 71
3.1.4 Senyawa Sikolodien ... 72
3.2 Insektisida Organofosfat ... 75
3.2.1 Sejarah dan Perkembangannya ... 75
3.2.2 Cara Kerja insektisida Organofosfat .. 76
3.2.3 Rumus Umum dan Jenis Organofosfat .. 79
3.2.4 Organofosfat Alifatik .. 80
3.2.5 Organofosfat Fenil ... 87
3.2.6 Organofosfat Heterocyclic ... 91
3.3 Karbamat ... 95
3.3.1 Sejarah dan Perkembangannya ... 95
3.3.2 Karakteristik dan Jenisnya ... 96
3.3.2.1 Golongan Naftil Metilkarbamat .. 97
3.3.2.2 Golongan benzofuranil metilkarbamat 98
3.3.2.3 Golongan methyl carbamate ... 101
3.3.2.4. Golongan oxime carbamate .. 104
3.3.2.5. Golongan phenyl methylcarbamate ... 107
3.4. Daftar Pustaka Bab III ... 110

IV INSEKTISIDA BIORASIONAL ... 113
4.1 Pengertian Insektisida Biorasional ... 113
4.2. Insektisida Botani ... 116
4.2.1 Nikotin ... 117
4.2.2 Rotenon ... 120
4.2.3 Piretroid .. 122
4.2.4 Veratrum (Sabadilla) .. 127
4.2.5 Ryanoid ... 128
<table>
<thead>
<tr>
<th>Bab</th>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.6.</td>
<td>Nimba</td>
<td>129</td>
</tr>
<tr>
<td>4.3.</td>
<td>Insektisida Mikroba</td>
<td>131</td>
</tr>
<tr>
<td>4.3.1.</td>
<td>Cendawan entomopatogen</td>
<td>131</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Bakteri entomopatogen</td>
<td>135</td>
</tr>
<tr>
<td>4.3.3.</td>
<td>Virus Entomopathogen</td>
<td>138</td>
</tr>
<tr>
<td>4.4.</td>
<td>Insektisida Pengatur Pertumbuhan Serangga</td>
<td>143</td>
</tr>
<tr>
<td>4.5.</td>
<td>Peniru Hormon (Hormon mimics)</td>
<td>145</td>
</tr>
<tr>
<td>4.6.</td>
<td>Daftar Pustaka Bab IV</td>
<td>146</td>
</tr>
</tbody>
</table>
DAFTAR TABEL

<table>
<thead>
<tr>
<th>Tabel</th>
<th>Hal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Banyaknya biaya pembelian herbisida, insektisida, dan, fungisida global yang digunakan pada berbagai komoditas (FAO, 1986)</td>
</tr>
<tr>
<td>2</td>
<td>Daftar jenis artropoda non-target yang terbunuh akibat penyemprotan insektisida permetrin pada pertanaman kakao yang tertangkap kain hampar (ground cloth) (Hasibuan dkk, 2004)</td>
</tr>
<tr>
<td>3</td>
<td>Daftar batas maksimum residu (BMR) pestisida pada komoditas wortel dan tomat berdasarkan keputusan bersama Menteri Pertanian dan Menteri Kesehatan Nomor 881 Tahun 1996</td>
</tr>
<tr>
<td>4</td>
<td>Daftar batas maksimum residu (BMR) pestisida pada komoditas bawang merah berdasarkan keputusan bersama Menteri Pertanian dan Menteri Kesehatan, Nomor 881 tahun 1996</td>
</tr>
<tr>
<td>5</td>
<td>Klasifikasi insektisida berdasarkan jenis bahan aktifnya</td>
</tr>
<tr>
<td>6</td>
<td>Contoh beberapa golongan insektisida dan cara kerja insektisida serta nama umum dan nama dagangnya</td>
</tr>
<tr>
<td>7</td>
<td>Persentase kematian yang ditransformasikan menjadi nilai probit (Finney, 1971)</td>
</tr>
<tr>
<td>8</td>
<td>Toksisitas insektisida organofosfat terhadap (mg/kg of body weight) secara oral maupun dermal (Clark, 2006)</td>
</tr>
<tr>
<td>9</td>
<td>Beberapa nama produk insektisida mikroba yang berasal dari Metarhizium anisopliae</td>
</tr>
<tr>
<td>10</td>
<td>Beberapa nama produk insektisida mikroba yang berasal dari Beauveria bassiana</td>
</tr>
</tbody>
</table>
DAFTAR GAMBAR

Gambar Hal

2 Besarnya nilai penjualan pestisida di berbagai negara maju (A) dan negara berkembang (B) WHO. 1990... 9

3 Rumus kimia dan kemasan insektisida Paris Green (Fiedler and Bayard 1997) ... 41

4 Ilustrasi bagaimana serangga hama terpapar insektisida yang masuk melalui kontak kulit, perut, dan pernafasan......................... 44

5 Penentuan nilai LD50 berdasarkan grafik hubungan persentase kematian serangga uji yang terpapar insektisida dengan log konsentrasi insektisida yang diujiikan ... 55

6 Penentuan nilai LD50 melalui garis lurus (regresi) yang paling sesuai antara nilai probit dengan log konsentrasi Finney, 1971; Tarumingkeng, 1989). ... 57

7 Salah satu program computer untuk menghitung nilai LD50...... 59

8 Klasifikasi pestisida berdasarkan derajat bahayanya (US-DA and US-EPA. 1972)... 61

9 Dampak negative penggunaan pestisida terhadap lingkungan yang mencemari tanah, air, dan udara (Bortleson and Davis, 1995; Aktar et al., 2009). ... 62

10 Contoh produk insektisida yang berisi dikloro-difenil- trikloroetana (DDT) yang tersedia di pasaran ... 68

11 Cara kerja nsektisida DDT sebagai racun saraf yang mengganggu pompanisasi ion Na⁺ pada sistem saraf pusat (Ramulu, 1979) ... 69

x
Cara kerja insektisida organofosfat sebagai antikolinestrase

ACh = acetylcholine; M = muscarinic; NM = Nicotinic, neuromuscular junction; NN = Nicotinic, ganglionic (Clark, 2006)

Reaksi acetylcholine (ACh) menjadi aceteta dan choline yang diuraikan oleh enzim acetylcholinestrase (AChE) (Clark, 2006)

Tanaman kacang kalabari: (A) Tanaman lengkap, (B) bagian polong, (c) bunga, (d) biji (Balfour, 1860)

Pengelompokan insektisida biorasional yang mempunyai berbagai jenis bahan aktif yang berasal dari alam

Contoh produk nikotin Black Leaf 40 yang diproduksi secara komersial di Amerika Serikat

Mekanisme cara kerja insektisida nikotin pada sistem syaraf (Matsumura, 1985; Bloomquist, 1999)

Insektisida rotenone, (A) tanaman Derris trifoliata penghasil rotenone berbentuk tepung dan (B) Produk Rotenone Dust

Bunga dari jenis tanaman yang menghasilkan pyrethrin (A) Chrysanthemum cinerariaefolium dan (B) Chrysanthemum coccineum (Jovetic, 1994; Wikipedia, Pyrethrum)

Mekanisme cara kerja insektisida pyretroid pada sistem syaraf

Insektisida nimba: (a) salah satu bentuk kemasan yang diperjualbelikakan (b) biji tanaman nimba penghasil bahan aktif azadirachtin

Konidia Metarhizium anisopliae (Zimmerman, 1993).

Gambar cendawan Beauveria bassiana (A) inang dan (B) konidia (Broome et al, 1976; Alves and Pereira, 1989).

Insektisida mikroba Bacillus thuringiensis (Bt): (A) spora yang menghasilkan endotoksin: (B) Kristal endotoksi (Gill et al., 1992).

Jenis insektisida mikroba yang diproduksi secara komersial dan dipasarkan secara global

Partikel virus Nuclear Polyhedrosis Virus (NPV) di bawah mikroskop elektron.
Skema proses infeksi Nuclear Polyhedrosis Viruses pada tubuh inang terutama di saluran pencernaan tengah (*midgut*)

Gejala serangga yang terinfeksi oleh Nuclear Polyhedrosis Virus yang ditandai dengan menempelnya tubuh inang pada bagian tanaman di atas permukaan tanah

Granulosis virus yang dimurnikan di bawah mikroskop elektron kumpulan partikel virus, (B) Sel GV; PM = matriks protein, E = amplop virus, dan N= sel nukleus

Siklus infeksi virus yang menginfeksi tubuh inang: (1) Larva yang memakan daun yang terkontaminasi partikel virus, (2) pembungkus partikel virus (*occlusion bodies*), (3) Saluran pencernaan tubuh inang, (4) Virus dilepas dari selubungnya dan menempel di dinding saluran pencernaan, dan (5) Replikasi virus di dalam jaringan tubuh inang