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Abstract - Machines with high speed rotation, high power, and lighter weight are the challenge 

in design of modern rotation machinery. In analysis of coaxial dual rotor system, the problem 

leads to a multi-degree of freedom system (1multi-DOF). The resulting equation of motion 

cannot be solved analytically. For multi-DOF system, numerical method has to be implemented. 

In this study, the equations of motion of co-axial dual rotor system was solved numerically using 

MATLAB programming language. This study compares the result of two methods used: the 

pseudo-modal method and the direct method, with the aim of getting the most effective method 

in predicting critical rotational speed by plotting Campbell diagram. It was found that the 

difference in the value of critical speeds between Pseudo Modal and the Direct Method is 0%-

9,56% for the first 6 lowest frequencies and 0.09%-3.58% for the first 8 lowest frequencies. 

1. Introduction 

Machines with high speed rotational, high power, and lighter weight are the tendencies in design of 

rotational machinery in modern engineering. This develops in line with the increasing ability in 

prediction of rotor dynamic characteristics. The use of dual rotor systems (coaxial rotors) can be found 

in many applications such as aviation (helicopter), turbine and other fields. To get a machine with high 

speed, large power and light weight, the designers of dynamic rotor systems require certain techniques 

in predicting the dynamic characteristics of the rotor. All the dynamic characteristics of the rotor are 

closely related to the rotation of the rotor, so the direction of the mode is very important in the dynamic 

rotor. When the rotor system starts to spin, two different modes will appear, known as the forward and 

backward modes. The modal characteristics of a dynamic rotor system that are related to the forward 

and backward modes, differ from the conventional characteristics of the non-rotational structure [1]. 

The application of the classical modal testing method has developed well to identify the modal 

parameters of various structures, except for rotation machines. In analysing the dynamic characteristics 

of rotor, there are several methods that might be used such as the finite element method, the transfer 

matrix method, the time series numerical integration method and the Hubolt method for modelling the 

rotor shaft system and obtain faster computational time. Budiwantoro [2] and also Huang [3] 

investigated the dynamic characteristics of coaxial dual rotor systems using finite element method. The 
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results obtained was in form of critical sonar velocity, transient displacement, and trajectory diagrams. 

Yanto and Hidayat [4] carried out research on the dynamic behaviour of 3D rotor shaft system (1 level) 

using finite element analysis and obtained results of a critical rotation variation of 192 frequencies. In 

an analysis of rotor dynamics, Hutahaen [5] implemented the substructure method to analyse the 

dynamic behaviour of the rotor (turbine 1 level). His study focused on analysing the dynamic 

characteristics of the rotor in form of natural frequencies plotted in Campbell diagrams. Determination 

of the direction of whirling orbit of turbines having high speed rotation always has its own challenges. 

Simulations using finite element method with the help of ANSYS software have been carried out by 

Jahromi [6] to determine the direction of whirling orbit and calculate the gyroscopic effect. The 

numerical results obtained was then verified experimentally to confirm the phenomenon of whirling 

orbit direction. 

The pseudo modal method in a computational program was used by Zulhendri et al., to analyse the 

dynamic characteristics of a coaxial dual rotor system. The method was also used by Mahartana [8] for 

modeling and simulation of rotor balancing to see the increase in work cycle of the dynamic response. 

This paper presents results of numerical study on the dynamic characteristics of a coaxial dual rotor 

system in the form of natural frequency (the Campbell diagram) and response to mass unbalance. This 

study compared the results obtained using the pseudo modal and the direct method. The computer 

program that has been compiled using MATLAB would then be validated using experimental studies 

published elsewhere.  

2. Methods 

By using the differential equation of motion, the dynamic characteristics of a coaxial dual rotor system 

can be solved. The discretization method can be used for the equation of the coaxial dual rotor system. 

By applying the Lagrange equation, a linear differential equation which is useful can be obtained. 

2.1. Equation of Motion 

The equation of motion of the rotor system can be written as follows: 

𝑀�̈� + 𝐶�̇� + 𝐾𝛿 = 𝐹(𝑡)             (1) 

By completing Equation (1) a natural frequency can be obtained as a function of rotational speed of the 

rotor, Campbell's diagram, critical rotation, and excitation response, such as unbalanced mass response. 

For tiered rotor shaft system as shown in Figure 1, the equation of motion can be written as: 

𝑀�̈� + 𝐶(Ω1, Ω2)�̇� + 𝐾𝛿 = 𝐹(𝑡)          (2) 

The three matrices 𝑀, 𝐶, and 𝐾 are obtained by arranging matrices 𝑀1, 𝑀2, 𝐶1(Ω1), C2(Ω2), 𝐶 and 𝐾 on 

bearings and seals 

In a coaxial dual rotor, analysis generally leads to a multi-degree of freedom system (multi-DOF), and 

to solve the equation of motion, a numerical method must be used. There are two methods here used for 

solving the rotor system equation, namely the pseudo-modal method and the direct method. 

2.2. Pseudo Modal Method 

The pseudo-modal method can be used for real cases in industry. In the pseudo-modal method, the 

damping value C in Equation (1) is assumed to be small, so the mechanism is unknown and for that 

reason the damping is not installed in the rotor. Equation (1) can be defined as a modal base equation 

[9] as given below: 

𝑀�̈� + 𝐾∗𝛿 = 0                        (3) 
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Figure 1. Coaxial dual rotor design system 

 
 

The value of 𝑀 is the mass matrix and K* is the stiffness matrix obtained from the value of 𝐾, where 

the values of 𝑘𝑧𝑧 and 𝑘𝑧𝑥 can be ignored as indicated by the bearing being removed. The lowest number 

of first vibration modes (N), (𝑁), 𝜙1,….. 𝜙𝑛 from Equation (3) can be obtained by iteration technique, 

and in matrix form can be written as in Equation (4): 

𝜙 = [𝜙1, … , 𝜙𝑛]     (4) 

From Equation (3) the following new equation can be obtained. 

𝛿 =  𝜙𝑝                 (5) 

Substitute Equation (5) into the equation of motion of the rotor shaft system and multiply it by 𝜙𝑇. 

𝜙𝑇𝑀�̈� + 𝜙𝑇𝐶(Ω)𝜙�̇� + 𝜙𝑇𝐾𝜙𝑝 = 𝜙𝑇𝐹(𝑡)   (6) 

The diagonal matrix 𝜙𝑇𝐶𝜙 is added to the modal damping 𝑐𝑖, which is obtained from the analogy of the 

single degree of freedom (SDOF) damped spring mass system: 

𝑐𝑖 = 2𝛼𝑖√𝜙𝑇𝐾𝜙. 𝜙𝑇𝑀                          (7) 

with the value of the modal damping factor 𝛼𝑖 obtained from the designer's experience. So that the 

solution of the equation of motion (1) without external force can be written as: 

𝜙𝑇𝑀�̈� + 𝜙𝑇𝐶(Ω)𝜙�̇� + 𝜙𝑇𝐾𝜙𝑝 = 0            (8) 

The value of p can be assumed in the form: 

[𝑟2𝑚 + 𝑟𝑐 + 𝑘]𝑃 = 0                (9) 

The values of m, c and k can be written as: 

𝑚 = 𝜙𝑇𝑀𝜙 = 𝑑𝑖𝑎𝑔{𝜙𝑖
𝑇𝑀𝜙}     (10) 

𝑐 = 𝜙𝑇𝐶𝜙 = 𝑑𝑖𝑎𝑔{𝜙𝑇𝐶𝜙} + 𝐶𝑖     (11) 

𝑘 = 𝜙𝑇𝐾𝜙 = 𝑑𝑖𝑎𝑔{𝜙𝑖
𝑇𝐾∗𝜙𝑖} +  𝜙𝑖

𝑇𝐾∗∗𝜙𝑖    (12) 

The stiffness 𝐾∗∗ is expressed as: 

𝐾∗∗ = 𝐾 − 𝐾∗     (13) 

Equation (9) can be written in the form of a matrix equation, as in Equation (14). 
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[
0 𝐼

−𝑘−1𝑚 −𝑘−1𝑐
] {

𝑟𝑃
𝑃

} =
1

𝑟
{
𝑟𝑃
𝑃

}    (14) 

The solution to the problem of eigenvalue or natural frequency and vibration mode of equation (14) can 

be obtained in complex quantities. 

𝑟 =
−𝛼𝑖𝜔𝑖

√1−𝛼𝑖
2
   (15) 

The value of 𝜔𝑖 is a natural frequency and 𝛼𝑖 is a viscous damping factor. If equation (15) > 0, the 

system is not stable. From the results obtained, Campbell's diagram can be drawn showing critical areas 

so that the critical velocity can be known. Unbalanced mass response may be obtained from the 

following equation: 

𝑚�̈� + 𝑐�̇� + 𝑘𝛿 = 𝑓2 sin Ω𝑡 +  𝑓3 cos Ω𝑡   (16) 

with the values 𝑓2 and 𝑓3 can be expressed as follows: 

𝑓2 = 𝜙𝑇𝐹2     (17) 

𝑓3 = 𝜙𝑇𝐹3     (18) 

Assuming an answer for under-damped vibration as follows: 

𝑝 = 𝑝2 sin Ω𝑡 + 𝑝3 cos Ω𝑡    (19) 

By substituting equation (19) into equation (16) the following matrix form will be obtained: 

[𝑘 − 𝑚Ω2 −Ω𝑐
Ω𝑐 𝑘 − 𝑚Ω2] {

𝑝2

𝑝3
} = {

𝑓2

𝑓3
}   (20) 

The solution of equation (20) and from equation (19), the following displacement vectors are obtained: 

𝛿 = 𝜙{𝑝2(Ω) sin Ω𝑡 + 𝑝3(Ω) sin Ω𝑡}   (21) 

2.3. Direct Method 

The difference between the pseudo modal method and the direct method in solving the coupled equation 

of motion is that there is no equation reduction in the direct method. In the direct method, the answers 

are considered in the form of equation below: 

𝛿 = Δ𝑒𝑟𝑡     (22) 

When Equation (22) and its derivative are then substituted into Equation (2), the following equation is 

obtained.  

(𝑟2𝑀 + 𝑟𝐶 + 𝐾)Δ = 0    (23) 

Equation (23) can be written in the form of state space. 

[
0 𝑀
𝑀 𝐶

] {
𝑟Δ
𝑟

} =
1

𝑟
[
𝑀 0
0 −𝐾

] {
𝑟Δ
𝑟

}   (24) 

Equation (24) is eigenvalue problem. The first two eigenvalues and corresponding eigenvector can be 

obtained in complex quantities as given in Equation (25) and (26) respectively:  

 

𝑟1 =
𝛼1𝜔1

√1−𝛼2
± 𝑗𝜔𝑖              (25) 

The eigenvector values can be seen in the following equation. 

Δ1 = 𝑅1 ± 𝑗𝐿1      (26) 

Campbell's diagram of the natural frequency of the system can be obtained by solving those equation. 
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3. Results and Discussion 

Equation of motion of coaxial dual rotor system can be expressed as in Equation (2). The matrix 

values 𝑴, 𝑪, and 𝑲 in Equation (2) are obtained by arranging the matrix 𝑴𝟏 (disk mass matrix and 

inner axis), and 𝑴𝟐 (disk mass matrix and outer shaft). While the value of matrix 𝑪 is arranged 

based on the gyroscopic effect of the disk, the shaft (inside and outside), and the effect of bearings 

and seals attenuation. The 𝑲 matrix is obtained from the axial force matrix (inside and outside), as 

well as bearings and seals thickness. The form of Equation (2) can be arranged into the global 

equation matrix as follows: 

 

[
𝑀1 0
0 𝑀2

] �̈� + [
𝐶1Ω1 0

0 𝐶2Ω2
] �̇� + [

𝐾1 0
0 𝐾2

] 𝛿 = 𝐹(𝑡)  (27) 

The coaxial dual rotor is a system that has two shafts that coincide on both axes and experience 

rotation simultaneously with different or equal rotational speeds. The two shaft systems are connected by 

intershaft bearings as shown in Figure 1. The model of the graded rotor shaft system can be seen in 

Figure1. Data and dimensions of the coaxial dual rotor system are given in Tables 1 and 2, characteristics 

of bearings and seals are given in Table 3, and material properties of the shaft are given in Table 4: 

Table 1. Dimension of the shaft 

Shaft Inner Diameter (mm) Outer Diameter (mm) Length (mm) 

Inner shaft (1) 0 30,48 508 

Outer shaft (2) 50,8 60,96 254 

 

Table 2. Rotor data 

Rotor D1 D2 D3 D4 

𝑀(𝑘𝑔) 10,51 7,01 3,5 7,01 

𝐼𝐷𝑥10−2(𝑘𝑔𝑚2) 4,295 2,14 1,35 3,39 

𝐼𝐷𝑦10−2(𝑘𝑔𝑚2) 8,59 4,29 2,71 6,78 

 

Table 3. Characteristics of bearings and seals 

Bearings and seals 1 2 3 4 

𝑘𝑥𝑥 = 𝑘𝑧𝑧, (𝑁 𝑚⁄ ) 2,63 × 107 1,75 × 107 0,875 × 107 1,75 × 107 

 

Table 4. Material properties of the shaft 

 

 

 

 

 

By using the finite element method to model the system, the rotor shaft system is divided into 7 

elements (inside) and 4 elements (outside), so that there are 11 elements in modelling coaxial dual rotor 

system as shown in Figure 2. 

 

 

 

Density (𝜌) Elastic modulus (𝐸) Poison ratio (𝑣) 

7800 kg/m3 2 × 1011 N/m2 0,3 
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Figure 2. Finite Element Modelling of coaxial dual rotor system 

 

The location of nodes on the inner and outer shaft are given in Tables 5 and 6 respectively. Data for 

finite element is given in Table 7. 

 

Table 5.  Nodal coordinates on the inner shaft 

Nodal 1 2 3 4 5 6 7 8 

Absis (mm) 0 76,2 158,7 241,3 323,8 406,4 457,2 508 
 

 

 

Table 6. Nodal coordinates on the outer shaft 

Nodal 9 10 11 12 13 

Absis (cm) 152,4 203,2 279,4 355,6 406,4 
 

 

 

Table 7. Finite element modeling node coaxial dual rotor system 

 

 

 

 

 

 

 

 

 

 

Numerical studies were carried out to compile a program used in predicting the dynamic characteristics 

of coaxial dual rotor system. In this research, the program was written using MATLAB software. Two 

solution methods were written for solving the equation of motion: the the pseudo modal and the direct 

method  

No Elemen Node 

1 Shaft 
Inner 1-8 

Outer 9-13 

2 Rotor 
Inner 2 and 7 

Outer 10 and 12 

3 
Bearings and 

seals 

Inner 1 and 8 

Outer 9 

Intershaft 

Bearings 
13 
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The speed rotation was in the range of 0 to 14,000 rpm. The first six lowest frequencies computed using 

the pseudo modal and the direct method is shown in Figure 3 and 4 respectively. Figure 5 and 6 show 

the first eight lowest frequencies obtained using the pseudo modal and the direct method respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. Campbell Diagram – Pseudo Modal 

Method with six lowest frequencies. 

Figure 4. Campbell Diagram - Direct Method 

with six lowest frequencies. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5 Campbell Diagram - Pseudo Modal 

method with 8 lowest frequencies 
Figure 6 Campbell Diagram - Direct method with 

8 lowest frequencies. 
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The values of Critical speed obtained using the Pseudo Modal method and the Direct Method are 

given in Table 8 for the first six lowest frequency and in Table 9 for the first eight frequency. 

 

 

Table 8. Various critical speed values (6 lowest frequency). 

 

 

 

 

 

Table 9. Various critical speed values (8 lowest frequency). 

 
 
 
 
 
 

 

It can be observed from Table 8 and 9 that there are difference in values of critical rotation speed 

between the first six lowest frequency and the first eight lowest frequency if the Pseudo Modal method 

is used. This is due to using the Pseudo Modal method, the value of the matrix damping factor C is not 

included in the global equation system as shown in Equation (2). This causes the critical rotation speed 

value obtained by the Pseudo Modal method to be higher when compared to the critical rotation speed 

value obtained using the Direct method.  

The percentage change in the value of critical speed using the Pseudo Modal method between the first 

six lowest frequencies and the first eight lowest frequencies are given in Table 10. 

Table 10. Changes in the critical speed value of the Pseudo Modal method 

 

 

 

 

 

 

 

 

If the results obtained using the Pseudo Modal method are compared with the results obtained using the 

Direct method, the results can be seen in Table 11 for the first six lowest frequencies, and Table 12 for 

the first eight lowest frequencies. 

Table 11. The difference in values of critical rotation speed between the Direct method and the Pseudo 

Modal method for the first six lowest frequencies. 

Coordinate Pseudo Modal Method (rpm) Direct Method (rpm) 

A 4.475 4.475 

B 7.118 7.014 

C 10.341 9.439 

D 12.307 11.810 

Coordinate Pseudo Modal Method (rpm) Direct Method (rpm) 

A 4.479 4.475 

B 7.265 7.014 

C 9.726 9.439 

D 12.082 11.810 

Coordinate 
Pseudo Modal Method (rpm) 

6 frequency 8 frequency 

A 4.475 4.479 

B 7.118 7.265 

C 10.341 9.726 

D 12.307 12.082 

Coordinate Pseudo Modal Method (rpm) Direct Method (rpm) 
Percentage 

Difference 

A 4.475 4.475 0% 

B 7.118 7.014 1,48% 
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Table 12. The difference in values of critical rotation speed between the Direct method and the 

Pseudo Modal method for the first eight lowest frequencies 

 

It should be noted that the Pseudo Modal method in the process of solving the equations of the rotor 

shaft system uses the number of modes (NoM) vibrations that want to be analyzed. Meanwhile, the 

Direct method uses the maximum number of elements (NMAX), on the rotor shaft. These differences 

can be seen in the following MATLAB program script. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Script for solving global matrix 

equations (Pseudo Modal Method) 

Figure 8. Script for solving global matrix 

equations (Direct Method) 

 

4. Conclusion 

The Pseudo Modal method and the Direct Method can be used to predict the critical rotation speed of a 

coaxial dual rotor shaft system. By using the Pseudo Modal method, the value of the damping matrix C 

is considered small so that it was not taken into account in the completion of the motion system. 

Assuming small value of C matrix, the value of critical speed obtained using the Pseudo Modal method 

is greater than those obtained using the Direct method. There is a difference in the value of critical speed 

using the Pseudo Modal method between the number of vibrational mode (NoM) between the first six 

lowest frequencies and the first eight lowest frequencies. Further research is needed on experimental 

study of coaxial dual rotor shafts to validate the best results between the Pseudo Modal method and the 

Direct Method. 
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C 10.341 9.439 9,56% 

D 12.307 11.810 4,21% 

Coordinate Pseudo Modal Method (rpm) Direct Method (rpm) Percentage Difference 

A 4.479 4.475 0,09% 

B 7.265 7.014 3,58% 

C 9.726 9.439 3,04% 

D 12.082 11.810 2,30% 

for k=1:NMAX 
        k1=2*k-1; 
        No_urut(k)=dum1(k1,2); 
    end 
    for k=1:NoM  

Fn_dum1(k)=Fn_dum(No_urut(k)); 

 

for k=1:NoM 
   PSI(:,k)=V(:,No_urut(k)); 
end 
mr=PSI.'*M*PSI; 
kr=PSI.'*K*PSI; 
f2=PSI.'*F2; 
f3=PSI.'*F3; 
f=[f2 
   f3]; 
ci=2*Alfai*sqrt(kr*mr); 
cidum=zeros(NoM); 
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