

INTERNATIONAL SEMINAR ON CHEMICAL ENGINEERING

in conjunction with

Seminar Teknik Kimia Soehadi Reksowardojo (STKSR) 2016

ENERGY

27-28 October 2016
Institut Teknologi Bandung, Indonesia

Organized by:

Supported by:

Sponsored by:

Department of Chemical EngineeringFaculty of Industrial Technology Institut Teknologi Bandung

PROCEEDING

International Seminar on Chemical Engineering in conjunction with Seminar Teknik Kimia Soehadi Reksowardojo (STKSR) 2016

"Sustainable Food, Energy, and Water" ISSN: 2353-5917

27-28 October 2016 West and East Hall Institut Teknologi Bandung Jl. Ganesha 10 Bandung INDONESIA

Editors:

Ardiyan Harimawan, Ph.D M.T.A.P. Kresnowati, Ph.D. Devina Regina Catharine Bella

Organized by

Department of Chemical Engineering Faculty of Industrial Technology Institut Teknologi Bandung International Seminar on Chemical Engineering in conjunction with Seminar Teknik Kimia Soehadi Reksowardojo (STKSR) 2016 October 27th-28th 2016, Bandung Indonesia

INTERNATIONAL SCIENTIFIC COMMITTEE

Prof. Koichi Fujie. Yokohama National University, Japan

Prof. H. J. Heeres. University of Groningen, the Netherlands

Prof. Norikazu Nishiyama. Osaka University, Japan

Prof. Johan Sanders. Wageningen University, the Netherlands

Prof. Hamdani Saidi. Universiti Teknologi Malaysia, Malaysia

Prof. Tjandra Setiadi. Intitut Teknologi Bandung, Indonesia

Assoc. Prof. Yen-Peng Ting. National University of Singapore, Singapore

STEERING COMMITTEE

Prof. Subagio. Institut Teknologi Bandung

Prof. Mubiar Purwasasmita, Institut Teknologi Bandung

Prof. Herri Susanto. Institut Teknologi Bandung

Prof. Tjandra Setiadi. Insitut Teknologi Bandung

Prof. Yazid Bindar. Institut Teknologi Bandung

Prof. I. G. Wenten. Insitut Teknologi Bandung

Prof. Johnner Sitompul. Insitut Teknologi Bandung

Assoc. Prof. Irwan Noezar. Institut Teknologi Bandung

Assoc. Prof. Tatang Hernas Soerawidjaja. Institut Teknologi Bandung

ORGANIZING COMMITTEE

Chairman: Prof. Tjandra Setiadi, Ph.D.

Ardiyan Harimawan, Ph.D.

Hary Devianto, Ph.D

M.T. A. P. Kresnowati, Ph.D

Dr. Eng. Pramujo Widiatmoko

Dr. Eng. Jenny Rizkiana

Dianika Lestari, Ph.D

Meiti Pratiwi, ST., MT.

Daniel Pramudita, STP., MSc.

Zulhaj Rizki, ST., MSc.

Try Hutomo Abednego

Catharine Bella

Devina Regina

Anthony Gunawan

Sheryn Julianti

Wenda Brata Naibaho

Judan Syamsul Hadad

Arry Khaminov Rizky

Faisal Anggi Rangkuti

Ryzka Pranata

Vincentius Ferry

Judistira

MESSAGE

First of all, deep gratitude is dedicated to Allah the Almighty which gives His blessing to the Chemical Engineering Institut Teknologi Bandung which this year evenly becomes 75 years old. The journey of 75 years for Chemical Engineering ITB as the oldest Chemical Engineering program in Indonesia and one of the oldest program in ITB is a long journey with all the hurdles which creates the Chemical Engineering ITB becomes a reputable program.

We gladly overcome the presence of "75 Tahun Teknik Kimia untuk Indonesia" book, as a track record of the contributions of Chemical Engineering ITB and its alumni in advancing Indonesian society. The family of Chemical Engineering ITB and its alumni have been proven to be able to build a strong connectivity among the higher education,

Science and technology development, and industrial escalation especially in chemical industry. Therefore, the contribution of Chemical Engineering ITB is unquestionably substantial in showing the objective of Indonesian society to achieve food independency and energy sovereignty. It is highly expected that this book can pass those ideas to the society, especially the young generation which will advance the development of Chemical industry in Indonesia.

We would like to congratulate anew this 75th year Commemoration of Chemical Engineering Higher Education in Indonesia. We hope that the family of Chemical Engineering ITB can be continuously actively contribute in generating intellectual works which are affluent in advantages, as a contribution to the Indonesian society. Especially for the alumni of Chemical Engineering ITB, we hope that can keep the good relation with the alma mater, also to keep working, accomplishing, and being the "energy" for ITB to keep carrying on the credence of the higher education.

Bandung, October 2016

Prof.Dr.Ir. Kadarsah Suryadi, DEA.

Rector of Institut Teknologi Bandung (ITB)

MESSAGE

Assalamu'alaikum Warahmatullahi Wabarakatuh

Warm Greetings for us all

Ladies and Gentlemen,

Chemical Engineering program in ITB cooperates with Chemical Engineering ITB alumni foundation and the alumni themselves are conducting series of events which consist of the Education Seminar about Chemical Engineering dedicated to High School teachers and students, especially for Science program, on October 26th 2016 and the International Seminar on Chemical Engineering in Conjunction with Seminar Teknik Kimia Soehadi Reksowardojo 2016 on 27-28 October 2016.

The seminar this year is focusing on the topic of Energy, Food and Water. Those three topics were chosen in relation to the scarcity of these three aspects which are starting to give impacts and need a special attention. The chemical engineering bachelors can be involved much in those three sectors, and so the academia, practitioneers and the government in order to harness this moment to share knowledge for the sake of advancement of Republik Indonesia.

For the participants who are actively involved and the invited speakers, the sponsors and Institut Teknologi Bandung who already gave us permission to utilize the facilities, we express our deep gratitude.

Hopefully this seminar can give benefits for us all.

Wassalam

Dr.Ir. Irwan Noezar, MS Chairman of 75th year Commemoration of Chemical Engineering Higher Education in Indonesia

MESSAGE

Dear Colleagues,

On behalf of the Organizing Committee of the International Seminar on Chemical Engineering, I am honorable to welcome you all to Institut Teknologi Bandung, Bandung, Indonesia. This year, Department of Chemical Engineering – Institut Teknologi Bandung is celebrating the 75th year of Chemical Engineering Education in Indonesia. One of the main events is holding this Seminar in conjunction with Seminar Teknik Kimia - Soehadi Reksowardojo (STKSR) 2016 with the topic of 'Sustainable Energy, Food and Water'. Globally and at national level as well, we are aware of the challenges to meet the needs of energy, food and water for all

in sustainable ways.

Those topics will be addressed by leading engineers/scientists from 9 countries, either in plenary lectures or parallel sessions. In each session, an invited speaker will address a certain topic with a depth insight and ample of time to discuss the issue with the participants, hopefully they will learn more from an expert in the field.

We have also prepared several social functions, so that delegates may meet one another and experience the Indonesian culture with Bandung pleasant weather and warm hospitality. Finally, the committee is most grateful to all sponsors and ChemEng-ITB Alumni for providing funds. I also thank all International/Technical Committee members, all the plenary and invited speakers and all oral/poster presenters for their kind efforts and contributions in making this conference a success.

Thank you

Prof. Tjandra Setiadi, Ph.D. Chairman of STKSR 2016

International Seminar on Chemical Engineering in conjunction with Seminar Teknik Kimia Soehadi Reksowardojo (STKSR) 2016 October 27th-28th 2016, Bandung Indonesia

TABLE OF CONTENTS

Message	iii
Table of Contents	vii
General Program	XV
PRESENTATION OF KEYNOTE SPEAKERS	
F27 Role of Small Scale Biorefining for Food Industry Oil Cassava	3
E41 Biobased Chemicals from Biomass Using the Biorefinery Concept	14
E42 Renewable Energy - Emerging Opportunities for Chemical Engineers	43
E45 Catalysts for Liquid Biofuel Production	49
W09 Wastewater – Still one of the most important engineering challenges	57
PRESENTATION OF INVITED SPEAKERS	
E02 Comparison Between the Performance of Fixed Bed and Fluidized Bed Reactors with Natural Zeolite/Bentonite as Microbial	73
E03 Techno-economic and Sensitivity Analysis of Reutealis Trisperma as Non-edible Feedstock for Future Biodiesel Production	77
E06 Selective Conversion to Aromitics from Various C ₁₋₃ Feedstocks on Core-shell Zeolite Composites	82
E35 Waste Treatment and Utilization in Indonesian Palm Oil Industries	89
E43 Stability Improvement of Solid Acis Catalysts for the Conversion of Water-Containing Feedstocks in Bioenergy and Chemurgy Research	
E44 Manufacturing Carbon Material by Carbonization of Cellulosic Palm Oil Waste for Supercapacitor Material	08

W11 Forward Osmosis Membrane Bioreactor (FOMBR) - More Than a Novel ME	BR Process
	114
W12 Engineering for a Sustainable Future	124
W13 Water and Energy Recycling in Commercial Poultry Processing	129
O12 Scientific Approach for Green Industries and Low Carbon Industrial Parks	142
KEYNOTE AND INVITED SPEAKERS SESSION	
F27 Small Scale Biorefineries for Food and Non Food Applications	151
F28 Design and Evaluation of Biomass Residue Recycle System for Sustainable C Cultivation based on Material Flow Analysis	•
E02 Comparison between the Performance of Fixed Bed and Fluidized Bed Reactor Natural Zeolite/Bentonite as Microbial Immobilization Media for Anaerobic I Stillage	Digestion of
E03 Technoeconomic and sensitivity analysis of Ricinus communis linn as Non-ed feedstock for future biodiesel production	
E06 Selective conversion to aromatics from various C1-3 feedstocks on core-shell composites	
E35 Waste Treatment and Utilization in Indonesian Palm Oil Industries	172
E41 Biorefineries: from biomass to green energy, biofuels and biobased chemicals	s 174
E42 Renewable Energy – Emerging opportunities for Chemical Engineers	175
E43 Stability Improvement of Solid Acis Catalysts for the Conversion of Water-C Feedstocks in Bioenergy and Chemurgy Research	•
E44 Carbon Characteristic from Hydrothermal Processing of Cellulosic Oil Palm	Biomass 177
E45 Catalysts for Liquid Biofuel Production	178
W09 Wastewater – Still one of the most important engineering challenges	179

Bioreactor (MBR) Process	. 181
W12 Engineering for a Sustainable Future	. 187
W13 Water and energy recycling in commercial poultry processing	. 197
O12 Scientific approach for low carbon cities and regions	. 198
ORAL PRESENTATION SESSION	
F03 Evaluation of Simultaneous Saccharification and Fermentation of Oil Palm Empty F1 Bunches for Xylitol Production	
F05 The potentiality of elot as raw material for lipid (triacylglycerols/triglycerides) production	. 202
F06 Phase Transformation of Solid Biomass Pretreated by Ionic Solution into Liquid Sug	
F07 Comparison of Modified Chitosan and Chlorine as Antibacterial Agent for Tilapia Fi	
F08 Production and properties of spray dried green banana powder	. 225
F10 Optimizing Food Production through Biorefinery of Proteins	. 231
F13 Optimization of Demineralization Stages on Chitosan Extraction from Crab (Portunu pelagicus) Shells	
F14 Microwave-assisted Extraction of Roselle Seed: The Effects of Duration and Power V	
F16 Oil in Brewed Coffee: Effects of Roasting and Grinding on Extractability	. 253
F17 Steam Treatment of Protein Curd to Improve Texture of Winged Bean Tofu	. 261
F20 Osmotic Membrane Distillation of Phenolic Rich Solution Using Superhydrophobic PVDF/TiO ₂ Membrane	. 267

F21 Use of Convective Multiple Flash Drying to Dry Fermented Cassava: Comparison	of
Drying Methods and Whiteness Degree Analysis	275
F22 Study of PLA-based Blend and Nanocomposite Bioplastic for Food Packaging	281
F25 Development of Drying Process of Cassava Chips for Fercaf Production	291
F29 Application of Chemical Engineering Concepts in Modern Agriculture	296
F30 Application of Chemical Engineering Concepts in Modern Agriculture Part 2: Plan Bioreactor as a Basis for Integrated Productive Agriculture	
E01 Bioremediation by Bacillus cereus and Indigenous Bacteria from Petroleum Contaminated Soil	316
E05 Effect of Chemical and Physical Forces on Hydrophilication Proces of Mesoporous Carbon as Economical Solid Desiccant in Biogas Purification	
E07 Renewable fuel production by thermal catalytic decarboxylation of basic soap from stearic acid	
E08 Landfill Leachate Digestion Using Single Stage Anaerobic Fluidized Bed Bioreact Natural Zeolite Powder as Microbial Immobilization Medium	
E10 A Case Study of Propane Sub-Cooling System Optimization to Prevent Excessive Flaring during LPG Loading in Bontang LNG Plant	
E12 Effect of Solvents on Lipolytic Activity of Rice Bran Extract Powder	356
E14 Phenomenological Modelling of a Trickle-bed Reactor for the Production of Renev	
E18 An Overview: Geothermal Power Plant Tender Process in Indonesia	370
E20 Bridging Research and Action toward Low Carbon Society: Preliminary Assessme Effectiveness of Social Monitoring System in Bogor, Indonesia	
E22 Novel Operation Method of Dynamic Pd/Al2O3 Membrane to Improve H2 Permea	ability

E26 Volumetric Flexibility Analysis on Membrane Module Design and Operability	390
E27 Performance Evaluation of Reactive Distillation for Ethyl Acetate Synthesis with PI Controller By Using Real Time Optimization	399
E28 Polysulfone/SAPO-44 zeolite mixed matrix membrane for CO ₂ gas separation: Effect silane modification	
E34 Biosolubilization of Indonesian Lignite Coal using Trichoderma asperellum	413
E39 Pyrolysis of metal soaps from mixed metals (Mg-Zn-Cu-Fe-Cr) and candlenut oil	420
E40 Designing of Oil Drilling Fluid Using Polymer AA-AM-AMPS	427
E46 The Effect of Gas Composition in LNG on the Performance of Gas Engine	437
W01 Identification of Chemical Compounds Degradation Products of Commercial Malath Pesticides in Water	
W02 Mathematical Modeling to Evaluate the Distribution of Leachate Disharge into the Water Streams around Piyungan Landfill Site	455
W03 Surfactant Modified Bentonite Coating for Softening Hard Water: Performance Evaluation	465
W05 Acrylic Based Adsorbent Coating for Methylene Blue Dye Removal	475
W08 BIosorption of Cadmium(II) from Aqueous Solution by Two Types of Biosorbents Based on Microalgae Aphanothece Sp	480
O01 Low Temperature Synthesis of Hydrogen Titanate Nanotubes as a Solid Acid Catalys for 5-(hydroxymethyl)furfural Formation from Glucose	
O02 Outcome-Based Learning Innovation: Application to Engineering Economics Course	494
O05 Effect of Vacuum and Atmospheric Drying on Torrefaction of Oil Palm Trunk	500
O07 Microcatalytic Converter for CO Oxidation over Pt/γ-Al ₂ O ₃ during Cold Start-up Peri	

O10 Chemical Engineering ITB for ABET Reaccreditation: Towards Continuous Quality
Improvement and Innovation in Education513
O11 Modification of MnOx Based Catalyst on Activated Carbon Support for Ozone
Decomposition in Low Temperature Effluent Gas Emission
O13 Consequence Analysis on Fuel Cell as Power Generation
POSTER PRESENTATION SESSION
F01 Downstream Processing of Xylitol from Oil Palm Empty Fruit Bunch Hydrolysate 543
F02 Synthesis of Structured triglyceride Based on Canarium Oil for Food Application 545
F04 Evaluation of Pretreatment Process for Producing Xylose-Rich Hydrolyzate from Oil
Palm Empty Fruit Bunches
F09 Development of Instant Starter for the Production of Fermented Cassava Flour (Fercaf)
F12 Development of Mixed Fertilizer Fillers by Pan Granulation of Waste Animal Bones and Eggshells
F23 Study of Refined κ-Carrageenan Production from Eucheuma cottonii Seaweed559
F24 Production of Biocomposite for Food Packaging from PLA and Empty Fruit Bunch based
Cellulose Fiber Using Triacetine as a Coupling Agent567
E04 The Effect of Bacillus cereus and Pseudomonas putida on Heavy Metals Bioremediation
of Petroleum Contaminated Soil
E15 Potassium Recovery from Bamboo Biomass Fuel Ash
E17 Case Study of Steam Power Plant Energy Conservation in Gas Processing Plant PT XYZ
E19 Effect of the Iron (II) and Zinc (II) Addition for the Ethanol Production from the
Degradation of Palm Oil Mill Effluent (POME) by Anaerobic Processes

E21 Modelling of Dry Reagent for Dry Flue Gas Desulfurization
E23 Simulation of Transient Reverse Flow Operation: Optimizing Reactor Design for Catalytic Oxidation of Benzene Oxidation
E25 Development of Dye-sensitized Solar Cell with Carbon as Counter Electrode
E33 Hydrodynamic Study on Zeolite Packed Bed Behaviour
E36 Effect of Numeral Nutrient Concentration on The Cultivation of Microalgae Botryococcus braunii with Airlift-Vertigro Photobioreactor
W04 Mathematical Equations of Fin System for Methylene Blue Dye Removal Using Absorbent Coating
W06 Growth Kinetic Modeling of Cyanobacteria Aphanothece sp
W07 Substrate Adsorption Effects of Natural Zeolite as the Microbial Immobilization Medium in Anaerobic Treatment of Landfill Leachate
O04 Synthesis of Water Soluble Copolymers of Acrylamide-(2-Acrylamido-2 Methylepropanesulfonic Acid) for Enhanced Oil Recovery
O06 Removal of Copper (II) Ion in Aqueous Solutions by Sorption onto Fly Ash (Ongoing Research)
O08 Preparation of Nano-catalyst Pt with Cellulose Nano Crystals as Catalyst Support 650

International Seminar on Chemical Engineering in conjunction with Seminar Teknik Kimia Soehadi Reksowardojo (STKSR) 2016 October 27th-28th 2016, Bandung Indonesia

GENERAL PROGRAM

Day 1: Thursday, October 27th 2016

	PROGRA	M
TIME	WEST HALL	EAST HALI
07.30 - 08.00	Registration	
	Opening Ceremony of Commemoration of 75 Years Higher Education of Chemical Engineering in Indonesia	
08.00 – 09.05	 Safety Induction: Dr. Hary Devianto Report presentation from Programme Advisor: Assoc. Prof. Irwan Noezar POKJA Presentation 	
09.05 – 09.15	Referral of POKJA document to Rector of Institut Teknologi Bandung	
09.15 – 09.30	Opening and Welcoming Speech by Rector of Institut Teknologi Bandung: Prof. Dr. Ir. Kadarsah Suryadi, DEA.	
09.30 – 10.00	Photo session and coffee break	
10.00 – 10.15	Opening ceremony of STKSR 2016:	
	Prof. Tjandra Setiadi	
	Keynote 1: Prof. Koichi Fujie.	
	Yokohama National University, Japan.	
	"Design and Evaluation of Biomass Residue Recycle System for Sustainable Crop Cultivation based on Material Flow Analysis	
	Keynote 2: Prof. Hamdani Saidi	
10.45 – 11.15	Universiti Teknologi Malaysia, Malaysia	

	PRO	GRAM		
TIME	WEST HALL		EAST HALI	_
	" Renewable Energy – Emerging opportunities for Chemical Engineers"			
11.15 – 11.45	Keynote 3: Prof. Johan Sanders Wageningen University, The Netherlands " Small Scale Biorefineries for Food and Non Food Application"			
11.45 – 12.15	Flash Poster Presentation			
12.15 –13.30	LUNC	H BREAK		
	PARALEL 1	I: 1st SESSIC	ON	
	ROOM 1	ROOM 2	ROOM 3	ROOM 4
13.30 – 13.50	E06*	F06	W11*	O12*
13.50 – 14.05	E01	F05	W10	O01
14.05 – 14.20	E05	F03	W05	O02
14.20 – 14.35	E07	F16	W08	O05
14.35 – 14.50	E20		W03	O07
15.00 – 15.30	Coffee Break			
	PARALLEL I: 2 nd SESSION			
	ROOM 1	ROOM 2	ROOM 3	ROOM 4
15.30 – 15.50	E03*	F29	E43*	W13*
15.50 – 16.05	E08	F08	E31	O10
16.05 – 16.20	E10	F10	E34	O11
16.20 – 16.35	E11	F13	E38	O13
16.35 – 16.50	E14	F14	E39	
19.00 – 21.00		•	GALA DINNE	ER

Day 2: Friday, October 28th 2016

	PRO	OGRAM		
TIME	WEST HALL]	EAST HALL	
	POSTED SCOPING SESSION	PARAL	EL II: 1 ST SE	SSION
	POSTER SCORING SESSION	ROOM 2	ROOM 3	ROOM 4
08.30 - 08.50		F20	W12*	E35*
08.50 - 09.05	- F01 F02 F04 F09 F11 F12 F15 F18	F21	W01	E16
09.05 - 09.20	F23 F24 E04 E09 E13 E15 E17	F22	W02	E22
09.20 - 09.35	E19 E21 E23 E24 E25 E32 E33 E36 E37 W04 W06 W07 O03 O04	F17		E26
09.35 - 09.50	O06 O08 O09	F19		E12
	,			
10.00 – 10.15	Coff	ee Break		
		PARAL	EL II: 2 ND SE	ESSION
		ROOM 2	ROOM 3	ROOM 4
10.15 – 10.35		F26	E02*	E44*
10.35 – 10.50		F25	E40	E27
10.50 – 11.05		F30	E18	E28
11.05 – 11.20		F07	E46	E30
11.20 – 13.30	LUNC	H BREAK		
13.30 – 14.00	Keynote 4: Prof. Sebastien Rauch Chalmers University, Sweden "Wastewater – Still one of the most important engineering challenges"			
14.00 – 14.30	Keynote 5: Prof. Subagjo Institut Teknologi Bandung, Indonesia " Catalysts for Liquid Biofuel Production"			
14.30 – 15.00	Keynote 6: Prof. H.J. (Erik) Heeres University of Groningen, the Netherlands			

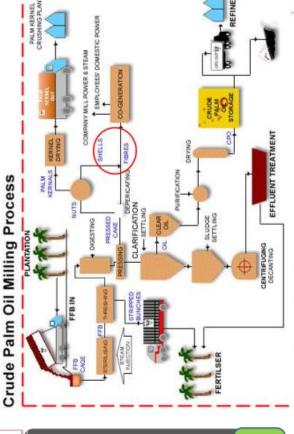
TIME	PRO	OGRAM
TIME	WEST HALL	EAST HALL
	"Biorefineries: from biomass to green energy,biofuels and biobased chemicals."	
15.00 – 16.00	Studium Generale by Indonesian Minister of National Development Planning: Prof. Bambang Permadi Soemantri Brodjonegoro	
16.00 – 16.30	Closing remarks Award announcement: best presenter, best paper, best poster, and young scientist award	
16.30 – 17.00	Cofi	fee Break

SCHE - STKSR 2016, ITB thandung, 27-28 October 2016

SChE - STKSR 2016, ITB Bandung, 27-28 October 2016

WASTE TREATMENT AND UTILIZATION IN INDONESIAN PALM OIL INDUSTRY

Udin Hasanudin *1, Julfi R. Amelia², Agus Haryanto³, Ryo Murakami⁴, and Koichi Fujie⁴


¹Dept. of Agro-industrial Technology, University of Lampung, Email: <u>udinha@fp.unila.ac.id</u>, ²Dept. of Agro-industrial Technology, Bogor Agricultural University, ³Dept. of Agricultural Engineering, University of Lampung, ⁴Graduate School of Environment and Information Sciences, Yokohama National University.

Indonesia CPO Production 2013: 27.64 Million tons. 2015: 32.36 Million tons. 2020 was estimated 43.93 Million tons (GAPKI 2014).

ISChE – STKSR 2016, ITB Bandung, 27-28 October 2016

Number of Palm Oil Mills more than 750

unit (some of mills have no plantation)

Small holder farmers usually have no mill, it should be considered on waste treatment and utilization policy

from Indonesian Palm Oil Mills **Estimation of Waste Potential**

Waste generated from Palm Oil Mil

	W	Waste Production	uc
lype of waste	2013	2015	2020
POME (10 ⁶ m ³)	84,12	98,49	133,70
Mesocarp Fiber (10 ⁶ Ton)	14,42	16,88	22,92
Palm Kernel Shell (10 ⁶ Ton)	6,01	7,03	9,55
EFB (10 ⁶ Ton)	24,03	28,14	38,20
Boiler Ash (10 ⁶ Ton)	3,00	3,52	4,78

ISCHE - STKSR 2016, ITB Bandung, 27-28 October 2016

(3.5% optional) Solid Decanter

Boiler Ash 2.5 %

5-6 % Shell

12-13 %

20-23 %

60-100 %

EFB

WASTE TREATMENT AND UTILIZATION COMMONS PRACTICES OF IN INDONESIAN PALM OIL Waste Treatment and Utilization Approach

AGROINDUSTRY ZERO WASTE total utilization of resources, and increase of total productivity minimization of waste,

ISSN: 2353-5917

SCNE - STKSR 2016, TTB Bandung, 27-28 October 2016

LAND APPLICATION OF TREATED POME REQUIREMENT FOR

Conventional POME Treatment and Utilization

Decree of Minister of Environment No. 28 and

29, 2003.

☐BOD max. 5000 mg/l

6-9 нd 🗖

Wastewater

FFB

□prohibited to apply in peat land

 \square Soil permeabilty > 1,5 cm/h and < 15 cm/h

□Conducted a research in the LA area before applying the treated POME ■ Water table > 2 m

E Land Application t

ISCNE - STKSR 2016, TTB Bandung, 27-28 October 2016

EFB mulching

.510

1.180

3.350 320

1.000 - 3.000

Sediment

After Aerobic Treatment

8

190

300 260

1.800 1.200 1.495 1.390

120 70

900

450 1.300

> Liquid Slurry

Mixed

1.000

540

2.300 2.380

12 460

2

100

345

150

920

25.000

resh POME

After Anaerobic Treatment

(mg/L)

(mg/L) 1.960

(mg/L) (mg/L)

BOD (mg/L)

Freatment Stage of

The Important of Land App

Nutrient Content in Each Stage

of POME Treatment

- Wastewater (POME) = 0,6-1 m3/ton of FFB
 - COD fresh POME = 40.000-100.000 mg/l
 - Effluent standard in palm oil industry:

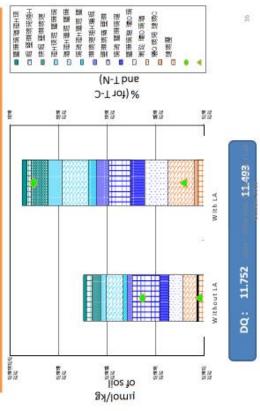
	(mg/l)	
Σ	Max. Concentration	Parameters

Parameters	Max. Concentration (mg/l)	Max. Pollution Load (Kg/Ton CPO)
BOD ₅	100	0,25
COD	350	88'0
TSS	250	0,63
Fats and Oils	25	0,063
Nitrogen Total (as N)	50	0,125
Hd	6-9	6.
Max. Flow rate	2,5 m ³ per ton product (CPO)	product (CPO)

Very costly if the objective POME treatment is only for fulfilling the effluent standard

13

Microbial Quinone Content, Quinone species, Carbon and Nitrogen content in the Soils


ISChE – STKSR 2016, ITB Bandung, 27-28 October 2016

1.495

150-300

Sediment

Liquid

Land Application is related with SOIL QUALITY and SUSTAINABILITY in agricultural sectors PRODUCTIVITY as main indicators of

Soil Quality Indicator:

GBEP: considered Soil Organic Carbon

ISCC: soil erotion, soil organic matters, soil structure RSPO: soil fertility → optimal and sustained yield

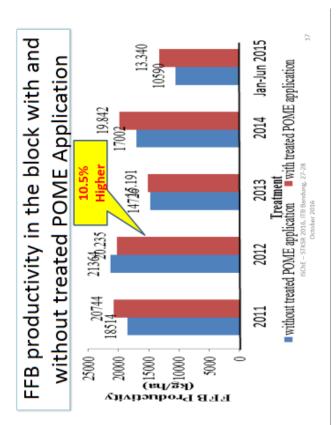
SOIL QUALITY has integrated meaning

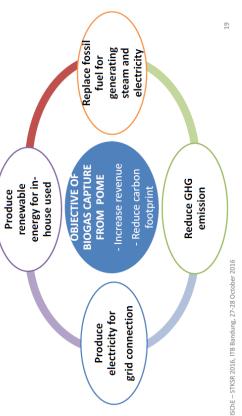
15

ISChE – STKSR 2016, ITB Bandung, 27-28 October 2016

Methane Capture dan Land Application

ISChE – STKSR 2016, ITB Bendung, 27-28 October 2016


Biogas Production from POME


The Objective of Methane Capture

Cover In Ground Anaerobic Reactor (CIGAR)

ISChE - STKSR 2016, ITB Bandung, 27-28 October 2016 19

Energy Consumption in Based on methane production potential, the energy 7 kWh/ton FFB production from POME is estimated about: "11 with 45 ton Palm Oil Mill Using this value, palm 🕰 FFB/hour or 900 ton F potential to genera

60,400

43,375 5,500

∥/gw mg/l

COD of treated POME COD of fresh POME

POME production

COD removal

Max

Ξ

9,000

33.41 0.65

20.83

0.55

m³/ton FFB kg/ton FFB 8.35

5.21

0.25

kg CH₄/kg COD removal

PCC default value*)

Estimation of GHG emission potential from POME

Based on CPO production at 2015, the potential of energy production from POME in Indonesia is estimated more than 750 MW

ISChE – STKSR 2016, ITB Bandung, 27-28 October 2016

175.35

109.41

kg CO₂e/ton FFB

SWP potential

*) IPCC, 2006

21

11.69

7.29

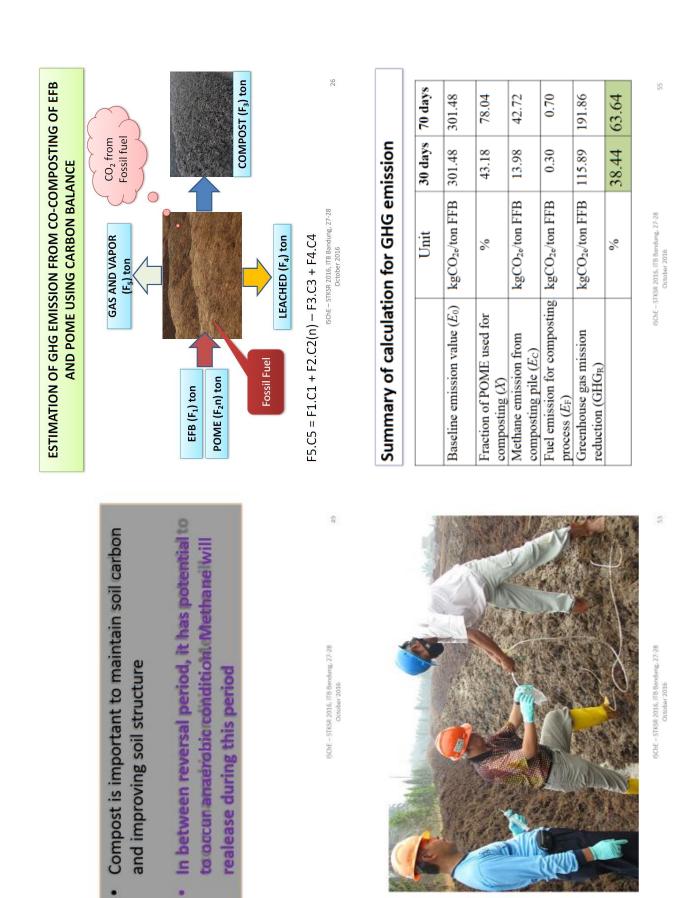
m3 CH4/ton FFB kg CO₂e/ kg CH4

CH4 production potential GWP potential of CH₄*)

m³ CH4/kg COD kg/ton FFB

PCC default value*)

CH4 production


removal

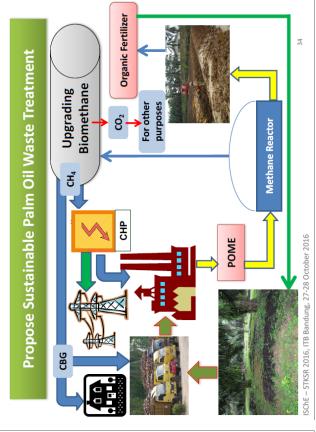
Co-Composting EFB and POME

ISChE – STKSR 2016, ITB Bendung, 27-28 October 2016

\$

Replace fossil fuel for generation steam and electricity

Produce renewable energy for in-house used


Produce electricity for grid connection

ISChE – STKSR 2016, ITB Bandung, 27-28 October 2016

IS IT SUSTAINABLE?

ISChE – STKSR 2016, ITB Bendung, 27-28 October 2016

Sawit Indonesia More Sustainable Than Ever

Thank you for your kind attention

ISChE – STKSR 2016, ITB Bandung, 27-28 October 2016

ISChE – STKSR 2016, ITB Bandung, 27-28 October 2016

But, we can not get renewable oroduction through soil quality 33 Support GHG emission reduction and oil palm improvement increase soil Co-Composting EFB and POME energy ISChE – STKSR 2016, ITB Bandung, 27-28 October 2016 return to the so Carbon and nu **Smaller amount of** return to the plant fertility and oi Reduce water Reduce GHG

CONCLUSIONS

- Palm Oil Mill WASTE treatment has potential to support the sustainability of palm oil industry
- Sustainable Palm Oil Mill WASTE treatment has potential to:
- Produce Renewable energy and increase energy diversity,
- Reduce GHGs emission
- Reduce environmental pollution
 - ✓ Improve soil quality
- Increase oil palm productivity
- Create new jobs in bioenergy and other sectors